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1 UNC-Charlotte, Department of Computer Science, Charlotte, N.C. 28223, USA
2 Bialystok Technical University, Dept. of Mathematics, ul. Wiejska 45A,

15-351 Bialystok, Poland
3 Polish Academy of Sciences, Institute of Computer Science, Ordona 21,

01-237 Warsaw, Poland

Abstract. A rule-based chase algorithm (called Chase2), presented in
this paper, provides a strategy for predicting what values should replace
the null values in a relational database. When information about an
object is partially incomplete (a set of weighted values of the same at-
tribute can be treated as an allowed attribute value), Chase2 is decreas-
ing that incompleteness. In other words, when several weighted values of
the same attribute are assigned to an object, Chase2 will increase their
standard deviation. To make the presentation clear and simple, we take
an incomplete information system S of type λ as the model of data. To
begin Chase2 process, each attribute in S that has either unknown or
incomplete values for some objects in S is set, one by one, as a decision
attribute and all other attributes in S are treated as condition attributes.
Assuming that d is the decision attribute, we take a subsystem S1 of S
by selecting from S any object x such that d(x) 6= NULL. Now, the
subsystem S1 is used for extracting rules describing values of attribute
d. In the next step, each incomplete slot in S which is in the column cor-
responding to attribute d is chased by previously extracted rules from
S1, describing d. All other incomplete attributes in a database are pro-
cessed the same way. This concludes the first loop of Chase2. The whole
process is recursively repeated till no more new values can be predicted
by Chase2. In this case, we say that a fixed point in values prediction
was reached.

1 Introduction

Common problems encountered by Query Answering Systems (QAS), intro-
duced by Raś in [15], [18], either for Information Systems or for Distributed
Autonomous Information Systems (DAIS) include the handling of incomplete
attributes when answering a query. One plausible solution to answer a query
involves the generation of rules describing all incomplete attributes used in a
query and then chasing the unknown values in the local database with respect
to the generated rules. These rules can be given by domain experts and also
can be discovered either locally or at remote sites of DAIS. Since all unknown
values would not necessarily be found, the process is repeated on the enhanced



database until all unknowns are found or no new information is generated. When
the fixed point is reached, QAS will run the original query against the enhanced
database. The results of the query run on three versions of the information sys-
tem have been compared by Dardzińska and Raś in [5]: DAIS with a complete
local database, DAIS with incomplete local database (where incomplete infor-
mation can be represented only in terms of null values), and DAIS with a local
incomplete database enhanced by rule-based chase algorithm. The chase algo-
rithm presented in [5] was based only on consistent set of rules. The notion of a
tableaux system and the chase algorithm based on functional dependencies F is
presented for instance in [1]. Chase algorithm based on functional dependencies
always terminates if applied to a finite tableaux system. It was shown that, if
one execution of the algorithm generates a tableaux system that satisfies F , then
every execution of the algorithm generates the same tableaux system.

There are many methods to replace missing values with predicted values or
estimates [23], [19], [11], [7]. Some of them are given below:

– Most Common Attribute Value. It is one of the simplest methods to deal
with missing attribute values. The value of the attribute that occurs most
often is selected to be the value for all the unknown values of the attribute.

– Concept Most Common Attribute Value. This method is a restriction
of the first method to the concept, i.e., to all examples with the same value
of the decision. The value of the attribute, which occurs the most common
within the concept is selected to be the value for all the unknown values
of the attribute within that concept. This method is also called maximum
relative frequency method, or maximum conditional probability method.

– C4.5. This method is based on entropy and splitting the example with miss-
ing attribute values to all concepts [14].

– Method of Assigning all Possible Values of the Attribute. In this
method, an example with a missing attribute value is replaced by a set of
new examples, in which the missing attribute value is replaced by all possible
values of the attribute.

– Method of Assigning all Possible Values of the Attribute Restricted

to the Given Concept. This method is a restriction of the previous method
to the concept, indicated by an example with a missing attribute value.

– Event-Covering Method. This method is also a probabilistic approach
to fill in the unknown attribute values by event-covering. Event covering
is defined as a strategy of selecting a subset of statistically independent
events in the outcome space of variable-pairs, disregarding whether or not
the variables are statistically independent.

To impute categorical dimension missing values, two types of approaches can
be used:

– Rule Based Techniques (e.g., association rule, rule induction techniques,
etc.)

– Statistical Modelling (e.g., multinomial, log-linear modelling, etc.)



Two main rule based models have been considered: rule induction techniques
and association rules. For categorical attributes with low cardinality domains
(few values), rule induction techniques such as decision tree [14] and decision
systems [10] can be used to derive the missing values. However, for categori-
cal attributes with large cardinality domains (many values), the rule induction
techniques may suffer due to too many predicted classes. In this case, the com-
bination of association relationships among categorical attributes and statistical
features of possible attribute values can be used to predict the best possible
values of missing data. The discovered association relationships among different
attributes can be thought as constraint information of their possible values and
can then be used to predict the true values of missing attributes.

Algorithm, presented in this paper, for predicting what attribute value should
replace an incomplete value of a categorical attribute in a given dataset has
a clear advantage over many other methods for predicting incomplete values
mainly because of the use of existing associations between values of attributes,
in a chase strategy, repeatedly for each newly generated dataset till some fix-
point is reached. To find these associations we can use either any association
rule mining algorithm or any rule discovery algorithm like LERS (see [8]), or
Rosetta (see [20]). Unfortunately, these algorithms, including Chase algorithm
presented by us in [5], do not handle partially incomplete data, where a(x) is
equal, for instance, to {(a1, 1/4), (a2, 1/4), (a3, 1/2)}.

We assume here that a is an attribute, x is an object, and {a1, a2, a3} ⊆ Va.
By Va we mean the set of values of attribute a. The weights assigned to these
three attribute values should be read as:

• the confidence that a(x) = a1 is 1/4,
• the confidence that a(x) = a2 is 1/4,
• the confidence that a(x) = a3 is 1/2.

In this paper we present a new chase algorithm (called Chase2) which can be
used for chasing incomplete information systems with rules which do not have
to be consistent (this assumption was required in Chase1 presented in [5]). We
propose how to compute the confidence of inconsistent rules and next we show
how these rules are used by Chase2.

So, the assumption placed on incompleteness of data in this paper allows to
have a set of weighted attribute values as a value of an attribute. Additionally,
we assume that the sum of these weights has to be equal 1. The definition of an
information system of type λ given in this paper is a modification of definitions
given by Dardzińska and Raś in [5],[4] and used later by Raś and Dardzińska in
[17] to talk about semantic inconsistencies among sites of DIS from the query
answering point of view. Type λ is introduced mainly to monitor the weights
assigned to values of attributes by Chase2 algorithm (the algorithm checks if
they are greater than or equal to λ). If the weight assigned by Chase2 to one of
the attribute values describing object x is below the acceptable threshold, then
this attribute value is no longer considered as a value which describes x.



2 Handling Incomplete Values using Chase Algorithms

There is a relationship between interpretation of queries and the way incomplete
information in an information system is seen. Assume that we are concerned with
identifying all objects in the system satisfying a given description. For example,
an information system might contain information about students in a class and
classify them using four attributes of hair color, eye color, gender and size.
A simple query might be to find all students with brown hair and blue eyes.
When the information system is incomplete, students having brown hair and
unknown eye color can be handled by either including or excluding them from
the answer to the query. In the first case we talk about optimistic approach to
query interpretation while in the second one we talk about pessimistic approach.
Another option to handle such a query is to discover rules for eye color in terms
of the attributes hair color, gender, and size. Then, these rules can be applied
to students with unknown eye color to discover that color and possibly the same
to identify more objects satisfying the query. Consider that in our example one
of the generated rules said:

(hair, brown) ∧ (size,medium)→ (eye, brown)

Thus, if one of the students having brown hair and medium size has no value
for eye color, then this student should not be included in the list of students
with brown hair and blue eyes. Attributes hair color and size are classification
attributes and eye color is the decision attribute.

Now, let us give an example showing the relationship between incomplete in-
formation about objects in an information system and the way queries (attribute
values) are interpreted. Namely, the confidence in object x that he has brown hair

is 1/3 can be either written as (brown, 1/3) ∈ hair(x) or (x, 1/3) ∈ I(brown),
where I is an interpretation of queries (the term brown is treated here as a
query).

In [5] we presented Chase1 strategy based on the assumption that only con-
sistent subsets of rules extracted from an incomplete information system S can
be used for replacing Null values by new less incomplete values in S. Clearly,
rules discovered from S do not have to be consistent in S. Taking this fact into
consideration, the algorithm Chase2 proposed in this paper has less restrictions
and it allows chasing information system S with inconsistent rules as well.

Assume that S = (X,A, V ), where V =
⋃
{Va : a ∈ A} and each a ∈ A is a

partial function from X into 2Va −{∅}. In the first step of Chase algorithms, we
identify all incomplete attributes used in S. An attribute is incomplete if there
is an object in S with incomplete information on this attribute. The values of
all incomplete attributes in S are treated as concepts to be learned (in a form
of rules) either only from S or from S and its remote sites (if S is a part of a
distributed autonomous information system).

The second step of Chase algorithms is to extract rules describing these
concepts. These rules are stored in a knowledge base D for S ([15],[18],[17]).



Algorithm Chase1 presented in [5] assumes that all inconsistencies in D have
to be repaired before they are used in the chase process. To get rules from S
describing attribute value va of attribute a we extract them from the subsystem
S1 = (X1, A, V ) of S where X1 = {x ∈ X : card(a(x)) = 1}. Chase2 does not
have such restrictions.

The final step of Chase algorithms is to replace incomplete information in S
by values provided by rules in D.

3 Partially Incomplete Information Systems

We say that S = (X,A, V ) is a partially incomplete information system of type
λ, if S is an incomplete information system and the following three conditions
hold:

– aS(x) is defined for any x ∈ X, a ∈ A,

– (∀x ∈ X)(∀a ∈ A)[(aS(x) = {(ai, pi) : 1 ≤ i ≤ m})→
∑m

i=1 pi = 1],

– (∀x ∈ X)(∀a ∈ A)[(aS(x) = {(ai, pi) : 1 ≤ i ≤ m})→ (∀i)(pi ≥ λ)].

Now, let us assume that S1, S2 are partially incomplete information systems,
both of type λ. Both systems are classifying the same set of objects X using the
same set of attributes A. The meaning and granularity of values of attributes
from A in both systems S1, S2 is also the same. Additionally, we assume that
aS1

(x) = {(a1i, p1i) : 1 ≤ m1} and aS2
(x) = {(a2i, p2i) : 1 ≤ m2}.

We say that containment relation Ψ holds between S1 and S2, if the following
two conditions hold:

– (∀x ∈ X)(∀a ∈ A)[card(aS1(x)) ≥ card(aS2(x))],

– (∀x ∈ X)(∀a ∈ A)[[card(aS1
(x)) = card(aS2

(x))]→
[
∑

i6=j |p2i − p2j | >
∑

i6=j |p1i − p1j |]].

Instead of saying that containment relation holds between S1 and S2, we
can equivalently say that S1 was transformed into S2 by containment mapping
Ψ . This fact can be presented as a statement Ψ(S1) = S2 or (∀x ∈ X)(∀a ∈
A)[Ψ(aS1

(x)) = Ψ(aS2
(x))]. Similarly, we can either say that aS1

(x) was trans-
formed into aS2

(x) by Ψ or that containment relation Ψ holds between aS1
(x)

and aS2
(x). In other words, the containment mapping Ψ transforms any par-

tially incomplete value aS1(x) of any attribute a, describing object x, into a new
value aS2(x) which is more complete. We can easily agree that the condition
card(aS1(x)) > card(aS2(x)) guarantees that. The intuitive explanation of the
condition [

∑
i6=j |p2i − p2j | >

∑
i6=j |p1i − p1j |] is the following: larger average

distance between weights assigned to all possible values of attribute a describing
x guarantees more precise knowledge about x with respect to attribute a. In



other words, if aS1(x) = {(a1,
1
2 ), (a2,

1
2 )}, then there is no preference between

a1 or a2. Now, if aS2(x) = {(a1,
1
3 ), (a2,

2
3 )}, then our believe in the value a2 is

higher than in the value a1. It means that our knowledge about x with respect
to a is improved because the new uncertainty is lower.

So, if containment mapping Ψ converts an information system S to S ′, then
S′ is more complete than S. In other words, it has to be a pair (a, x) ∈ A ×X
such that either Ψ has to decrease the number of attribute values in aS(x) or
the average difference between confidences assigned to attribute values in aS(x)
has to be increased by Ψ (their standard deviation is increasing).

To give an example of a containment mapping Ψ , let us take two informa-
tion systems S1, S2 both of the type λ, represented as Table 1 and Table 2,
respectively.

X a b c d e

x1 {(a1,
1

3
), (a2,

2

3
)} {(b1,

2

3
), (b2,

1

3
)} c1 d1 {(e1,

1

2
), (e2,

1

2
)}

x2 {(a2,
1

4
), (a3,

3

4
)} {(b1,

1

3
), (b2,

2

3
)} d2 e1

x3 b2 {(c1,
1

2
), (c3,

1

2
)} d2 e3

x4 a3 c2 d1 {(e1,
2

3
), (e2,

1

3
)}

x5 {(a1,
2

3
), (a2,

1

3
)} b1 c2 e1

x6 a2 b2 c3 d2 {(e2,
1

3
), (e3,

2

3
)}

x7 a2 {(b1,
1

4
), (b2,

3

4
)} {(c1,

1

3
), (c2,

2

3
)} d2 e2

x8 b2 c1 d1 e3

Table 1. Information System S1

It can be easily checked that the values assigned to e(x1), b(x2), c(x2), a(x3),
e(x4), a(x5), c(x7), and a(x8) in S1 are different from the corresponding values
in S2. In each of these eight cases, an attribute value assigned to an object in S2

is less general than the value assigned to the same object in S1. It means that
Ψ(S1) = S2.

Assume now that L(D) = {(t → vc) ∈ D : c ∈ In(A)} (called a knowledge-
base) is a set of all rules extracted initially from S = (X,A, V ) by ERID(S, λ1, λ2),
where In(A) is the set of incomplete attributes in S and λ1, λ2 are thresholds
for minimum support and minimum confidence, correspondingly. ERID is the
algorithm for discovering rules from incomplete information systems, presented
by Dardzińska and Raś in [4].

The type of incompleteness in [4] is the same as in this paper but we did
not provide a threshold value λ for the minimal confidence of attribute values
assigned to objects. The algorithm ERID works the same way for incomplete



X a b c d e

x1 {(a1,
1

3
), (a2,

2

3
)} {(b1,

2

3
), (b2,

1

3
)} c1 d1 {(e1,

1

3
), (e2,

2

3
)}

x2 {(a2,
1

4
), (a3,

3

4
)} b1 {(c1,

1

3
), (c2,

2

3
)} d2 e1

x3 a1 b2 {(c1,
1

2
), (c3,

1

2
)} d2 e3

x4 a3 c2 d1 e2

x5 {(a1,
3

4
), (a2,

1

4
)} b1 c2 e1

x6 a2 b2 c3 d2 {(e2,
1

3
), (e3,

2

3
)}

x7 a2 {(b1,
1

4
), (b2,

3

4
)} c1 d2 e2

x8 {(a1,
2

3
), (a2,

1

3
)} b2 c1 d1 e3

Table 2. Information System S2

information systems of type λ, since the knowledge discovery process in ERID

is independent from the largeness of parameter λ.

Now, let us assume that S = (X,A, V ) is an information system of type λ
and t is a term constructed in a standard way (for predicate calculus expressions)
from values of attributes in V seen as constants and from two functors + and ∗.
By NS(t), we mean the standard interpretation of a term t in S defined as (see
[18]):

– NS(v) = {(x, p) : (v, p) ∈ a(x)}, for any v ∈ Va,
– NS(t1 + t2) = NS(t1)⊕NS(t2),
– NS(t1 ∗ t2) = NS(t1)⊗NS(t2),

where, for any NS(t1) = {(xi, pi)}i∈I , NS(t2) = {(xj , qj)}j∈J , we have:

– NS(t1)⊕NS(t2) =
{(xi, pi)}i∈(I−J) ∪ {(xj , pj)}j∈(J−I) ∪ {(xi,max(pi, qi))}i∈I∩J ,

– NS(t1)⊗NS(t2) = {(xi, pi · qi)}i∈(I∩J).

The interpretation NS was proposed by Raś & Joshi in [18]. It preserves a
number of properties required for the transformation process of terms including
the distributive property: t1 ∗ (t2+ t3) = (t1 ∗ t2)+(t1 ∗ t3). This property is used
in the incomplete value imputation algorithm Chase2, presented in this paper,
to compute correctly the confidence of rules approximating incomplete values in
S.

Assume that NS(t1) = {(xi, pi) : i ∈ K} and NS(t2) = {(xi, qi) : i ∈ K}.
This notation allows to have weights pi, qi equal to zero. There is a number of
well known options available to interpret NS(t1) ∗NS(t2) and NS(t1) +NS(t2).
Some of them are listed below (see [16]).

Interpretations T0, T1, T2, T3, T4, T5 for the functor ∗:



– Interpretation T0:NS(t1)∗NS(t2) = {(xi, S1(pi, qi)) : i ∈ K}, where S1(pi, qi) =
[if max(pi, qi) = 1, then min(pi, qi), else 0].

– Interpretation T1: NS(t1) ∗NS(t2) = {(xi,max{0, pi + qi − 1}) : i ∈ K}.

– Interpretation T2: NS(t1) ∗NS(t2) = {(xi,
[pi·qi]

[2−(pi+qi−pi·qi)]
) : i ∈ K}.

– Interpretation T3: NS(t1) ∗NS(t2) = {(xi, pi · qi) : i ∈ K}.

– Interpretation T4: NS(t1) ∗NS(t2) = {(xi,
[pi·qi]

[pi+qi−pi·qi]
) : i ∈ K}.

– Interpretation T5: NS(t1) ∗NS(t2) = {(xi,min{pi, qi}) : i ∈ K}.

Interpretations S0, S1, S2, S3, S4, S5 for the functor +:

– Interpretation S0: NS(t1) + NS(t2) = {(xi, S2(pi, qi)) : i ∈ K}, where
S2(pi, qi) = [ if min(pi, qi) = 0, then max(pi, qi), else 1].

– Interpretation S1: NS(t1) +NS(t2) = {(xi,min{1, pi + qi}) : i ∈ K}.

– Interpretation S2: NS(t1) +NS(t2) = {(xi,
[pi+qi]

[1+pi·qi]
) : i ∈ K}.

– Interpretation S3: NS(t1) +NS(t2) = {(xi, pi + qi − pi · qi) : i ∈ K}.

– Interpretation S4: NS(t1) +NS(t2) = {(xi,
[pi+qi−2·pi·qi]

[1−pi·qi]
) : i ∈ K}.

– Interpretation S5: NS(t1) +NS(t2) = {(xi,max{pi, qi}) : i ∈ K}.

So, by taking all combinations of (Ti, Sj), we can consider 36 possible inter-
pretations for the pair of functors (·,+). Only 7 of them satisfy the distributivity
law t·(t1+t2) = (t·t1)+(t·t2). Here they are: (T0, S5), (T0, S0), (T2, S5), (T3, S5),
(T4, S5), (T5, S5), (T5, S0). It can be easily checked that for any conjunct term
t, T0(t) < T1(t) < T2(t) < T3(t) < T4(t) < T5(t). So, T0 is the most pessimistic
whereas T5 is the most optimistic interpretation of the operator ·. Similarly, for
any disjunct term t, S5(t) < S4(t) < S3(t) < S2(t) < S1(t) < S0(t). So, S5 is the
most pessimistic whereas S0 is the most optimistic interpretation of the operator
+. The choice of (T3, S5) for the interpretation of (·,+) is easily justified assum-
ing that terms in the form of conjuncts are built only from values of different
attributes.

Now, let us go back to Chase2 converting information system S of type λ to
a new and more complete information system Chase2(S) of the same type. This
algorithm is new in comparison to known strategies for chasing incomplete data
in relational tables because of the assumption concerning partial incompleteness
of data (sets of weighted attribute values can be assigned to an object as its
value). This assumption forced us to develop a new discovery algorithm, called
ERID, for extracting rules from tables similar to incomplete systems of type λ
(see [4]) so it can be applied in Chase2 algorithm given below.

Algorithm Chase2(S, In(A), L(D));
Input System S = (X,A, V ),

set of incomplete attributes In(A) = {a1, a2, ..., ak} in S,
set of rules L(D) discovered from S by ERID.

Output System Chase(S)
begin

S’:= S;



j := 1;
while j ≤ k do

begin

Sj := S;
for all x ∈ X do

qj := 0;
begin

bj(x) := ∅;
nj := 0;
for all v ∈ Vaj

begin

if card(aj(x)) 6= 1 and {(ti → v) : i ∈ I}
is a maximal subset of rules from L(D)
such that (x, pi) ∈ NSj

(ti) then

if
∑

i∈I [pi · conf(ti → v) · sup(ti → v)] ≥ λ then

begin

bj(x) := bj(x) ∪ {(v,
∑

i∈I [pi · conf(ti → v) · sup(ti → v)])};
nj := nj +

∑
i∈I [pi · conf(ti → v) · sup(ti → v)]

end

end

qj := qj + nj ;
end

if Ψ(aj(x)) = [bj(x)/qj ] then aj(x) := [bj(x)/qj ];
j := j + 1;
end

S :=
⋂
{Sj : 1 ≤ j ≤ k}; /definition of

⋂
{Sj : 1 ≤ j ≤ k} is given below/

if S 6= S′ then Chase2(S, In(A), L(D)) else Chase(S) := S
end

Information system S =
⋂
{Sj : 1 ≤ j ≤ k} is defined as:

aS(x)={aSj
(x): if a = aj for any j ∈ {1, 2, ..., k}}

for any attribute a and object x.

Still, one more definition is needed to complete the presentation of algorithm
Chase. Namely, we say that:

[bj(x)/p] = {(vi, pi/p)}i∈I , if bj(x) = {(vi, pi)}i∈I .

Algorithm Chase2 converts any incomplete or partially incomplete informa-
tion system S to a new information system which is more complete. At each
recursive call of Chase2, its input data including S, L(D), and from time to
time In(A) are changing. So, before any recursive call is executed, these new
data have to be computed first.

Now, we give the time complexity (T −Comp) of algorithm Chase. Assume
first that S = S(0) = (X,A, V ), card(In(A)) = k, and n = card(X). We also
assume that S(i) = Chasei(S) and

n(i) = card{x ∈ X : (∃a ∈ A)[aS(i)(x) 6= 1]}, both for i ≥ 0.



Clearly, n(0) > n(1) > n(2) > ... > n(p) = n(p + 1), because information
system Chasei+1(S) is more complete than information system Chasei(S), for
any i ≥ 0.

T − Comp(Chase) =©[
∑p

i=0[k · [n+ n(i) · card(L(D)) · n] + n(i)]] =
©[

∑p

i=0[k · [n(i) · card(L(D)) · n]]] =©[k2 · n3 ·m].

The final worst case complexity of Chase is based on the observation that p can
not be larger than k · n. We also assume here that m = card(L(D)).

To explain the algorithm, we apply Chase2 to information system S3 pre-
sented by Table 3. We assume that L(D) contains the following rules (listed
with their support and confidence) defining attribute e and extracted from S3

by ERID:

r1 = [a1 → e3] (sup(r1) = 1, conf(r1) = 0.5)
r2 = [a2 → e2] (sup(r2) = 5/3, conf(r2) = 0.51)
r3 = [a3 → e1] (sup(r3) = 17/12, conf(r3) = 0.51)
r4 = [b1 → e1] (sup(r4) = 2, conf(r4) = 0.72)
r5 = [b2 → e3] (sup(r5) = 8/3, conf(r5) = 0.51)
r6 = [c2 → e1] (sup(r6) = 2, conf(r6) = 0.66)
r7 = [c3 → e3] (sup(r7) = 7/6, conf(r7) = 0.64)
r8 = [a3 · c1 → e3] (sup(r8) = 1, conf(r8) = 0.8)
r9 = [a3 · d1 → e3] (sup(r9) = 1, conf(r9) = 0.5)
r10 = [c1 · d1 → e3] (sup(r10) = 1, conf(r10) = 0.5)

X a b c d e

x1 {(a1,
1

3
), (a2,

2

3
)} {(b1,

2

3
), (b2,

1

3
)} c1 d1 {(e1,

1

2
), (e2,

1

2
)}

x2 {(a2,
1

4
), (a3,

3

4
)} {(b1,

1

3
), (b2,

2

3
)} d2 e1

x3 a1 b2 {(c1,
1

2
), (c3,

1

2
)} d2 e3

x4 a3 c2 d1 {(e1,
2

3
), (e2,

1

3
)}

x5 {(a1,
2

3
), (a2,

1

3
)} b1 c2 e1

x6 a2 b2 c3 d2 {(e2,
1

3
), (e3,

2

3
)}

x7 a2 {(b1,
1

4
), (b2,

3

4
)} {(c1,

1

3
), (c2,

2

3
)} d2 e2

x8 b2 c1 d1 e3

Table 3. Information System S3

It can be noticed that values e(x1), e(x4), e(x6) of the attribute e are changed
in S3 by Chase2 algorithm. The next section shows how to compute these three
values and how to convert them, if needed, to a new set of values satisfying
the constraints required by system S4 to remain its λ status. Similar process is



X a b c d e

x1 {(a1,
1

3
), (a2,

2

3
)} {(b1,

2

3
), (b2,

1

3
)} c1 d1 {(e3,

41

100
), (e2,

59

100
)}

x2 {(a2,
1

4
), (a3,

3

4
)} {(b1,

1

3
), (b2,

2

3
)} d2 e1

x3 a1 b2 {(c1,
1

2
), (c3,

1

2
)} d2 e3

x4 a3 c2 d1 {(e1,
2

3
), (e2,

1

3
)}

x5 {(a1,
2

3
), (a2,

1

3
)} b1 c2 e1

x6 a2 b2 c3 d2 e3

x7 a2 {(b1,
1

4
), (b2,

3

4
)} {(c1,

1

3
), (c2,

2

3
)} d2 e2

x8 a3 b2 c1 d1 e3

Table 4. Information System S4

applied to all incomplete attributes in S3. After all changes corresponding to
all incomplete attributes are recorded, system S3 is replaced by Ψ(S3) and the
whole process is recursively repeated till a fix point is reached.

Algorithm Chase2 will compute new value for e(x1) = {(e1, 1/2), (e2, 1/2)}
denoted by enew(x1) = {(e1, ?), (e2, ?), (e3, ?)}. To do that Chase2 identifies all
rules in L(D) supported by x1. It can be easily checked that r1, r2, r4, r5, and
r10 are the rules supported by x1. To calculate support of x1 for r1, we take:
1 · 1

2 ·
1
3 . In a similar way we calculate the support of x1 for the remaining rules.

As the result, we get the list of weighted values of attribute e supported by L(D)
for x1, as follows:

(e3,
1
3 · 1 ·

1
2 + 1

3 ·
8
3 ·

51
100 + 1 · 1 · 1

2 ) = (e3, 1.119)
(e2,

2
3 ·

5
3 ·

51
100 ) = (e2, 1.621)

(e1,
2
3 · 2 ·

72
100 ) = (e1, 0.96).

So the value of attribute e for x1 supported by L(D) will be:
enew(x1) = {(e1,

0.96
0.96+1.621+1.119 ), (e2,

1.621
0.96+1.621+1.119 ), (e3,

1.119
0.96+1.621+1.119 )

= {(e1, 0.26), (e2, 0.44), (e3, 0.302)}

In a similar way we compute the value of e for x4:
(e3, 1 · 1 ·

1
2 ) = (e3, 0.5)

(e2, 0)
(e1, 1 ·

17
12 ·

51
100 ) = (e1, 0.722)

we have:
enew(x4) = {(e1,

0.722
0.5+0.722 ), (e3,

0.5
0.5+0.722 )} = {(e1, 0.59), (e3, 0.41)}

And finally, for x6:
(e3,

8
3 · 1 ·

51
100 + 1 · 7

6 ·
64
100 ) = (e3, 2.11)

(e2, 1 ·
5
3 ·

51
100 ) = (e2, 0.85)

(e1, 0)
we have:
enew(x6) = {(e2,

0.85
2.11+0.85 ), (e3,

2.11
2.11+0.85 )} = {(e2, 0.29), (e3, 0.713)}



For λ = 0.3 the values of e(x1) and e(x6) will change to:
e(x1) = {(e2, 0.59), (e3, 0.41)}, e(x6) = {(e3, 1)}.

Table 4 shows the resulting table.

Initial testing performed on several incomplete tables of the size 50× 2, 000
with randomly generated data gave us quite promising results concerning the
precision of Chase2. We started with a complete table S and removed from it
10 percent of its values randomly. This new table is denoted by S ′. For each
incomplete column in S′, let’s say d, we use ERID to extract rules defining d in
terms of other attributes in S ′. These rules are stored in L(D). In the following
step, we apply Chase2, making d maximally complete. Independently, the same
procedure is applied to all other incomplete columns. As the result, we obtain
a new table S′. Now, the whole procedure is repeated again on S ′. The process
continues till the fix point is reached. Now, we compare the new values stored in
the empty slots of the initial table S ′ with the corresponding values in S. Based
on this comparison, we easily compute the precision of Chase2.

4 Conclusion

We expect much better results if a single information system is replaced by
distributed autonomous information systems investigated in [15], [17], [18]. This
is justified by experimental results showing higher confidence in rules extracted
through distributed data mining than in rules extracted through local mining.

References

1. Atzeni, P., DeAntonellis, V. (1992) Relational database theory, The Benjamin Cum-
mings Publishing Company

2. Benjamins, V. R., Fensel, D., Prez, A. G. (1998) Knowledge management through
ontologies, in Proceedings of the 2nd International Conference on Practical Aspects
of Knowledge Management (PAKM-98), Basel, Switzerland.

3. Chandrasekaran, B., Josephson, J. R., Benjamins, V. R. (1998) The ontology of
tasks and methods, in Proceedings of the 11th Workshop on Knowledge Acquisition,
Modeling and Management, Banff, Alberta, Canada
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