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Abstract Hierarchical classifiers are usually defined as methods of classifying
inputs into defined output categories. The classification occurs first on a
low-level with highly specific pieces of input data. The classifications of the
individual pieces of data are then combined systematically and classified on a
higher level iteratively until one output is produced. This final output is the
overall classification of the data. In this paper we follow a controlled devise
type of approach. The initial group of classifiers is trained using all objects in
an information system S partitioned by values of the decision attribute d at
its all granularity levels (one classifier per level). Only values of the highest
granularity level (corresponding granules are the largest) are used to split
S into information sub-systems where each one is built by selecting objects
in S of the same decision value. These sub-systems are used for training
new classifiers at all granularity levels of its decision attribute. Next, we split
each sub-system further by sub-values of its decision value. The obtained tree-
structure with groups of classifiers assigned to each of its nodes is called a
cascade classifier. Given an incomplete information system with a hierarchical
decision attribute d, we consider the problem of training classifiers describing
values of d at its lowest granularity level. Taking MIRAI database of music
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instrument sounds [16], as an example, we show that the confidence of such
classifiers can be lower than the confidence of cascade classifiers.

1 Introduction

One of the main goals in data mining area is to describe knowledge hidden in
data sets by means of classifiers. Clearly there is a need for classifiers which
are easy and quick to build, accurate and suitable for different type of data. If
data are incomplete, then null-value imputation techniques, including Chase
[10], [2], [3], [7] can be used before the knowledge extraction algorithms are
applied.

A hierarchical classifier is usually defined as aglomerative method of classi-
fying inputs into defined output categories [5], [11]. The classification occurs
first on a low-level with highly specific pieces of input data. The classifica-
tions of the individual pieces of data are then combined systematically and
classified on a higher level iteratively until one output is produced. This final
output is the overall classification of the data.

Automatic indexing of music by instruments and their types is taken as
the application and testing area in our research. In [18], a multi-hierarchical
decision system S with a large number of descriptors built for describing mu-
sic sound objects was presented. The decision attributes in S are hierarchical
and they include Hornbostel-Sachs classification and classification of instru-
ments with respect to a playing method. The information richness hidden in
these descriptors has strong impact on the confidence of classifiers built from
S and used by the content-based Automatic Indexing Systems (AIS). Since
decision attributes are hierarchical, then the indexing can be done by mu-
sic instrument classes of different granularity levels (for instance aerophone,
aero double-reed, or simply an instrument can be seen as a value of a deci-
sion attribute). This way, if we fail to identify instruments playing in a given
music piece, then still we may succeed to identify classes of instruments. The
quality of AIS was verified in [18] using precision and recall based on two
interpretations: user and system-based [15]. AIS engine follows system-based
interpretation.

In this paper we propose a methodology of building cascade classifiers
for regularly incomplete data sets following divisive approach. A data set is
called regularly incomplete if it can be partitioned into non-singular com-
plete data subsets. For instance the data set represented by Table 1 is
regularly incomplete because it can be split into: ({x1, x2, x7, x8}, {b, c, d}),
({x3, x4, x11, x12}, {a, b, s, d}), ({x5, x6, x9, x10}, {a, c, d}).

Now, assuming that information system S is regularly incomplete, we build
the initial group of classifiers based on all objects in S partitioned by values
of the decision attribute d at its all granularity levels (one classifier per level).
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Only values of the highest granularity level (corresponding granules are the
largest) are used to split S into information sub-systems where each one is
build by selecting objects in S sharing the same decision value. Attributes
with no-values assigned to all objects in a sub-system are removed from it.
This process is recursively repeated for each sub-system by splitting it further
by sub-values of its decision value. The obtained tree-type structure with
groups of classifiers assigned to each of its nodes is called a cascade classifier.

Our cascade classifier has been tested on two classes of musical instrument
sounds: one labelled as 4F and the other as 3B. The analysis shows a sig-
nificant improvement in the precision of AIS, if cascade classifiers are used
instead of single classifiers.

2 Multi-Hierarchical Decision System and Query
Language

In this section we introduce the notion of a multi-hierarchical decision system
S and the query language associated with S, built from values of decision
attributes. Classifier-based semantics and standard semantics of queries in
S was given in [18]. The set of objects X in S forms the interpretation
domain for both semantics. Standard semantics identifies all correct objects
in X which should be retrieved by a query. Classifier-based semantics gives
weighted set of objects which actually are retrieved be a query. The notion
of precision and recall of a query answering system (QAS) in the proposed
setting was also introduced in [18]. By improving the confidence and support
of classifiers trained by S, we also improve the precision and recall of QAS.

Multi-hierarchical decision systems [18] can be seen as a subclass of deci-
sion systems [14] and they are mostly used for representing data which are
incomplete. If a multi-hierarchical decision system contains only one decision
attribute, then it is called a hierarchical decision system.

By a decision system we mean a pair S = (U,A ∪ {d}, V ), where:

• U is a nonempty, finite set of objects,
• A∪ {d} is a nonempty, finite set of attributes i.e. a : U −→ Va is a partial

function for any a ∈ A, where Va is the domain of a,
• elements in A are called classification attributes and d is a distinguished

attribute called the decision. We assume that the decision is a total func-
tion,

• V =
⋃{Va : a ∈ A ∪ {d}}.

As an example of a decision table we take S = ({x1, x2, x3, x4, x5, x6, x7, x8,
x9, x10, x11, x12}, {a, b, c}∪{d}, V ) represented by Table 1. Decision attribute
d is hierarchical with Vd = {d[1], d[2], d[1, 1], d[1, 2], d[2, 1], d[2, 2]}. Value
d[i, j] should be seen as a child of value d[i], for i, j ∈ {1, 2}.
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Table 1 Decision System

a b c d

x1 1 2 d[1, 1]
x2 1 3 d[1, 1]
x3 1 1 0 d[1, 2]
x4 1 1 3 d[1, 2]
x5 2 2 d[2, 1]
x6 2 3 d[2, 1]
x7 1 1 d[1, 1]
x8 1 1 d[1, 1]
x9 2 1 d[2, 1]
x10 2 0 d[2, 1]
x11 1 1 2 d[2, 2]
x12 1 1 1 d[2, 2]

By a multi-hierarchical decision system we mean a triple S = (X, A ∪
{d[1], d[2], .., d[k]}, V ), where X is a nonempty, finite set of objects, A is a
nonempty finite set of classification attributes, {d[1], d[2], .., d[k]} is a set of
hierarchical decision attributes and V = ∪{Va : a ∈ A ∪ {d[1], d[2], .., d[k]}}
is a set of their values. We assume that:

• Va, Vb are disjoint for any a, b ∈ A ∪ {d[1], d[2], .., d[k]}, such that a 6= b,
• a : X → Va is a partial function for every a ∈ A ∪ {d[1], d[2], .., d[k]}.

By a set of decision queries (d-queries) for S we mean a least set TD such
that:

• 0, 1 ∈ TD,
• if w ∈ ⋃{Va : a ∈ {d[1], d[2], .., d[k]}}, then w,∼ w ∈ TD,
• if t1, t2 ∈ TD, then (t1 + t2), (t1 ∗ t2) ∈ TD.

Decision query t is called simple if t = t1 ∗ t2 ∗ ... ∗ tn and (∀j ∈
{1, 2, , n})[(tj ∈

⋃{Va : a ∈ {d[1], d[2], .., d[k]}})∨ (tj =∼ w∧w ∈ ⋃{Va : a ∈
{d[1], d[2], .., d[k]}})].

By a set of classification terms (c-terms) for S we mean a least set TC such
that:

• 0, 1 ∈ TC ,
• if w ∈ ⋃{Va : a ∈ A}, then w,∼ w ∈ TC ,
• if t1, t2 ∈ TC , then (t1 + t2), (t1 ∗ t2) ∈ TC .

Classification term t is called simple if t = t1 ∗ t2 ∗ ... ∗ tn and (∀j ∈
{1, 2, ..., n})[(tj ∈

⋃{Va : a ∈ A}) ∨ (tj =∼ w ∧ w ∈ ⋃{Va : a ∈ A})].
By a classification rule we mean any expression of the form [t1 −→ t2],

where t1 is a simple classification term and t2 is a simple decision query.
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Semantics MS of c-terms in S = (X,A ∪ {d[1], d[2], .., d[k]}, V ), is defined
in a standard way as follows:

• MS(0) = 0, MS(1) = X,
• MS(w) = {x ∈ X : w = a(x)} for any w ∈ Va, a ∈ A,
• MS(∼ w) = {x ∈ X : (∃v ∈ Va)[(v = a(x)) ∧ (v 6= w)]} for any w ∈ Va,

a ∈ A,
• if t1, t2 are terms, then MS(t1 + t2) = MS(t1) ∪ MS(t2), MS(t1 ∗ t2) =

MS(t1) ∩MS(t2).

Now, we introduce the notation for values of decision attributes. Assume
that d[i] is a hierarchical decision attribute which is also interpreted as
its first or highest granularity level. The set {d[i, 1], d[i, 2], d[i, 3], ...} rep-
resents the values of attribute d[i] at its second granularity level. The set
{d[i, 1, 1], d[i, 1, 2], ..., d[i, 1, ni]} represents the values of attribute d at its third
granularity level, right below the node d[i, 1]. We assume here that the value
d[i, 1] can be refined to any value from {d[i, 1, 1], d[i, 1, 2], ..., d[i, 1, ni]}, if nec-
essary. Similarly, the set {d[i, 3, 1, 3, 1], d[i, 3, 1, 3, 2], d[i, 3, 1, 3, 3], d[i, 3, 1, 3, 4]}
represents the values of attribute d at its forth granularity level which are
finer than the value d[i, 3, 1, 3].

Now, let us assume that a rule-based classifier (for instance one of the
modules in systems RSES or WEKA) was used to extract rules describing
simple decision queries in S. We denote this classifier by RC. The definition
of semantics of c-terms is independent from a classifier but the definition of
semantics MS of d-queries is a classifier dependent.

Classifier-based semantics MS of d-queries in
S = (X,A ∪ {d[1], d[2], .., d[k]}, V ), is defined as follows:

if t is a simple d-query in S and {rj = [tj −→ t] : j ∈ Jt} is a set
of all rules defining t which are extracted from S by classifier RC, then
MS(t) = {(x, px) : (∃j ∈ Jt)(x ∈ MS(tj)[px = Σ{conf(j) · sup(j) : x ∈
MS(tj) ∧ j ∈ Jt}/Σ{sup(j) : x ∈ MS(tj) ∧ j ∈ Jt}]}, where conf(j), sup(j)
denote the confidence and the support of [tj −→ t], correspondingly.

Attribute value d[j1, j2, ..., jn] in S = (X, A ∪ {d[1], d[2], .., d[k]}, V ) is
dependent on d[i1, i2, , ik] in S, if one of the following conditions hold: (1)
n ≤ k ∧ (∀m ≤ n)[im = jm], (2) n > k ∧ (∀m ≤ k)[im = jm]. Otherwise,
d[j1, j2, ..., jn] is called independent from d[i1, i2, ..., ik] in S.

Example. The attribute value d[2, 3, 1, 2] is dependent on the attribute
value d[2, 3, 1, 2, 5, 3]. Also, d[2, 3, 1, 2, 5, 3] is dependent on d[2, 3, 1, 2].

Let S = (X, A∪{d[1], d[2], .., d[k]}, V ), w ∈ Vd[i], and IVd[i] be the set of all
attribute values in Vd[i] which are independent from w. Standard semantics
NS of d-queries in S is defined as follows:

• NS(0) = 0, NS(1) = X,
• if w ∈ Vd[i], then NS(w) = {x ∈ X : d[i](x) = w}, for any 1 ≤ i ≤ k
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• if w ∈ Vd[i], then NS(∼ w) = {x ∈ X : (∃v ∈ IVd[i])[d[i](x) = v]}, for any
1 ≤ i ≤ k

• if t1, t2 are terms, then NS(t1 + t2) = NS(t1) ∪ NS(t2), NS(t1 ∗ t2) =
NS(t1) ∩NS(t2).

Let S = (X, A ∪ {d[1], d[2], .., d[k]}, V ), t is a d-query in S, NS(t) is its
meaning under standard semantics, and MS(t) is its meaning under classifier-
based semantics. Assume that NS(t) = X1 ∪ Y1, where X1 = {xi, i ∈ I1},
Y1 = {yi, i ∈ I2}. Assume also that MS(t) = {(xi, pi) : i ∈ I1} ∪ {(zi, qi) : i ∈
I3} and {yi, i ∈ I2} ∩ {zi, i ∈ I3} = ∅.

By precision of a classifier-based semantics MS on a d-query t, we mean
Prec(MS , t) = [

∑{pi : i ∈ I1}+
∑{(1− qi) : i ∈ I3}]/[card(I1) + card(I3)].

By recall of a classifier-based semantics MS on a d-query t, we mean
Rec(MS , t) = [

∑{pi : i ∈ I1}]/[card(I1) + card(I2)].

Clearly, the precision and recall of a classifier-based semantics can be im-
proved by using classifiers of higher confidence. In the remaining part of
the paper, we show how to construct the cascade λ-representation of a multi-
hierarchical decision system and how it is used to construct cascade classifiers
which confidence is usually higher than the confidence of standard classifiers.

3 Cascade λ-Representation of Hierarchical Decision
Systems

For simplicity reason, we only consider multi-hierarchical decision systems
with one decision attribute. Such systems are called hierarchical decision
systems.

Let S(d) = (X, A∪{d}, V ) is a regularly incomplete decision system, where
d is a hierarchical attribute. Example of a hierarchical decision attribute is
given in Figure 1.

Let {d[1], d[2], ..., d[k]} is a set of all values of the attribute d at the level
1 of its tree representation. Let Xi = {x ∈ X : d(x) = d[i]} and Si[di] =
(Xi, A ∪ {d[i]}, V ), for any 1 ≤ i ≤ n. Now, assume that CR(S) denotes
a tree of hight one. System S is its root and Si(d[i]), (1 ≤ i ≤ n), are its
children. The outgoing edge from S to Si(d[i]) is labelled by d[i], for any
1 ≤ i ≤ n.

Cascade λ-representation of S(d), where λ ∈ [0, 1], is a tree with S(d)
defined as its root and all its descendants built by executing the instruction
[if card(Vd) > 1, then replace S(d) by CR(S(d))] recursively, starting from
the root and then repeating for all leaves of a constructed tree. The final step
of this construction process is the removal of all λ-incomplete attributes in
all decision subsystems of S(d) representing descendants of S(d). We say that
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d 

d[1]  d[2]  d[3] … 
 

d[1,1]          d[1,2]     d[1,3]  … … d[3,1]… 
 

d[1,2,1] d[1,2,2]   d[1,2,3]  … … … 
 

level 0 

level 1 

level 2 

level 3 

Fig. 1 Example of a decision attribute

an attribute a is λ-incomplete in S, if a(x) is defined for [1−λ] ∗ 100 percent
of objects in S.

Let us go back to the example of a decision system S(d) represented as
Table 1. Its attributes {a, b} are 4/12-incomplete. To build a cascade λ-
representation of S(d), where λ = 0, we take its subsystems: S∗(d) = ({xi :
1 ≤ i ≤ 12}, {c, d}, V ), S[1](d[1]) = ({xi : i = 1, 2, 3, 4, 7, 8}, {b, c, d}, V ),
S[2](d[2]) = ({xi : i = 5, 6, 9, 10, 11, 12}, {a, c, d}, V ), S[1,1](d[1, 1]) =
({xi : i = 1, 2, 7, 8}, {b, c, d}, V ), S[1,2](d[1, 2]) = ({xi : i = 3, 4}, {a, b, c, d}, V ),
S[2,1](d[2, 1]) = ({xi : i = 5, 6, 9, 10}, {a, c, d}, V ), S[2,2](d[2, 2]) =
({xi : i = 11, 12}, {a, b, c, d}, V ).

Now, the corresponding cascade λ-representation of S(d), denoted as
({S∗(d)} ∪ {Sk(d) : k ∈ J},≺), where J = {[1], [2], [1, 1], [1, 2], [2, 1], [2, 2]}
and ” ≺ ” means parent-child relation, is represented in Figure 2.

 

d[2,2] d[2,1] d[1,2] d[1,1] 

d[2] d[1] 

S(d) 

S[1](d[1]) 
 

S[2](d[2]) 
 

S[1,1](d) 
 

S[1,2](d) 
 

S[2,1](d) 
 

S[2,2](d) 
 

Fig. 2 Cascade λ-representation of S(d)

The partition of objects in S(d) can be driven by an optimization function
or it can be predefined, as it is done in MIRAI [16], by following either
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Hornbostel-Sachs classification or classification of instruments with respect
to a playing method.

4 Cascade Classifiers

In this section, we show how to use the cascade λ-representation of S(d) to
build cascade classifiers for S(d).

Let S(d) = (X, A∪{d}, V ) is a regularly incomplete decision system, where
d is a hierarchical attribute. We follow the notation proposed in the previous
section to represent its values, with d[i] referring to a child of d and d[i, j] to
its grandchild. Also, we assume that (Casc(S(d)),≺), where Casc(S(d)) =
{Sk(d) : k ∈ J} is a cascade λ-representation of S(d). Let p1 = [i1, i2, ..., ik]
and p2 = [j1, j2, ..., jn]. Relation ≺ is defined as: Sp1(d) ≺ Sp2(d) iff (k ≤ n)
and (∀m ≤ k)[im = jm]. In all other cases ≺ is undefined. Clearly, if d1 is a
descendent of d, then (Casc(S(d1)),≺) is a cascade λ-representation of S(d1).

Let us assume that the height of (Casc(S(d)),≺) is n and S[i1,i2,...,ik](d) ∈
Casc(S(d)). Clearly, d[i1, i2, ..., ik] is the root of S[i1,i2,...,ik](d).

By (S, d[i1, i2, ..., ik],m), where k + 1 ≤ m ≤ n, we denote a subtree of S
with d[i1, i2, ..., ik] as its root and all descendent of d[i1, i2, ..., ik] at all levels
between k + 1 and m.

Assume now that class(S, d[i1, i2, ..., ik], m) denotes a classifier trained by
S(d[i1, i2, ..., ik]) with the decision attribute d[i1, i2, ..., ik] and its values re-
stricted to level m of its tree representation. For example,
{d[1, 1, 1], d[1, 1, 2], ..., d[1, 3, 3]} is the set of values for S(d[1]) at level 3 (see
Figure 1).

By a cascade classifier of type λ for S(d) we mean (class(Casc(S(d))),≺),
where class(Casc(S(d))) = {class((S, d[i1, i2, ..., ik], m)) : [k + 1 ≤ m ≤ n] ∧
[[i1, i2, ..., ik] ∈ J ]} and Casc(S(d)) = {S(d[i1, i2, ..., ik]) : [i1, i2, ..., ik] ∈ J}
is a cascade λ-representation of S(d). A sample representation structure for
a cascade classifier is given in Figure 3.

So, three classifiers are associated with the root level of the tree represented
by Figure 3. The first one (with i=1) is trained by S with values of the decision
attribute defined as the largest granules. The last one (with i=3) is based on
attribute values defined as the smallest granules.

5 Application Domain and Testing Results

Music instrument identification [8],[9],[12],[17] is one of the important sub-
tasks of a content-based automatic indexing, for which authors built a multi-
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class(S, d, i) 
i=1,2,3 

class(S, d[1], i) 
i=2,3 

class(S, d[2], i) 
i=2,3 

class(S, d[3], i) 
i=2,3 

class(S, d[1,1], i) 
i=3 

class(S, d[1,2], i) 
i=3 

Fig. 3 Cascade classifier for S(d)

hierarchical decision system S with all the low-level MPEG7 descriptors as
well as other popular descriptors for describing music sound objects. The
decision attributes in S are hierarchical and they include Hornbostel-Sachs
classification (see Figure 4) and classification of instruments with respect to
playing method (see Figure 5).

 

chord_composite 

instrument level instrument level 

aero_single-reed aero_lip-vibrated aero_double-reed 

idiophone chordophone aerophone 

All 

instrument level instrument level 

Fig. 4 Hombostel-Sachs classification of instruments

 

instrument level 

string 

instrument level instrument level 

blown percussion struck_Hrm 

All 

instrument level 

Fig. 5 Classification of instruments with respect to playing method

The information richness hidden in descriptors has strong implication on
the confidence of classifiers built from S. Rule-based classifiers give us ap-
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Table 2 Modules of cascade classifier for classification of instruments with respect to
playing method and their confidence

root classname classifier pos support confidence

d all instruments class(S, d, 2) 730 91.80%
d all instruments class(S, d, 1) 750 94.26%

d[1] blown class(S, d[1], 2) 265 96.84%
d[2] string class(S, d[2], 2) 390 94.68%
d[3] struck Hrn class(S, d[3], 2) 69 98.84%

proximate definitions of values of decision attributes and they are used as a
tool by content-based Automatic Indexing Systems (AIS) [16]. Hierarchical
decision attributes allow us to have the indexing done on different granularity
levels of classes of music instruments. We can identify not only the instru-
ments playing in a given music piece but also classes of instruments if the
instrument level identification fails. The quality of AIS can be verified using
precision and recall based on two interpretations: user and system-based [15].
AIS engine follows system-based interpretation.

Table 3 Modules of cascade classifier for Hombostel-Sachs classification of instruments
and their confidence

root classname classifier pos support confidence

d all instruments class(S, d, 1) 771 96.97%
d all instruments class(S, d, 2) 764 96.02%
d all instruments class(S, d, 3) 730 91.80%

d[1] aerophone class(S, d[1], 2) 269 98.26%
d[1] aerophone class(S, d[1], 3) 265 96.84%
d[2] chordophone class(S, d[2], 2) 497 98.83%
d[2] chordophone class(S, d[2], 3) 466 92.75%
d[3] idiophone class(S, d[3], 2) 19 95.95%
d[3] idiophone class(S, d[3], 3) 19 95.95%

d[1, 1] aero double reed class(S, d[1, 1], 3) 70 98.94%
d[1, 2] aero lip vibrated class(S, d[1, 2], 3) 113 95.66%
d[1, 3] aero side class(S, d[1, 3], 3) 10 90.91%
d[1, 4] aero single reed class(S, d[1, 4], 3) 72 99.54%
d[2, 1] chrd composite class(S, d[2, 1], 3) 410 93.18%

In this section we show that cascade classifiers outperform standard classi-
fiers. The first step in the process of recognizing a dominating musical instru-
ment in a musical piece is the identification of its pitch. If the pitch is found,
then a pitch-dedicated classifier is used to identify this instrument. The test-
ing was done for music instrument sounds of pitch 3B. The results are shown
in Table 3 and Table 4. The confidence of a standard classifier class(S, d, 3)
for Hombostel-Sachs classification of instruments is 91.50%. However, we can
get much better results by following the cascade approach. For instance, if
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we use the classifier class(S, d, 2) followed by the classifier class(S, d[1, 1], 3),
then its precision in recognizing musical instruments in aero double reed class
is equal to 96.02% ∗ 98.94% = 95.00%. Also, its precision in recognizing in-
struments in aero single reed class is equal to 96.02% ∗ 99.54% = 95.57%.
It has to be noted that this improvement in confidence is obtained without
increasing the number of attributes in the subsystems of S used to build the
cascade classifier replacing S. If new attributes are added to these subsystems,
then the new resulting classifiers forming the cascade classifier may have even
higher confidence and the same the confidence of the cascade classifier will
also get increased.
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