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Abstract. This paper considers decision systems (see Pawlak, 1981) with decision attributes which are 
hierarchical. Atomic queries are built only from values of decision attributes. Queries are constructed from 
atomic queries the same way as we construct terms in logic using functors {+, *,¬ }.  Negation symbol “¬”  
is only used on the atomic level.  Queries are approximated by terms built from values of classification 
attributes. We only consider rule-based classifiers as the approximation tool for queries. When a user query 
fails, then the cooperative module of the query answering system (QAS) constructs its smallest 
generalization which does not fail and which is approximated by rules of the highest confidence discovered 
by the classifier. Two interpretations of queries are proposed: user-based and system-based. They are used to 
introduce the precision and recall of QAS. The implementation of QAS follows system-based interpretation. 
Automatic indexing of music by instruments and their types is an example of the application area for the 
proposed approach. 
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1. INTRODUCTION 

Responses to queries posed by a user of a database do not always contain the information 
desired. Database answers to a query, although they may be logically correct, can sometimes be 
misleading. Research in the area of cooperative answering for databases and deductive databases 
rectifies these problems. Classical approach proposed in is based on a cooperative method called 
relaxation for expanding a database and related to it queries [2], [3], [4], [7]. The relaxation 
method expands the scope of a query by relaxing the constraints implicit in the query. This 
allows the database to return answers related to the original query as well as the literal answers 
themselves. These additional answers may be of interest to the user.  

 
Music information retrieval [5], [8], [9], [10] is one of the application areas for cooperative 

query answering. Multi-hierarchical decision system in [8] is a database of about 1,000,000 
musical instrument sounds, each one represented as a vector of approximately 1,100 features. 
Each instrument sound is labeled by a corresponding instrument. These labels are used to define 
one of the decision attributes. There are many ways to categorize music instruments, such as by 
playing methods, by instrument type, or by other generalization concepts. Any categorization 
process can be represented as a hierarchical schema which can be used by a cooperative query 
answering system to handle failing queries. By definition, a cooperative system is relaxing a 
failing query with a goal to find its smallest generalization which will not fail. Two different 
hierarchical schemas [8] have been used as models of a decision attribute: Hornbostel-Sachs 
classification of musical instruments and classification of musical instruments by articulation. 
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Each hierarchical classification represents a unique decision attribute, in a database of music 
instrument sounds, leading to a construction of a new classifier and the same to a different 
system for automatic indexing of music by instruments and their types [8], [9]. 

 
Names of instruments and their generalizations (Hornbostel-Sachs classification, 

generalization by articulation) are used to construct atomic queries of a query language built for 
retrieving musical objects from MIR Database (see http://www.mir.uncc.edu). When query fails, 
the cooperative strategy may tries to find its lowest generalization which does not fail. Clearly, 
by having a variety of different hierarchical structures available for modeling decision attribute 
we have better chance not only to succeed but also to succeed with a possibly smallest 
generalization of a query. 

 
This paper introduces a new theoretical framework for modeling a multi-hierarchical decision 

system S and its corresponding query language which is built from values of decision attributes 
in S. Standard interpretation and classifier-based interpretation of queries are introduced and 
used to model the quality (precision, recall) of a query answering system. 

2. DECISION-HIERARCHICAL INFORMATION SYSTEM 

In this section we introduce the notion of a multi-hierarchical decision system S and the 
query language built from atomic expressions reduced only to values of decision attributes. 
Classifier-based semantics and standard semantics of queries in S are proposed. The set of 
objects X in S forms the interpretation domain for both semantics. Standard semantics identifies 
all objects in X which should be retrieved by a query. Classifier-based semantics gives weighted 
set of objects which are retrieved be a query. The notion of precision and recall of the query 
answering system (QAS) in the proposed setting is introduced. Only rule-based classifiers are 
used to define the classifier-based semantics. By improving their confidence and support we 
improve the precision and recall of QAS. 
 
Definition 1.1 

By a multi-hierarchical decision system we mean a triple S = (X, A∪{d[1],d[2],..,d[k]}, V ), 
where X is a nonempty, finite set of objects, A is a nonempty finite set of classification 
attributes, {d[1],d[2],..,d[k]}  is a set of hierarchical decision attributes and  

V = ∪{Va : a ∈A∪{d[1],d[2],..,d[k]}}  is a set of their values.  
We assume that:  
• Va, Vb are disjoint for any a, b ∈ A∪{d[1],d[2],..,d[k]},  such that a ≠ b, 

a : X →Va  is a partial function for every  a ∈ A∪{d[1],d[2],..,d[k]} . 
 
Definition 1.2 

By a set of decision queries (d-queries) for S we mean a least set TD such that: 
-  0, 1 ∈ TD, 

-  if  w ∈ ∪{Va : a ∈{d[1],d[2],..,d[k]}},  then  w,  ~w ∈ TD,  
-  if  t1, t2 ∈ TD, then (t1 + t2), (t1∗ t2)∈ TD. 
 

Definition 1.3 
Decision query t is called simple if  t = t1∗t2∗…∗tn  and   
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(∀j ∈ {1,2,…,n})[(tj ∈ ∪{Va : a ∈{d[1],d[2],..,d[k]}}) ∨ (tj = ~w  ∧  w∈ ∪{Va : a ∈{d[1], 
d[2],.., d[k]})]. 
 
Definition 1.4 

By a set of classification terms (c-terms) for S we mean a least set TC such that: 
-  0, 1 ∈ TC, 

-  if  w ∈ ∪{Va : a ∈ A}, then  w,  ~w ∈ TC,  
-  if  t1, t2 ∈ TC, then (t1 + t2), (t1∗ t2)∈ TC. 

 
Definition 1.5 

Classification term t is called simple if  t = t1∗t2∗…∗tn  and   

(∀j ∈ {1,2,…,n})[(tj ∈ ∪{Va : a ∈ A})] ∨ (tj = ~w  ∧  w∈ ∪{Va : a ∈ A})]. 
 
Definition 1.6 

By a classification rule we mean any expression of the form  [t1 →  t2],  where t1 is a simple 
classification term and t2 is a simple decision query. 
 
Definition 1.7 

Semantics MS of c-terms in S = (X, A∪{d[1],d[2],..,d[k]}, V ),  is defined in a standard way 
as follows: 
-  MS(0) = 0,  MS(1) = X, 
-  MS(w) = {x ∈ X : w = a(x)} for any w ∈Va, a ∈A,  
-  MS(~w) = {x ∈ X : (∃v ∈Va)[v = a(x) & v≠w]}  for any w ∈Va, a ∈A, 
-  if t1, t2 are terms, then 

MS(t1 + t2) = MS(t1) ∪ MS(t2), 
MS(t1 ∗ t2) = MS(t1) ∩ MS(t2). 
 

Let us introduce the notation we use in this paper for values of decision attributes. Assume 
that d[i]  is a hierarchical decision attribute which is also interpreted as its first granularity level. 
The set {d[i,1], d[i,2], d[i,3],…}  represents the values of attribute d[i]  at its second granularity 
level. The set {d[i,1,1], d[i,1,2],…, d[i,1,ni]}  represents the values of attribute d at its third 
granularity level, right below the node d[i,1].  We assume here that the value d[i,1]  can be 
refined to any value from {d[i,1,1], d[i,1,2],…,d[i,1,ni]},  if necessary. Similarly, the set 
{d[i,3,1,3,1], d[i,3,1,3,2], d[i,3,1,3,3], d[i,3,1,3,4]} represents the values of attribute d at its forth 
granularity level which are finer than the value d[i,3,1,3].   

 
Now, let us assume that a rule-based classifier (for instance one of the modules in systems 

RSES or WEKA) was used to extract rules describing simple decision queries in S. We denote 
this classifier by RC. The definition of semantics of c-terms does not depend on a classifier but 
the definition of semantics MS of d-queries is a classifier dependent.  

 
Definition 1.8 

Classifier-based semantics MS of d-queries in S = (X, A∪{d[1],d[2],..,d[k]}, V ),  is defined 
as follows: 

- if  t is a simple d-query in S and  {r j = [t j → t]: j ∈ Jt} is a set of all rules defining t  
which are extracted from S by classifier RC, then  
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MS(t) = {(x,px): (∃j ∈ Jt)(x ∈ MS(tj)[px =  
Σ{conf(j)⋅sup(j): x ∈ MS(tj) & j ∈ Jt}/Σ{sup(j): x ∈ MS(tj) & j∈ Jt}]} , where conf(j), sup(j) 
denote the confidence and the support of  [t j → t], correspondingly. 
 

Definition 1.9 
Attribute value d[j 1, j2,…jn]  in S = (X, A∪{d[1],d[2],..,d[k]}, V )   is dependent on   

d[i1, i2,…, ik]  in S, if one of the following conditions hold: 
1) n ≤ k  &  (∀m ≤ n)[im = jm], 
2) n > k  &  (∀m ≤ k)[im = jm].  

Otherwise, d[j1, j2,…jn]  is called independent from d[i 1, i2,…, ik]  in S. 
 
Example 1.1 

The attribute value d[2,3,1,2]  is dependent on the attribute value d[2,3,1,2,5,3]. Also, 
d[2,3,1,2,5,3,2,4] is dependent on  d[2,3,1,2,5,3] . 
 
Definition 1.10 

Let  S = (X, A∪{d[1],d[2],..,d[k]}, V ),  w ∈ Vd[i]  , and  IVd[i]   be the set of all attribute values 
in  Vd[i]  which are independent from w. 

Standard semantics NS of d-queries in S  is defined as follows: 
-  NS(0) = 0,  NS(1) = X, 
-  if   w ∈ Vd[i] , then NS(w) = {x ∈ X : d[i](x)=w}, for any 1≤ i≤ k 
-  if   w ∈ Vd[i] , then NS(~w) = {x ∈ X : (∃v ∈ IVd[i]  )[ d[i](x)=v]}, for any 1 ≤ i≤ k 
-  if t1, t2 are terms, then 

NS(t1 + t2) = NS(t1) ∪ NS(t2), 
NS(t1 ∗ t2) = NS(t1) ∩ NS(t2). 

 
Definition 1.11 

Let  S = (X, A∪{d[1],d[2],..,d[k]}, V), t   is a d-query in S, NS(t) is its meaning under standard 
semantics, and MS(t) is its meaning under classifier-based semantics. Assume that  NS(t) = X1 ∪ 
Y1,  where X1 = {x i, i ∈ I1},  Y1 = {yi , i ∈ I2}. Assume also that  MS(t) = {(xi, pi): i ∈ I1} ∪ {(zi, 
qi): i∈I3} and  {yi , i∈ I2} ∩ {zi , i∈I3}= ∅. 

By precision of a classifier-based semantics MS on a d-query t, we mean   
 rec(MS, t) = [Σ{pi : i ∈ I1} + Σ{(1 – qi) : i ∈ I3}]/[card(I 1) + card(I3)]. 
By recall of a classifier-based semantics MS on a d-query t, we mean   
 Rec(MS, t) = [Σ{pi : i ∈ I1}]/[card(I 1) + card(I3)]. 
 

Example 1.2 
Assume that  NS(t) = {x1, x2, x3, x4},  M S(t) = {(x1, p1), (x2, p2), (x5, p5), (x6, p6)}. 

Then: 
 Prec(MS, t) = [p1 + p2 + (1-p5) + (1 – p6)]/4,   

Rec(MS, t) = [p1 + p2]/4. 
 
Example 1.3 

Assume that the decision-hierarchical information system S =({x1,x2,x3,x4}, {a,b}∪{c,d},V) 
is represented by the table below. The set {a,b} contains classification attributes. The set {c,d} 
contains decision attributes. 
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X a b c d 
x1 a[1] b[2] c[1] d[3] 
x2 a[1] b[1] c[1] d[3,1] 
x3 a[1] b[2] c[2,2] d[1] 
x4 a[2] b[2] c[2] d[1] 

Table 1. Multi-hierarchical decision system S 
 
Let us use LERS (Chmielewski, Grzymala-Busse, 1993) module implemented in RSES for 

rules extraction. We assume that the threshold for minimum support = 1, and the threshold for 
minimum confidence = 1/3. We get: 

r1 = [a[1] → c[1]],   with  conf(r1)= 2/3,  sup(r1)=2 
r2 = [a[2] → c[2]] ,  with  conf(r2)= 1,  sup(r2)=1 
r3 = [b[2] → c[2]],   with  conf(r3)= 2/3,  sup(r3)=2 
r4 = [b[1] → c[1]],   with  conf(r4)= 1,  sup(r4)=1 
r5 = [a[1] → c[2,2]],   with  conf(r5)= 1/3,  sup(r5)=1 
r6 = [b[2] → c[2,2]],   with  conf(r6)= 1/3,  sup(r6)=1 
r7= [b[2] → c[1]],  with  conf(r7) = 1/3, sup(r7)=1 
r8 = [a[1] ⋅ b[2] → c[1]],   with  conf(r8)= 1/2,  sup(r8)=1 
r9 = [a[1] ⋅ b[2] → c[2,2]],  with  conf(r9)= 1/2,  sup(r9)=1 

 
Let us notice that the rule r10 = [a[1] → c[2]]  is not extracted because its confidence and 

support is the same as  r5 which is a more precise rule than  r10. 
Now, we are ready to compute the classifier-based semantics of d-queries c[1], c[2], c[2,2].  

For c[1]  and x1 we use rules r1,  r8, r7 since only these three rules support  x1. For c[1]  and x2 
we use rules r1, r4. For c[2]  and x3 we use rules r5, r6, r9. For c[2]  and x4 we use r2, r3. For 
c[2,2] and x3 we use  r5, r6, r9. For  ¬c[1]  and x3 we use rules r5, r6, r9. For  ¬c[1]  and x4 we 
use rules  r2, r3. 

MS(c[1]) = {(x1, (2/3 ⋅ 2 +  ½ ⋅1 + 1/3 ⋅ 1)/(2 + 1 + 1)),  
(x2, (2/3 ⋅ 2 + 1 ⋅ 1)/(2 + 1))} = {(x1, 13/24), (x2, 7/9)}, 

MS(c[2]) = {(x3, (1/3 ⋅ 1 + 1/3 ⋅ 1 + ½ ⋅ 1)/(1 + 1 + 1)),  
(x4, (1 ⋅ 1 + 2/3 ⋅ 2)/(1 + 2))} = {(x3, 7/18), (x4, 7/9)}, 

MS(c[2,2]) = {(x3, (1/3 ⋅ 1 + 1/3 ⋅ 1 + ½ ⋅ 1)/(1 + 1 + 1))} = {(x3, 7/18)}. 
 
MS(¬c[1]) = M S(c[2]),  MS(¬c[2,2]) = MS(c[1]), MS(¬c[2]) = M S(c[1] ). 
 
Standard semantics NS of the above d-queries will retrieve: 
NS(c[1]) = {(x1,1), (x2,1)},  NS(c[2]) = {(x3,1), (x4,1)}, NS(c[2,2])= {(x3,1)}. 
NS(¬c[1]) = {(x3,1), (x4,1)}, NS(¬c[2,2]) ={(x1,1), (x2,1)}= NS(¬c[2]). 
 
Now, we compute the precision and recall of MS on d-queries c[1], c[2], c[2,2],  

¬c[1], ¬c[2], and ¬c[2,2]. 
 
Prec(MS, c[1]) = [13/24 + 7/9]/2 = 95/144 = 0.66,  Rec(MS, c[1]) = 0.66, 
Prec(MS, c[2]) = [7/18 + 7/9]/2 = 21/36 = 7/12 = 0.58, Rec(MS, c[2]) = 0.58 
Prec(MS, c[2,2]) = 7/18,  Rec(MS, c[2,2]) = 7/18 = 0.39 
Prec(MS, ¬c[1]) = Prec(MS, c[2]) = 0.58, Rec(MS,¬ c[1])= 0.58 
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Prec(MS,¬ c[2]) =Prec(MS, c[1]) = 0.66, Rec(MS,¬ c[2])= 0.66 
Prec(MS,¬ c[2,2]) = Prec(MS, c[1]) = 0.66, Rec(MS,¬ c[2,2]) =0.66 

3. COOPERATIVE QUERY ANSWERING 

There are cases when classical Query Answering Systems (QAS) fail to return any answer to 
a submitted d-query q but still a satisfactory answer can be found. For instance, let us assume 
that in a multi-hierarchical decision system S = (X, A∪{d[1],d[2],..,d[k]}, V)  there is no single 
object which description matches the query q.  Assuming that a distance measure between 
objects in S is defined, then by generalizing q, we may identify objects in S which descriptions 
are nearest to the description of q. This problem is similar to the problem when the granularity 
of an attribute value used in a query q is finer than the granularity of the corresponding attribute 
used in S. By replacing such attribute values in q by more general values used in S, we retrieve 
objects from S which may satisfy q.  

 
Definition 2.1 

The distance δS between two attribute values d[j1, j2,…jn], d[i 1, i2,…, im] in  
S = (X, A∪{d[1],d[2],..,d[k]}, V),  where j1 = i1, p ≥ 1, is defined as follows: 

1)  if  [j 1, j2,…jp]= [i 1, i2,…, ip] and jp+1 ≠ ip+1, then  δS[d[j1, j2,…jn], d[i 1, i2,…, im]] =1/[2 p-1]  

2)  if  n ≤ m   and  [j 1, j2,…jn]= [i 1, i2,…, in], then δS[d[j1, j2,…jn], d[i 1, i2,…, im]] =1/[2 n] 
 
The second condition, in the above definition, represents the average case between the best 

and the worth case.  
 
Example 2.1 

Following the above definition of the distance measure, we get: 
1) δS[d[2,3,2,4], d[2,3,2,5,1]] = ¼ 
2) δS[d[2,3,2,4], d[2,3,2]] = 1/8 

 
Let us assume that q = q(a[3,1,3,2], b[1], c[2]) is a d-query which is submitted to S. The 

notation q(a[3,1,3,2], b[1], c[2]) means that q is built from a[3,1,3,2], b[1], c[2] which are the 
atomic attribute values in S. Additionally, we assume that attribute a is not only hierarchical but 
also it is ordered. It basically means that the difference between the values a[3,1,3,2] and 
a[3,1,3,3] is smaller than between the values a[3,1,3,2] and a[3,1,3,4]. Also, the difference 
between any two elements in {a[3,1,3,1], a[3,1,3,2], a[3,1,3,3], a[3,1,3,4]} is smaller than 
between a[3,1,3] and a[3,1,2].  

 
Now, we outline a possible strategy which QAS can follow to solve q. Clearly, the best 

solution for answering q is to identify objects in S which precisely match the d-query submitted 
by user. If it fails, we should try to identify objects which match d-query q(a[3,1,3],  b[1], c[2]). 
If we succeed, then we try d-queries q(a[3,1,3,1], b[1], c[2]) and q(a[3,1,3,3], b[1], c[2]). If we 
fail, then we should succeed with q(a[3,1,3,4], b[1], c[2]). If we fail with q(a[3,1,3], b[1], 
c[2]),  then we try q(a[3,1], b[1], c[2]) and so on.  

 
To present this cooperative strategy in a more precise way, we use an example and start with 

a very simple dataset. Namely, we assume that S has 4 decision attributes which belong to the 
set {a, b, c, d}.  System S contains only four objects listed below 
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X e f g ..... ..... a b c d 
x1 e[1] f[1] ...... ..... ..... a[1] b[2] c[1,1] d[3] 
x2 e[2] f[1] ...... ..... ..... a[1,1] b[2,1] c[1,1,1] d[3,1,2] 
x3 e[2] f[1] ...... ..... ..... a[1,1,1] b[2,2,1] c[2,2] d[1] 
x4 e[1] f[2] ...... ..... ..... a[2] b[2,2] c[1,1] d[1,1] 
Table 2. Multi-hierarchical decision system S 
 
 
Now, we assume that d-query q = a[1,2]∗b[2]∗c[1,1] ∗d[3,1,1]   is submitted to the decision 
system S (see Table 2). Clearly, q fails in S. 
 

Jointly with q, also a threshold value for a minimum support can be supplied as a part of a d-
query. This threshold gives the minimal number of objects that need to be returned as an answer 
to q. When the query answering system (QAS) fails to answer q, the nearest objects satisfying q 
have to be identified.  
 

The algorithm for finding these objects follows the following steps: 
 

If QAS fails to identify sufficient number of objects satisfying q in S, then the generalization 
process starts. We can generalize either attribute a or d. Since the value d[3,1,2] has lower 
granularity level than a[1,1], then we generalize d[3,1,2] getting a new query q1 = 
a[1,2]∗b[2]∗c[1,1] ∗d[3,1]. But q1 still fails in S. Now, we generalize a[1,1] getting a new 
query q2 = a[1]∗b[2]∗c[1,1] ∗d[3,1]. Objects x1, x2 are the only objects in S which support q2. 

  
If the user is only interested in one object satisfying the query q, then we need to identify 

which object in {x1, x2} has a distance closer to q.  
 
Clearly,   
δS[q, x1] = δS[[a[1,2], b[2], c[1,1], d[3,1,1]], [a[1], b[2],c[1, 1], d[3]]] = 
 ¼+0+0+1/4=1/2, 
δS[q, x2] = δS[[a[1,2], b[2], c[1,1], d[3,1,1]], [a[1,1],b[2,1],c [1,1,1],d[3,1,2]]] = 
1/4+1/4+1/8+1/8 = ¾, which means x1 is the winning object. 
 
Let us notice that the cooperative strategy only identifies objects satisfying d-queries and the 

same objects to be returned by the query answering system to the user. The confidence assigned 
to these objects depends on the classifier and it is calculated following the strategy described in 
Section 1. The next section shows how to evaluate and chose the best classifier for a multi-
hierarchical decision system. 

4. COMPARISON OF CLASSIFIERS FOR MULTI-HIERARCHICAL DECISION SYSTEMS 

Let us assume that )},{,( VdAXS ∪=  is a hierarchical decision system, where d is a 
hierarchical attribute. For the simplicity of this presentation, we consider information systems 
with only one decision attribute.  Additionally, we assume that d[i1, …, ik]   (where 

kjmi jj ,...1,1 =≤≤ ) is a child of d[i1, …, ik-1]  for any kk mi ≤≤1 . Clearly, attribute d has 
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}1:...{ 21
kjmmm j ≤≤⋅⋅⋅∑  values, where jmmm ⋅⋅⋅ ...21  shows the upper bound for the 

number of values at the level j of d. By p([i1,…, ik]) we denote a path (d, d[i1] , d[i1,i2] , d[i1,i2,i3] ,..., 
d[i1,…,ik-1], d[i1,…,ik]) leading from the root of the hierarchical attribute d to its descendant d[i1, …, 
ik] .  
 

Let us assume that Rj is a set of classification rules extracted from S, representing a part of a 
rule-based classifier }1:{ kjRR j ≤≤∪= , and describing all values of d at level j.  The quality 

of a classifier at level j of attribute d can be checked by calculating 

∑
∑

∈
∈⋅

=
)}:{sup(

}:)(){sup(
)(

j

j
j Rrr

Rrrconfr
RQ ,  where sup(r) is the support of the rule r in S and conf(r) 

is its confidence. Then, the quality of the rule-based classifier R can be checked by calculating   

k

kjRQ
kjRQ j

j

∑ ≤≤
=≤≤∪

}1:)({
})1:{( . 

 
The quality of a tree-based classifier can be given by calculating its quality for every node of 

a hierarchical decision attribute d. Let us take a node d[i1, …, ik]  and the path p([i1,…, ik])  leading 
to that node from the root of d. There is a set of classification rules R[i1, …, im], uniquely defined 
by the tree-based classifier, assigned to a node d[i1, …, im] of a path p([i1,…, ik]),  for every 

km ≤≤1 . Now, we define Q(R[i1, …, im]) as 
∑

∑
∈

∈⋅
)}:{sup(

}:)(){sup(

j

j

Rrr

Rrrconfr
.  Then, the quality of a 

tree-based classifier for a node d[i1, …, im] of the decision attribute d can be checked by calculating 
}1:)({)( ],...,1[],...,1[ mjRQdQ ijiimi ≤≤∏= . Learning values of a decision attribute at different 

generalization levels is extremely important in the process of handling failing queries. 

5. CONCLUSION 

We have introduced the notion of a system-based semantics and user-based semantics of 
queries. User-based semantics is associated with the indexing of objects done by a user which is 
time consuming and unrealistic for very large sets of data. System-based semantics is associated 
with automatic indexing of objects in X which strictly depends on the support and confidence of 
classifiers and depends on the precision and recall of a query answering system. The quality of 
classifiers can be improved by a proper enlargement of the set X and the set of describing them 
features which differentiate the real-life objects from the same semantic domain as X in a better 
way [8], [9], [10]. The quality of a query answering system (QAS) can be improved by its 
cooperativeness. Both precision and recall of QAS is getting increased if no-answer queries are 
replaced by generalized queries which are answered by QAS on a higher granularity level than 
the initial level of queries submitted by users. 

6. ACKNOWLEDGEMENTS 

This research was partially supported by the National Science Foundation under grant IIS-
0414815.  



Cooperative answering of queries 

REFERENCES 

[1] Chmielewski, M.R., Grzymala-Busse, J.W., Peterson, N.W., The rule induction system LERS - a version for personal 
computers, in Foundations of Computing and Decision Sciences, Vol. 18, No. 3-4, Institute of Computing Science, 
Technical University of Poznan, Poland, 1993, 181-212 

[2] Chu, W., Yang, H., Chiang, K., Minock, M., Chow, G., Larson, C., Cobase: A scalable and extensible cooperative 
information system, in Journal of Intelligent Information Systems, Vol. 6, No. 2/3, 1996, 223-259 

[3] Gaasterland, T., Cooperative answering through controlled query relaxation, in IEEE Expert, Vol. 12, No. 5, 1997, 48-59 
[4] Godfrey, P., Minimization in cooperative response to failing database queries, in International Journal of Cooperative 

Information Systems, Vol. 6, No. 2, 1993, 95-149 
[5] Lewis, R., Zhang, X., Ras, Z.W., Knowledge Discovery Based Identification of Musical Pitches and Instruments in 

Polyphonic Sounds, in the Special Issue on “Soft Computing Applications”, Journal of Engineering Applications of 
Artificial Intelligence, Elsevier, Vol. 20, No. 5, 2007, 637-645  

[6] Pawlak, Z., Information systems - theoretical foundations, in Information Systems Journal, Vol. 6, 1981, 205-218 
[7] Ras, Z.W., Dardzinska, A., Solving Failing Queries through Cooperation and Collaboration, Special Issue on Web 

Resources Access, (Editor: M.-S. Hacid), in World Wide Web Journal, Springer, Vol. 9, No. 2, 2006, 173-186 
[8] Ras, Z.W., Zhang, X., Lewis, R., MIRAI: Multi-hierarchical, FS-tree based Music Information Retrieval System, (Invited 

Paper),  Proceedings of RSEISP 2007, M. Kryszkiewicz et al. (Eds), LNAI, Vol. 4585, Springer, 2007, 80-89 
[9] Zhang, X., Ras, Z.W., Analysis of Sound Features for Music Timbre Recognition, (Invited Paper), in Proceedings of the 

International Conference on Multimedia and Ubiquitous Engineering (MUE 2007), IEEE Computer Society, April 26-28, 
2007, in Seoul, South Korea, 3-8 

[10] Zhang, X., Ras, Z.W., Isolation by Harmonic Peak Partition for Music Instrument Recognition, in the Special Issue on 
Knowledge Discovery, Fundamenta Informaticae Journal, IOS Press, Vol. 78, No. 4, 2007, 613-628 

 
 


