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Abstract. Empirical equations and rules are important classes of reg-
ularities that can be discovered in databases. We concentrate on their
role as de�nitions of attribute values. Such de�nitions can be used in
many ways in a single database and for transfer of knowledge between
databases. We analyze quests for de�nitions of an attribute in a given
database. A quest triggers a discovery mechanism that specializes in
searching recursively a system of databases and returns a set of par-
tial de�nitions. We introduce the notion of shared operational semantics
founded on an equation-based and rule-based system of partial de�ni-
tions. It gives necessary foundations for designing local query answering
systems in a distributed knowledge system (DKS).

1 Shared semantics for distributed autonomous DBs

In many �elds, such as medical, manufacturing, banking, military and educa-
tional, similar databases are kept at many sites. Each database stores information
about local events and uses attributes suitable for locally collected information,
but since the local situations are similar, the majority of attributes are compat-
ible among databases. Yet, an attribute may be missing in one database, while
it occurs in many others. For instance, di�erent military units may apply the
same battery of personality tests, but some of these tests may be not used in
one unit or another.

Missing attributes lead to problems. A recruiter new at a given unit may
query a local database S1 to �nd candidates who match a desired description,
only to realize that one component a1 of that description is missing in S1 so that
the query cannot be answered. The same query would work in other databases
but the recruiter is interested in identifying suitable candidates in S1.

1.1 System architecture

Operational semantics introduced in [15] provides de�nitions of missing at-
tributes through search for de�nitions in many databases. Figure 1 shows the ar-
chitecture of a distributed knowledge system. Discovery Layer for each database
is initially formed from rules and equations extracted from that database. They
de�ne some of the attributes by other attributes in the same database and are



discovered by an automated process. They are used for knowledge exchange
between databases and jointly form an integrated semantics for a distributed
knowledge system de�nes the meaning of queries. Query answering system QAS

uses de�nitions extracted at other databases and/or available in the local dis-
covery layer to answer queries which otherwise would not be reachable.
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Fig. 1. Distributed Knowledge System

1.2 Links to previous research

QAS is a natural knowledge-discovery-based extension of the query answering
system for a system of databases, presented in [12], [13]. In [12], [13] we used
rules discovered in one database to de�ne values of missing attributes in other
databases. The search for rules can use many strategies which �nd rules describ-
ing decision attributes in terms of classi�cation attributes. It has been used in
conjunction with such systems like LERS (developed by J. Grzymala-Busse [3])
or AQ15 (developed by R. Michalski and his collaborators [8]).

The task of integrating established database systems can be complicated not
only by the di�erences between the sets of attributes but also by di�erences in
structure and semantics of data. The notion of an intermediate model, proposed
by Wiederhold [7], is very useful in dealing with such a problem, because it
describes the database content at a relatively high abstract level, su�cient for a
homogeneous representation of all databases. In our paper a discovery layer can
be seen as an application of the ideas of an intermediate model for a distributed
DB system.

1.3 Operational de�nition

De�nitions that are used to compute attribute values of objects are often called
operational de�nitions. They are common in science, where values of each at-



tribute are determined in many ways, depending on di�erent applications. Oper-
ational semantics has been introduced by Bridgman [1] and developed by Carnap
[2] and many others, including semantics of coherent sets of operational de�ni-
tions developed by Zytkow [16] and applied in robotic experiments [18].

Operational semantics can be applied to databases. Many computational
mechanisms can be used to de�ne values of an attribute. We call them opera-
tional de�nitions because each is a mechanism by which the values of a de�ned
attribute can be computed. Many are partial de�nitions, as they apply to subsets
of records that match the \if" part of a de�nition. In 1989-1990,Ras et al. [6], [14]
introduced a mechanism which �rst seeks and then applies as de�nitions rules in
the form \If Boolean-expression(x) then a(x)=w" which are partial de�nitions
of attribute a applicable to all objects x that satisfy Boolean-expression(x).

The 49er system can �nd knowledge in many forms, including equations,
that can be used to de�ne one attribute by other attributes in a relational table.
We conducted experiment, using this mechanism in addition to rule-based de�-
nitions [4]. The growing interest in KDD will make the discovery of operational
de�nitions increasingly popular. Recently, Prodromidis & Stolfo [10] argued that
attribute de�nitions are a useful target for discovery in databases.

1.4 Shared semantics in action: query answering

Many query-answering situations can bene�t from the following generic scenario.
A query q is issued at database S1, but it is \unreachable" in S1 because it uses
an attribute a which is missing in S1. A request for a de�nition of a is issued to
other sites in the distributed autonomous database system. The request speci�es
attributes a1; :::; an available at S1. When attribute a and a subset fai1; :::; aikg
of fa1; :::; ang are available in another database S2, a discovery mechanism is
invoked to search for operational de�nitions at S2, by which values of a can be
computed from values of some of ai1 ; :::; aik. If discovered, such a de�nition is
returned to the discovery layer over S1 and used to compute the unknown values
of a that occur in query q.

The same mechanism can apply if attribute a is available at S1, but some
values of a are missing. In that case, the discovery mechanism can be applied at
S1, if the number of the available values of a is su�ciently large.

1.5 Other applications

Functional dependencies in the form of equations are a succinct, convenient form
of knowledge, useful in many ways. The equation a = f(a1; a2; :::; am) can be
directly used to predict values a(x) of a for object x by substituting the values
of a1(x); a2(x); :::; am(x) if all are available. If some are not directly available,
they may be predicted by other operational de�nitions.

When we suspect that some values of a may be wrong, an equation imported
from another database may be used to verify them. An equation acquired at the
same database may be used, too. For instance, patterns discovered in clean data
can be applied to distinguish wrong values in the raw data.



Equations that are generated at di�erent sites can be used to cross-check the
consistency of knowledge and data coming from di�erent databases. If the values
of a that are computed by two independent equations are approximately equal,
this con�rms consistency of both de�nitions.

All equations by which values of a can be computed expand the understand-
ing of a. Attribute understanding is often initially inadequate when we receive a
new dataset for the purpose of data mining. We may know the domain of values
of a, but we do not understand a's detailed meaning, so it is di�cult to apply
background knowledge and the knowledge discovered about a. In such cases, an
equation that relates a poorly understood attribute a with attributes of known
meaning, explains some of the meaning of a.

2 Recursive search for equations

Let us present in algorithmic details a recursive discovery mechanism that sup-
ports global query answering. When an attribute a is needed but unreachable
in database S1, a request for a de�nition of a is issued to other sites in the dis-
tributed database system. The request speci�es the attributes a1; :::; an available
in S1, because only those attributes can be included in a de�nition useful at S1.

In this section we present a recursive algorithm that searches for equations
and we analyze an application os this algorithm. But that algorithm can be used
to search for rules. In section 3 we will present an example of recursive search
for rules.

When the attribute a and a subset fai1 ; :::; aikg of fa1; :::; ang are available
in another database S2, 49er's discovery mechanism is invoked to search S2 for
equations by which values of a can be computed from values of some of ai1 ; :::; aik.
If discovered, such equations are returned to S1 and can be used in numerous
ways.

In [15] we considered a computational mechanism that searches at each
database individually for equations suitable in a role of de�nitions of a. But
there are numerous situations when this mechanism must be expanded and ap-
plied recursively.

2.1 Non-overlapping attribute sets

First, there may be no database which contains a and any of fa1; :::; ang. This
can be illustrated with the following example of simple relation schemas, one
relation per database:

S1(a1; a2; :::; an) ; de�nition of attribute a is sought
S2(a; b1; :::; bk)
S3(b1; a2; a3)

Suppose that an equation a = f(b1) has been discovered in S2. It cannot be
used in S1, because b1 is unavailable. But S3 includes b1 and some of fa1; :::; ang.
An equation b1 = f1(a2; a3) may be discovered that de�nes b1 in terms a2 and



a3. That equation can be substituted into a = f(b1) leading to equation a =
f(f1(a2; a3)) that can be applied in S1.

2.2 Search for a su�cient �t

Second, there may be a database S4 that includes a and some of fa1; :::; ang.
But no equation that de�nes a through any of fa1; :::; ang has a �t su�cient to
play the role of a de�nition. In this situation, the search for a de�nition can be
expanded. Perhaps an equation is discovered that has a su�cient �t to play the
role of a de�nition, but in addition to some of fa1; :::; ang it uses b1, unavailable
in S1. We already discussed the steps appropriate for this situation.

2.3 Empirical contents in a set of de�nitions

There is a more systematic reason why the search for equations should continue,
even if it has been successful. Equations that are used to compute missing values
are empirical generalizations. Although they may be reliable, we cannot trust
them unconditionally, and it is a good practice to seek their further veri�cation,
especially if they are applied to the expanded range of values of a. The veri-
�cation may come from additional knowledge that can be used as alternative
de�nitions. Ras et al. [12], [13] used rules coming from various sites and veri�ed
their consistency.

Multiple equations give a chance for cross-veri�cation, as their predictions
can be compared. Each consistent prediction provides extra justi�cation for the
system of de�nitions, while each inconsistency calls for further empirical analysis
of data and de�nition improvements.

2.4 Recursive discovery algorithm

The following algorithm can be used to search recursively for an attribute de�-
nition:

Algorithm: Find de�nitions of attribute a that are applicable in DB

For each database X
if a is available in X then

seek de�nition of a in X; keep them on list def(a,X)
for each X and each de�nition DEF in def(a,X)

if all attributes that de�ne a are available in DEF,
then add DEF to list of de�nitions of a
else for each attribute b missing in DB

�nd de�nitions of attribute b that are applicable in DB



2.5 An example of recursive search for a de�nition

Consider the following database schemas

S1(a1; a2; a3),
S2(a; a1; b),
S3(a; b; a3),
S4(a2; b)

also illustrated in Figure 2. Discovery layer is assigned to each of these four
databases and contains de�nitions of attributes and/or attribute values extracted
from them. De�nition of attribute a is sought.
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Fig. 2. Search for equations in support of query answering; an example

The recursive search for a de�nition follows these steps:
1. S1 sends a request: de�ne a, use a1; a2; a3
2. S2 and S3 try to answer.
3a. Situation 1: de�nition found in S3: a = f1(a3)
3b. Situation 2: no de�nition found, so the search is expanded to additional

attributes: de�ne a, use a1; a2; a3 and any other parameters available.
4. S2 tries to answer.
5a. Situation 3: de�nition not found so the search halts.
5b. Situation 4: de�nition found in S2: a = f2(a1; b)
6. A new quest is issued: de�ne b, use a1; a2; a3
7. S3 and S4 try to answer.
8a. Situation 5: de�nition not found so the search halts.
8b. Situation 6: de�nition found in S4: b = f3(a2)
9. Equation in 8b is substituted into equation in 5b: a = f2(a1; f3(a2))
10. The search halts.



3 Query answering system based on reducts

In this section we recall the notion of a reduct and show how it can be used to im-
prove the query answering process in distributed autonomous database systems
(DADS). We assume that information stored in all databases is consistent.

Let us assume that S = S(A) is a database schema and S(X;A) represents
its view. Each a 2 A is interpreted here as a function a : X �! Dom(a), where
Dom(a) is a domain of a. For simplicity reason we assume that Dom(a); Dom(b)
are disjoint for any a; b 2 A such that a 6= b.

Let B � A. We say that x; y 2 X are indiscernible by B in S, denoted
[x �B y], if (8a 2 B)[a(x) = a(y)].
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Fig. 3. Process of resolving a query by QAS in DADS

Now, assume that both B1; B2 are subsets of A. We say that B1 depends



on B2 if �B2
��B1

. Also, we say that B2 is a reduct of B1 (B1-reduct) if B1

depends on B2 and B2 is minimal. If B is a singleton set (B = ffg) then instead
of B-reduct we say f-reduct.

Example. Assume the following scenario:

{ S1 = (X1; fc; d; e; gg), S2 = (X2; fa; b; c; d; fg), S3 = (X3; fb; e; g; hg)
are views of database schemas S1; S2; S3, respectively.

{ User submits a query q = q(c; e; f) to the query answering system QAS

associated with database S1,
{ Databases S1, S2, S3 forma distributed autonomous database systemDADS.

Attribute f is non-local for a database S1 so the query answering system
associated with S1 has to contact other sites of DAKS requesting a de�nition
of f in terms of fd; c; e; gg. Such a request is denoted by < f : d; c; e; g >.
Assume that the database S2 is contacted. The de�nition of f , extracted from
S2, involves only attributes fd; c; e; gg \ fa; b; c; d; fg = fc; dg. There are three
f-reducts (coverings of f) in S2. They are: fa; bg; fa; cg;fb; cg. The optimal f-
reduct is the one which has minimal number of elements outside fc; dg; in our
case fa; cg and fb; cg. Let us assume that fb; cg is chosen as an optimal f-reduct
in S2.
Then, the de�nition of f in terms of attributes fb; cg may be extracted from
S2 and the query answering system of S2 will contact other sites of DADS
requesting a de�nition of b (which is non-local for S1) in terms of attributes
fd; c; e; gg. If a de�nition of b is found, then it is sent to QAS of S1. Figure 4
shows the process of resolving query q in the example above.

4 Conclusion

The discovery layer at each site is formed from partial de�nitions either ex-
tracted from that site or imported from other sites. All these partial de�nitions
(if consistent) de�ne a local operational semantics and the meaning of queries
seen by the local query answering system. Discovery processes update discovery
layers associated with all databases in DADS. They do it in real-time whenever
a local query cannot be answered with the help of local operational semantics.
As a result of operational de�nitions discovery, local semantics is augmented
with a relevant selection of global knowledge in DADS.
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