
Mining Distributed Databases for Attribute De�nitions

Jan M. _Zytkow and Zbigniew W. Ra�s

Comp. Science Dept. Univ. of North Carolina, Charlotte, N.C. 28223, USA

also Institute of Comp. Science, Polish Academy of Sciences, Warsaw, Poland

ABSTRACT

The paper focuses on discovery of knowledge needed to establish the shared meaning of attributes in a network of
distributed autonomous databases. In this paper we concentrate on the role of equations as de�nitions of attribute
values. We brie
y describe various applications of such de�nitions, including predictions, knowledge veri�cation,
intelligent query answering and several others. We present an interface between a Distributed Autonomous Knowledge
System DAKS and a discovery system 49er. To �nd knowledge useful in de�ning attributes missing in one database,
the discovery mechanism of 49er can be applied to other databases. DAKS makes requests for de�nitions and then
manages the discovered de�nitions, veri�es their consistency and applies them in its query-answering mechanism. To
put a system of equation-based attribute de�nitions on a �rm theoretical foundation we introduce semantics which
justi�es empirical equations in their de�nitional role. This semantics augments the earlier developed semantics for
rules used as attribute de�nitions.

Keywords: distributed databases, discovery of equations, distributed knowledge systems, operational semantics

1. INTRODUCTION

In many �elds, such as medical, manufacturing, banking, military and educational, similar databases are kept at
many sites. Each database stores information about local events and uses attributes suitable for a local task, but since
the local situations are similar, the majority of attributes are compatible among databases. Yet minor exceptions can
occur. An attribute may be missing in one database, while it occurs in many others. Di�erent tests may be applied
in di�erent hospitals, but their results may be linked by simple dependencies. For instance, one hospital applies test
a1 to their diabetics patients while another applies test a2. There may be a direct relationship between both tests,
and if it is known, data collected at one hospital can be used at the other.

Missing attributes lead to problems. A doctor new at unit S may be familiar with test a, and issues a query that
seeks patients who match a description that uses results of test a, only to realize that because the results of a are
not available in S, the query cannot be answered. The same query would work in other databases but the doctor is
interested in identifying patients candidates at the unit S.

Many computational mechanisms can be used to de�ne values of an attribute. Ras, Zemankova and Maitan7,14

(1989-1990) introduced a mechanism which seeks rules in the form \If Boolean-expression(x) then a(x)=v" and
then applies them as partial de�nitions of a. A number of strategies can be used to �nd rules describing decision
attributes in terms of classi�cation attributes. We should mention here such systems like LERS (developed by J.
Grzymala-Busse), DQuest (developed by W. Ziarko) or AQ15 (developed by R. Michalski).

In this paper we present a mechanism that expands attribute de�nitions from rules to equations. Other types of
knowledge, however, for instance taxonomies, could be also used as de�nitions. System 49er, developed by Zytkow
and Zembowicz,16 allows to describe attributes as functions of other attributes. Such functional descriptions can
hold for all data or in data subsets. When attributes are numerical, functional descriptions take on the form of
equations.

De�nitions that are used to compute attribute values of objects are often called operational de�nitions. They are
common in science, where values of each attribute are computed in many ways, depending on di�erent applications.
Operational semantics has been introduced by Bridgman1 and developed by Carnap2 and many others, including
semantics of coherent sets of operational de�nitions developed by Zytkow17 and applied in robotic experiments.18

Further author information: e-mail: zytkow@uncc.edu or ras@uncc.edu



2. APPLICATIONS OF EMPIRICAL EQUATIONS

Empirical equations are an important class of regularities that can be discovered in databases. In this paper we
concentrate on the role of equations as de�nitions of attribute values.

Functional dependencies in the form of equations are a convenient form of knowledge. They are very concise and
apply in many ways. They can be used in making predictions, explanations and inference. Many equations can be
combined to perform these functions.

2.1. Making predictions and computing missing values

a = r(a1; a2; :::; am) can be directly used to predict values a(x) of attribute a for object x by substituting the values
of a1(x); a2(x); :::; am(x) if all are available. Missing values of a can be computed that way as well as values of an
attribute a which is not present in a given database.

2.2. Detecting wrong values

When we suspect that some values of a may be wrong, an equation imported from another database may be used
to verify them. An equation acquired at the same database may be used, too, if the discovery mechanism is able to
distinguish the wrong values as the outliers. For instance, patterns discovered in the clean data can be applied to
discovery of wrong values in the raw data

2.3. Consistency veri�cation

An equation that has been derived from data is an empirical generalizations. Although it has been veri�ed in the
database in which it was derived, and may be reliable, we cannot trust it unconditionally.

It is a good practice to seek further veri�cation, especially if the predicted values of a go beyond the range of values
of a for which the equation has been derived. The veri�cation may come from additional knowledge that can be used
as alternative de�nitions. Ras12,13 (1997-1998) used rules coming from various sites and veri�ed their consistency.
His system can use many strategies which �nd rules describing decision attributes in terms of classi�cation attributes
and then compare the resultant rules.

Equations that are generated at di�erent sites can be used, too, to cross-check the consistency of knowledge and
data coming from di�erent databases. If the values of a computed by two independent equations are approximately
equal, each of the equations receives further con�rmation as a computational method for a.

2.4. Understanding the meaning of an attribute

All equations by which values of a can be de�ned expand the understanding of a. Attribute understanding is often
initially inadequate when we receive a new dataset for the purpose of data mining. We may know the domain of
values of a, but we do not understand a's detailed meaning, so that we do not know how to apply background
knowledge and we cannot interpret the knowledge discovered about a. In such cases, an equation that links a poorly
understood attribute a with attributes a1; :::; an, the meaning of which is known, explains the meaning of a in terms
of a1; :::; an.

2.5. Query answering

Intelligent Query Answering System15 (IQAS) for Distributed Autonomous Information Systems (DAIS) is concerned
with identifying all objects satisfying a given description in one of the component systems of DAIS.

To give an example of an intelligent query answering strategy, assume that a query issued against a database DB
includes an attribute a which is unknown in DB. The meaning of a can be determined in another database DB1

that includes a as well as some other attributes b1; :::; bn shared by DB and DB1. A request for a procedure that
de�nes a by some of b1; :::; bn in DB1 is initially treated as a request for a de�nition of a in terms of b1; :::; bn. Such a
de�nition can take on the form of a system of rules, an equation, a taxonomy and so on. If discovered, the de�nition
in each of these forms can be converted into a procedure that allows the computation of the value of a, given the
values of b1; :::; bn. Such a procedure is then used to answer the original query in DB.



3. REQUEST FOR A DEFINITION

For the purpose of inducing equations from data we could adapt various discovery systems.3,4,9,8,5,16 We have chosen
the 49er system16 because it is tuned to data available in databases. The system allows to describe one attribute as
a function of other attributes and it seeks equations when attributes are numerical. It has demonstrated successful
applications in many databases coming from various domains.

Special requirements must be satis�ed by an equation so that it can be used as a de�nition of a given numerical
attribute. One of the main problems with the search for equations is that the best �t can be always found for any
dataset in any class of models (equation schemas). But is the best �t good enough? How good is good enough?
Equations often provide rough estimates of patterns, but an estimate may not be su�cient for a de�nition. How
good must be a �t of an equation to the data so that this equation can be used as a de�nition?

When we know the desired accuracy of �t, we know how to evaluate a candidate equation against data. In database
applications there is a \natural" limit on the accuracy for those attributes, common in all sorts of databases, whose
values are numerical and discrete. Consider an attribute whose values are integers, such as weight in pounds or age
in years. The error (accuracy) of �t can be derived from the granularity of the domain. For any three adjacent values
v1; v2; v3 in the ascending order, the acceptable accuracy of determination of v2 is (v3 � v1)=4. For instance, for the
age in years, the accuracy is half year. That error rate is entirely satisfactory, but sometime even a worse �t is still
acceptable for a de�nition.

When the required accuracy of �t " is provided, for each candidate equation the probability can be estimated
that a given dataset could have been generated from that equation compounded with residua generated from normal
distribution N (0; "). A demanding probabilistic signi�cance threshold such as Q � 0:01 is also needed.

In summary, a quest for a de�nition in the form of an equation includes15:

1. the attribute a for which a de�nition is sought in the form of an equation;

2. the accuracy of attribute a for each value in the domain of A;

3. a set of attributes fa1; :::; ang which can be used in the de�nition;

The discovery proces can be decomposed into three stages which have been describe elsewhere15: (1) functionality
test, (2) �nding preliminary equations, (3) re�ning the equations until they become acceptable. The resultant
equation, if any, has the form a = f(ai1 ; :::; aik), and it �ts the data within the probability threshold Q = 0:01, which
we use as a default value for de�nitions.

4. RECURSIVE SEARCH FOR EQUATIONS

Let us re-examine the intelligent query answering. When an attribute a is needed but unreachable in database S1,
a request for a de�nition of a is issued to other sites in the distributed database system. The request speci�es the
attributes a1; :::; an available in S1.

When attribute a and a subset fai1 ; :::; aikg of fa1; :::; ang are available in another database S2, 49er's discovery
mechanism is invoked to search S2 for a computational procedure by which values of a can be computed from values
of some of ai1 ; :::; aik. If discovered, such a procedure is returned to S1 and can be used in numerous ways.

Earlier15 we consider a computational mechanism that searches for equations suitable in a role of de�nitions of
a. But there are numerous situations when this mechanism must be expanded and applied recursively.

4.1. Non-overlapping attribute sets

First, there may be no database which contains a and any of fa1; :::; ang. Suppose that database S3 contains a and
fb1; :::; bng, and an equation a = f(b1) has been discovered in S3. It cannot be used in S1, because b1 is unavailable
there. But there may be still another database S4 that includes b1 and some of fa1; :::; ang. An equation may be
discovered that de�nes b1 in terms of fa1; :::; ang. That equation can be substituted into a = f(b1) leading �nally to
an equation that can be applied in S1.

This can be illustrated with the following example of simple database schemas:

S1: a1, a2, a3

S3: a, b1, b2

S4: a1, b1



4.2. Search for a su�cient �t

Second, there may be a database S2 that includes a and some of fa1; :::; ang. But no equation that de�nes a through
any of fa1; :::; ang has a su�cient �t to play the role of a de�nition. In this situation, the search for a de�nition
can be expanded. Perhaps an equation is discovered that has a su�cient �t to play the role of a de�nition, but in
addition to some of fa1; :::; ang it uses b1, unavailable in the original database S1. To remedy this situation, the
search can be applied in other databases for a de�nition of b1 in terms of attributes fa1; :::; ang available in S1. As
a caution, this search should not consider the same equation which has been discovered in S2.

4.3. Reduct-driven discovery

A third situation, to a degree similar to the second, occurs within the rough sets approach.10 A search for reducts6

is often applied to determine some or all sets of attributes which are su�cient to distinguish between all records in
a given database. Attributes in a reduct are then used to build concept de�nitions. It may happen that in every
reduct there are attributes additional to the set fa1; :::; ang available in S1. Again, an equation discovered in such a
reduct cannot be directly applied in S1, so that it must be augmented by other equations that de�ne attributes not
available in S1.

4.4. Empirical contents in a set of de�nitions

But there is a more systematic reason why the search for equations should continue, even if it has been successful.
Multiple equations give a chance for cross-veri�cation as their predictions can be compared. Each consistent pre-
diction provides extra justi�cation in the system of de�nitions, while each inconsistency calls for further empirical
analysis of data and de�nition improvements.

4.5. Recursive discovery algorithm

The following algorithm can be used to search recursively for an attribute de�nition:

Algorithm: find definitions of attribute A that are applicable in DB

for each database X

if A is available in X then

seek definition of A in X

Keep all definitions of A in X on list def(A,X)

for each X and each definition DEF in def(A,X)

if all attributes that define A are available in DEF,

then add DEF to list of definitions of A

else

for each attribute B missing in DB

find definitions of attribute B that are applicable in DB

5. SHARED SEMANTICS IN A DISTRIBUTED DB SYSTEM

Before we de�ne the shared meaning of attributes in a Distributed Autonomous Knowledge System DAKS we must
introduce the notions of an information system and a distributed information system.

5.1. Information system

By an information system we mean a structure S = (X;A; V ), where X is a �nite set of objects, A is a �nite set of
attributes, and V =

S
fVa : a 2 Ag is a set of their values. We assume that:

� Va; Vb are disjoint for any a; b 2 A such that a 6= b,

� a : X �! Va is a function for every a 2 A.

Instead of a, we will often write a[S] to denote that a in an attribute in S.



5.2. Distributed information system

By a distributed information system12 we mean a pair DS = (fSigi2I ; L) where:

� Si = (Xi; Ai; Vi) is an information system for any i 2 I,

� L is a symmetric, binary relation on the set I,

� I is a set of sites.

Distributed information system DS = (fSigi2I ; L) is consistent if:

(8i)(8j)(8x 2 Xi \Xj)(8a 2 Ai \Aj) (a[Si ](x) = (a[Sj ])(x).

In the remainder of this paper we assume that DS = (fSigi2I; L) is a distributed information system which is
consistent. Also, we assume that Sj = (Xj ; Aj; Vj) and Vj =

S
fVja : a 2 Ajg, for any j 2 I.

We will use A to name the set of all attributes in DS, A =
S
fAj : j 2 Ig.

5.3. Shared operational semantics

The shared semantics is de�ned for the set A of all attributes in all databases in DS. For each attribute a in A, the
operational meaning of a is de�ned by:

1. the set of databases in which a is available directly: Si : a 2 Ai;

2. the set of databases in which a has been de�ned; and the set of de�nitions in each database. De�nitions can
be equations, boolean forms, etc.

3. the set of databases in which the de�nitions of a can be used, because the de�ning attributes are available
there. An attribute a is a de�ned attribute in an information system S if:

(a) a de�nition DEF of a has been discovered in one of databases in DS;

(b) all other attributes in the de�nition DEF are present in S; in such cases they can be put together in a
JOIN table and DEF can be directly applied.

5.4. Syntax of de�nitions

We will now de�ne the syntax of de�nitions in the form of equations. Partial de�nitions are included, as they are
often useful. They can also be automatically discovered by 49er.16 In the next subsection we give an interpretation
of partial de�nitions. We expand here the terminology introduced in.15

Functors are the building blocks from which equations and inequalities can be formed. Those in turn are the
building blocks for partial de�nitions. Assume that x is a variable over Xi and r1; r2; :::; rk are functors. Also, we
assume here that mj is the number of arguments of the functor rj, j = 1; 2; ::; k. The number of arguments can be
zero. A zero argument functor is treated as a constant.

By a set of s(i)-atomic-terms we mean a least set T0i such that:

� 0;1 2 T0i,

for any symbolic attribute a 2 Aj ,

� [a(x) = w] 2 T0i for any a 2 Ai and w 2 Via,

� � [a(x) = w] 2 T0i for any a 2 Ai and w 2 Via,

for any numerical attributes a; a1; a2; :::; amj
in Ai,



� [a(x) � rj(a1; a2; :::; amj
)(x)] 2 T0i, where � 2 f=;�;�g

s(i)-atomic-terms of the form [a(x) = w] and [a(x) = rj(a1; a2; :::; amj
)(x)] are called equations

By a set of s(i)-partial-de�nitions (s(i)-p-defs in short) we mean a least set Ti such that:

� if t(x) 2 T0i is an equation, then t(x) 2 Ti,

� if a 2 Ai and t(x) is a conjunction of s(i)-atomic-terms and s(x) is an equation, then [t(x) �! s(x)] 2 Ti,

� if t1(x); t2(x) 2 Ti, then (t1(x) _ t2(x)); (t1(x) ^ t2(x)) 2 Ti.

For simplicity we often write t instead of t(x).

The set of s(I)-defs is de�ned in a similar way to s(i)-p-defs: the set Vi is only replaced by
S
fVj : j 2 Ig and the

set Ai is replaced by
S
fAj : j 2 Ig. s(I)-defs represents all possible candidate de�nitions built from attributes that

can come from di�erent databases (information systems).

Standard interpretation Mi of s(i)-p-defs in a distributed information system DS = (fSjgj2I ; L) is de�ned as
follows:

� Mi(0) = ;, Mi(1) = Xi

� Mi(a(x) = w) = fx 2 Xi : a[Si ](x) = wg,

� Mi(� (a(x) = w)) = fx 2 Xi : a[Si ](x) 6= wg,

� for any � 2 f=;�;�g,

Mi(a(x) � rj(a1; a2; :::; amj
)(x)) = fx 2 Xi : a[Si ](x) � rj(a1[Si ](x); a2[Si](x); :::; amj[Si ](x))g,

� Mi([t �! s]) = fx 2 Xi : if [x 2Mi(t)] then x 2Mi(s)]g,

� if t1; t2 are s(i)-p-defs, then

Mi(t1 _ t2) = Mi(t1) [Mi(t2),

Mi(t1 ^ t2) = Mi(t1) \Mi(t2),

Mi(t1 = t2) = (if Mi(t1) = Mi(t2) then T else F ), where T stands for True and F for False

Let us assume that [t1 �! (a1(x) = w1)]; [t2�! (a2(x) = w2)] are s(i)-p-defs. We say that they are Si-consistent,
if either a1 6= a2 or Mi(t1 ^ t2) = ; or w1 = w2. Otherwise, these two s(i)-p-defs are called Si-inconsistent.

Similar de�nitions apply when w1 and w2 in those partial de�nitions are replaced by r1(a1; a2; :::; amj
)(x) and

r2(a1; a2; :::; amj
)(x).



6. DISCOVERY LAYER

In this section, we introduce the notion of a discovery layer, distributed autonomous knowledge system and s(I)-
queries which can be processed locally at site i using operational de�nitions if needed. We introduce the concept of
a dynamic operational semantics to re
ect the dynamics of constantly changing discovery layers.

Notice that while in the previous sections partial de�nitions have been interpreted at the sites at which all relevant
attributes have been present, we now consider de�nitions imported from site i to site k.

By a discovery layer Dki we mean any s(i)-consistent set of partial de�nitions, of the two types speci�ed below,
which are satis�ed, by means of the interpretation Mk, by most of the objects in Sk:

� [t �! [a(x) = rm(a1; a2; :::; am)(x)]], where a1; a2; :::; am 2 Ai and a 2 Ak and t is a conjunction of atomic
terms that contain attributes that occur both in Ai and in Ak

� [t �! (a(x) = w)], where a 2 Ak and t satis�es the same conditions as above.

Suppose that a number of partial de�nitions have been imported to site i from a set of sites Ki. All those
de�nitions can be used at site i.

Thus, the discovery layer for site i 2 I is de�ned as a subset of the set Di =
S
fDki : k 2 Kig where Ki is a set

of sites.

By Distributed Autonomous Knowledge System (DAKS) we mean DS = (f(Si; Di)gi2I ; L) where (fSigi2I ; L)
is a distributed information system and Di is a discovery layer for a site i 2 I.

Let us now consider queries that contain attributes which are locally unavailable. In15 we introduced i-operational
semantics Ni of s(I)-queries in DS = (f(Si; Di)gi2I ; L) where Si = (Xi; Ai; Vi) and Vi =

S
fVia : a 2 Aig.

Each pair (Si; Di) in DS was called a knowledge system for a site i.

The growth of the knowledge system can be driven by a systematic quests for partial de�nitions, but it can be
also driven, more opportunistically, by queries which cannot be answered because of missing attributes.

Previously,15 interpretation Ni(t) of a query t assumes that all the rules and equations needed to resolve at-
tributes listed in t which are not in Ai are already in Di. In contrast, our Intelligent Query Answering System
proposed here is based on a dynamic operational semantics which can be seen as an operational extension of the in-
terpretation Ni. Assume now that the notation t = t(b1; b2; :::; bn) means that b1; b2; :::; bn are all the attributes listed
in t which do not belong to Ai. If a query t is submitted to the Intelligent Query Answering System IQAS of the site
i, then for each attribute bj ,j 2 f1; 2; :::; ng our system IQAS �nds all Sk;j such that bj 2 Ak;j and (Ai \Ak;j) 6= ;.
In a system Sk;j, using 49er, we may discover a number of partial de�nitions, such as [tj �! bj(x) = wj]). Among
all these partial de�nitions our system IQAS will choose a coverage by partial de�nitions with a minimal number
of attributes bsubscript listed in tj(bj1; bj2; :::; bjm) which are not members of Ai. This winning optimal coverage is
stored in a discovery layer Di of the knowledge system (Si; Di). If the list (bj1; bj2; :::; bjm) in tj is not empty, then for
each bj� in bj1; bj2; :::; bjm our IQAS will search for a new optimal quest [tj� �! bj�(x) = wj�]). All these optimal
coverages will be stored in a discovery layer Di. This process will continue until all new optimal coverages needed
to resolve t will involve only attributes in Ai.

Clearly, if for each non-local attribute we collect rules and equations from many sites of DAKS and then resolve
any inconsistencies among them, the resulting rules and equations in the local discovery layer have more chance to
be locally true.



REFERENCES

1. Bridgman, P.W. 1927. The Logic of Modern Physics. The Macmillan Company.

2. Carnap, R. 1936. Testability and Meaning, Philosophy of Science, 3.

3. Dzeroski, S. & Todorovski, L. 1993. Discovering Dynamics, Proc. of 10th International Conference on Machine
Learning, 97-103.

4. Falkenhainer, B.C. & Michalski, R.S. 1986. Integrating quantitative and qualitative discovery: The ABACUS
system. Machine Learning, 1, 367-401.

5. Kokar, M.M. 1986. Determining Arguments of Invariant Functional Descriptions, Machine Learning, 1, 403-422.

6. Kryszkiewicz, M., Rybinski, H., Reducing information systems with uncertain attributes, ISMIS'96, LNCS/LNAI,
Springer, Vol. 1079, 1996, 285-294

7. Maitan, J., Ras, Z., Zemankova, M., \Query handling and learning in a distributed intelligent system", in
Methodologies for Intelligent Systems, IV, (Ed. Z.W. Ras), North Holland, 1989, 118-127

8. Moulet, M. 1992. A symbolic algorithm for computing coe�cients' accuracy in regression, in: Sleeman D. &
Edwards P. eds. Proc. of Ninth Intern. Conference on Machine Learning.

9. Nordhausen, B. & Langley, P. 1993. An Integrated Framework for Empirical Discovery, Machine Learning, 12,
17-47.

10. Pawlak, Z., Rough Classi�cation, International Journal of Man-Machine Studies, Vol. 20, 1984, 469-483

11. Ras, Z.W., \Dictionaries in a distributed knowledge-based system", in Proceedings of Concurrent Engineering
Conf., Pittsburgh, August 29-31, 1994, Concurrent Technologies Corp., 383-390

12. Ras, Z., \Resolving queries through cooperation in multi-agent systems", in Rough Sets and Data Mining (Eds.
T.Y. Lin, N. Cercone), Kluwer Academic Publishers, 1997, 239-258

13. Ras, Z., Joshi, S., \Query approximate answering system for an incomplete DKBS", in Fundamenta Informaticae
Journal, IOS Press, Vol. 30, No. 3/4, 1997, 313-324

14. Ras, Z., Zemankova, M, \Intelligent query processing in distributed information systems", in Intelligent Sys-
tems: State of the Art and Future Directions, Z.W. Ras, M. Zemankova (Eds), Ellis Horwood Series in Arti�cial
Intelligence, London, England, November, 1990, 357-370

15. Ras, Z., Zytkow, J.,\Discovery of Equations to Augment the Shared Operational Semantics in Distributed
Autonomous BD System", in PAKDD'99 Proceedings, LNCS/LNAI, Springer-Verlag, will appear

16. _Zytkow, J. & Zembowicz, R., \Database Exploration in Search of Regularities", in Journal of Intelligent Infor-
mation Systems, No. 2, 1993, 39-81.

17. _Zytkow, J. An interpretation of a concept in science by a set of operational procedures, in: Polish Essays in the
Philosophy of the Natural Sciences, Krajewski W. ed. Boston Studies in the Philosophy of Science, Vol.68, Reidel
1982, p.169{185.

18. _Zytkow, J.M., Zhu, J., and Zembowicz R. Operational De�nition Re�nement: a Discovery Process, Proceedings
of the Tenth National Conference on Arti�cial Intelligence, The AAAI Press, 1992, p.76{81.


