
Do We Need Automatic Indexing of Musical
Instruments?

Alicja Wieczorkowska2 and Zbigniew W. Raś1,3

1 University of North Carolina, Department of Computer Science,
Charlotte, N.C. 28223, USA

2 Polish-Japanese Institute of Information Technology
ul. Koszykowa 86, 02-008 Warsaw, Poland

3 Polish Academy of Sciences, Institute of Computer Science,
ul. Ordona 21, 01-237 Warsaw, Poland

e-mail: awieczor@uncc.edu, ras@uncc.edu

Abstract. Increasing growth and popularity of multimedia resources
available on the Web brought the need to provide new, more advanced
tools needed for their search. However, searching through multimedia
data is highly non-trivial task that requires content-based indexing of
the data. Our research is focused on automatic extraction of information
about the sound timbre, and indexing sound data with information about
musical instrument(s) playing in a given segment. Our goal is to perform
automatic classification of musical instrument sound from real recordings
for broad range of sounds, independently on the fundamental frequency
of the sound.

1 Sound Data

Automatic sound indexing should allow labelling sound segments with instru-
ments names. Knowledge discovery techniques can be used here for that purpose.
First of all, we discover rules that recognize various musical instruments. Next,
we can apply these rules, one by one, to unknown sounds. By identifying so called
supporting rules, we can point out which instrument is playing or is dominating
in a given audio segment, and in what time instants this instrument starts and
ends playing.

Generally, identification of musical information can be performed for the
following data:

– For audio samples taken from real recordings, representing waveform, and
– For MIDI (Musical Instrument Digital Interface) data.

When we deal with the MIDI files, we have access to highly structured data.
We are given information about the pitch (fundamental frequency), effects ap-
plied, beginning and end of each note, voices (timbres) used, and about every
note that is present in a given time moment. Therefore, the research on MIDI



data may concentrate on higher level of musical structure, like key or metrical
information.

In the case of recordings, we are dealing with, for each channel we only have
access to one-dimensional data, i.e. to single sample representing amplitude of
the sound. Any basic information like pitch (or pitches, if there are more than
one sounds), timbre, beginning and end of the sound must be extracted via
digital signal processing. There exist many methods of pitch extraction, mostly
coming from speech processing. But even extraction of such simple information
may produce errors and poses some difficulties. Even for singular sound, espe-
cially octave errors are common, and various errors for border frames, where 2
consequent sound of different pitch are analyzed. Pitch extraction for layered
sounds is even more difficult, especially when spectra overlap. Basically, param-
eters of fundamental frequency trackers are usually adjusted to characteristics
of the instrument that is to be tracked, but this cannot be done when we do not
know what instrument is playing.

Identification of musical timbre is even more difficult. Timbre is rather sub-
jective quality, defined by ANSI as the attribute of auditory sensation, in terms
of which a listener can judge that two sounds, similarly presented and having
the same loudness and pitch, are different. Such definition is subjective and not
of much use for automatic sound timbre classification. Therefore, musical sounds
must be very carefully parameterized to allow automatic timbre recognition. We
assume that time domain, spectrum, and evolution of sound features must be
taken into account.

2 Basic Parameterization of Musical Instrument Sounds
and their Classification

Broader research on automatic musical instrument sound classification goes back
to last few years. So far, there is no standard parameterization used as a classifi-
cation basis. The sound descriptors used are based on various methods of analysis
of time and spectrum domain, with Fourier Transform for spectral analysis be-
ing most common. Also, wavelet analysis gains increasing interest for sound and
especially for musical sound analysis and representation. Diversity of sound tim-
bres is also used to facilitate data visualization via sonification, in order to make
complex data easier to perceive.

There exist numerous parameterization methods that have been applied to
musical instrument sounds so far, see for instance (Brown, 2001), (Kaminskyj,
2000), and (Wieczorkowska, 1999). In our research, we decided to base our pa-
rameterization on MPEG-7 standard. This standard provides multimedia con-
tent description interface (ISO/IEC JTC1/SC29/WG11, 2003), and if this stan-
dard gains popularity, the use of MPEG-7 based representation should increase
usability of our work.

MPEG-7 provides a universal mechanism for exchanging descriptors of mul-
timedia data. MPEG-7 shall support at least the description of the following



types of auditory data: digital audio, analogue audio, MIDI files, model-based
audio, and production data (Manjunath, Salembier and Sikora, 2002). The sub-
classes of auditory data covered by this standard include: sound track (natural
audio scene), music, speech, atomic sound effects, symbolic audio representation,
and mixing information. In MPEG-7, so-called Multimedia Description Schemes
provide the mechanisms, by which we can create ontologies (Sowa, 2000), and
dictionaries, in order to describe musical genre as a hierarchical taxonomy or
identify a musical instrument from a list of controlled terms. Evolution of spec-
tral sound features in time can be observed in MPEG-7 by means of Hidden
Markov Models (HMM). Therefore, indexing a sound in this standard consists
of selecting the best fit HMM in a classifier and generating the optimal state
sequence (path) for that model. The path describes the evolution of a sound
through time using a sequence of integer state indices as representation.

Classifiers used so far in the research on musical instrument sound classifi-
cation include wide variety of methods, and the use of HMM is not obligatory
in any way. We use MPEG-7 standard as a starting point only, taking sound
descriptors as a basis for further processing and research. Low-level descriptors
that we use are defined for easy automatic calculation purposes, and they may
serve as a basis (for instance AudioSpectrumBasis descriptor) for extraction of
new parameters, better suited to instrument classification purposes. High-level
descriptors from this standard cannot be extracted automatically, but using
low-level descriptors we can calculate new ones, including linear or logical com-
binations of lower level parameters. Therefore, we decided to choose low-level
MPEG-7 descriptors as a research basis, and then search for the classifier.

3 TV-trees and FS-trees Used for Content Description
Representation of Audio Data

(Wieczorkowska & Ras, 2001) used trees similar to telescopic vector trees (TV -
trees) to represent content description of audio data. We briefly summarize the
notion we refer to as TV -trees and also the notion of FS-trees. We outline the
strategy for constructing TV -trees.

Each audio signal is divided into frames of length four times the fundamen-
tal period of the sound. Each frame is represented as a vector consisting of K
acoustic descriptors. So, any collection of audio signals can be defined as a set
of K-dimensional vectors. This set is represented as (K×N)-matrix where N is
the number of frames in all audio signals in our DB. If needed, K can be reduced
to a smaller number by using Singular Value Decomposition method [14]. After
introducing the notion of a distance (Minkowski’s distance is the most popular)
between K-dimensional vectors and setting up activity threshold values for all
K dimensions, we partition our K-dimensional space into disjoint and dense
clusters.

To define descriptor a as an active in a cluster, we require that the span
of values of a in that cluster has to be below the activity threshold value. For



example, if {1, . . . , 100} is the domain of an attribute and its corresponding
activity threshold value is 1/20, then this attribute is active in a cluster if the
distance between values of this attribute for any 2 vectors in that cluster is
not greater than 5. Clearly, the activity threshold values are purely subjective
and they predefine the notion of a cluster. In spite of the drawback of this
subjective definition of a cluster, the freedom to define the domain of an attribute
to be active is quite convenient from the application site and welcomed by users.
Storage and retrieval of sound files is an example of such an application domain.

Now, we show how to construct TV -tree of order 2 with a goal to repre-
sent a set of N points as a collection of clusters associated with leaves of that
tree. Initially, the set of N points (initial cluster) is divided into 2 clusters in
a such a way that the total number of active dimensions in both clusters is
possibly maximized. For each cluster we repeat the same procedure, again max-
imizing the total number of active dimensions in the corresponding sub-clusters.
For instance, if {[5, 3, 20, 1, 5], [0, 0, 18, 42, 4], [0, 0, 19, 39, 6], [9, 10, 2, 0, 6]} is the
initial cluster, {1, . . . , 100} is the domain of each attribute, and the activity
threshold value is 1/20, then the following two subclusters will be generated:
{[0, 0, 18, 42, 4], [0, 0, 19, 39, 6]}, {[5, 3, 20, 1, 5], [9, 10, 2, 0, 6]}. The initial cluster
has only the last dimension active. After split, the first subcluster has 5 dimen-
sions active and second one has the last two dimensions active. We continue this
procedure till all subclusters are relatively dense (all points are close to each
other with respect to all dimensions). For instance, in the example above, the
first subcluster is dense. The underlying structure for this method is a binary
tree with nodes storing information about the center of a corresponding clus-
ter, the smallest radius of a sphere containing this cluster, and its list of active
dimensions (d1, d2, ..., ds).

The heuristic procedure to construct a binary TV -tree for a collection of
audio signals is similar to the strategy used in Rosetta or See5 system for dis-
cretizing numerical attributes [10], [7]. For m-element domain of an attribute,
m − 1 splitting points are considered (alternatively, the splitting points can be
placed between consecutive dense groups of values of an attribute). Another
words, if v1, v2 are neighboring values of the attribute a, then an audio signal
with value of a less than or equal to [v1 + v2]/2 is placed in the left subtree
and all other audio signals are placed in the right subtree. When this is done,
the total number of active dimensions in both left and right subtree is checked.
We repeat this step for each attribute and for its all splitting points mentioned
above. A split which gives the maximal number of active dimensions, for both
left and right sub-tree, is the winning split and it is used to build two children
of the current node. The above procedure is recursively repeated at two children
nodes just created.

As we have mentioned earlier, each audio signal is divided into frames of
length four times the fundamental period of the sound. In practice, an activity
usually spans across several contiguous frames. Thus it makes sense to store data
in terms of contiguous sound segments of frames. Frame Segment tree (FS-tree)



[14] is a data structure which can be used for compact representation of a sound
content.

A frame sequence is a pair [i, j), where 1 ≤ i ≤ j ≤ n. The interval [i, j)
represents the set of all frames between i and j. In other words, [i, j) = {k : i ≤
k < j}. Integer i is the start of the frame sequence [i, j) and j is the end. For
example, the frame sequence [8, 12) denotes the set of frames {8, 9, 10, 11}.

We define a partial ordering v on the set of all frame sequences as follows:
[i1, j1) v [i2, j2) iff i1 < j1 ≤ i2 < j2. Intuitively, it means that the sequence of
frames [i1, j1) precedes the sequence of frames [i2, j2).

Frame Segment tree (FS-tree) is a binary tree constructed as follows:

– Each node represents a frame sequence [x, y), starting at frame x and in-
cluding all frames up to, but not including, frame y.

– All leaves are at the same level. The leftmost leaf denotes the interval [z1, z2),
the second from the left represents the interval [z2, z3), the third from the left
represents the interval [z3, z4), and so on. If N is a node with two children
representing the intervals [p1, p2), [p2, p3), then N represents the interval
[p1, p3).

– A set of indexes is assigned to each node. Each index is used to denote a
single activity or fact associated with the entire frame sequence assigned to
that node. Thus, for example, if a node N represents the frame sequence
[i, j), and the activity α occurs in all frames in [i, j), then the label α is
assigned to node N .

Now, let us assume that QAS is based both on a TV -tree and an FS-tree
and user submitting an audio query to QAS is looking for audio files satisfying
certain properties expressed in terms of indexes used in FS-trees. User’s audio
query contains also a sub-query represented by an incomplete K-dimensional
vector a of acoustical descriptors which structure is similar to vectors stored in
a TV -tree. For this type of queries, FS-tree is searched first for audio segments
satisfying desired properties (index-based search). Next, the TV -tree is searched
to identify which segments retrieved from FS-tree have also properties expressed
by sub-query a or properties close to them.

Starting from the root, TV -tree is searched recursively checking at each node
if:

– its active dimensions cover the complete dimensions of vector a,
– all complete dimensions of vector a, which are active at this node, are close

to its center (with respect to l).

If the first condition is satisfied, we stop the search. Otherwise the search is
continued.
If both conditions are satisfied, each vector from the cluster associated with that
node is checked if it is within the corresponding thresholds values and if so, it is
returned as the answer to the query.



TV -tree is a structure originating from textual databases. This structure have
been adopted for audio data [14] because segments in audio data are built from
frames described by descriptors. The match between descriptors based queries
and audio segments does not have to be exact to get successful answer.

4 Hierarchical Classification of Musical Instrument
Sounds

The MPEG-7 descriptors extracted for consequent analyzing frame are treated
as a starting point for further data processing. In order to trace evolution of
sound features, we elaborate intermediate descriptors that provide internal rep-
resentation of sound in our recognition system. These descriptors characterize
temporal patterns, specific for particular instruments or instrument groups. The
groups may represent instrument family, or articulation (playing technique) ap-
plied to the sounds. This is why our system will apply hierarchical classification
of musical instrument sounds. The family groups include basically aerophones
and chordophones, according to Hornbostel and Sachs classification (Hornbostel
and Sachs, 1914). In case of chordophones, we are going to focus on bowed
lutes family that includes violin, viola, cello and double bass. The investigated
aerophones will include flutes, single reed (clarinet, sax) and double reed (oboe,
bassoon) instruments, sometimes called woodwinds, and lip-vibrated, brass in-
struments, with trumpet, trombone, tuba, and French horn. The articulation
applied includes vibrato, pizzicato, and muting.

Hierarchical classification is also one of the means to facilitate correct recog-
nition of musical instrument sounds. Also, obviously classification on the family
level yielded better results, as reported in the research performed so far, for
instance in (Martin and Kim, 1998) and (Wieczorkowska, 1999). Another ar-
gument for hierarchical classification is that for the user, information about the
instrument family or articulation may be sufficient. For example, non-expert user
may just look for brass-performed theme, or melody played with sweet vibration,
delicate pizzicato motif and so on. Not to mention that some of the users simply
may not be familiar with sounds of all instruments, and they may not know how
the particular instrument sounds like.

Since we deal with real recordings, the audio data may contain various kinds
of sounds, including non-pitched percussive sounds, and in further development
of the system, also singing or speech. Therefore, our system should start with
classification of type of the signal (speech, music, pitched/non-pitched), per-
forming auditory scene analysis and recognition (Peltonen, Tuomi, Klapuri,
Huopaniemi and Sorsa 2002), (Rosenthal and Okuno, 1998), for instance (Wyse
and Smoliar, 1998). Then, for pitched musical instrument sounds, the system
will proceed with further specification, to get as much information as possible
from the audio signal.



5 Conclusion

Automatic indexing of multimedia databases is of great importance, and ISO/IEC
decided to provide MPEG-7 standard for multimedia content description. How-
ever, this standard does not comprise the extraction of descriptors (nor search
algorithms). Therefore, there is a need to elaborate extraction of sound descrip-
tors that would be attached to sound files.

In recent years, there has been a tremendous need for the ability to query and
process vast quantities of musical data, which are not easy to describe with mere
symbols. Automatic content extraction is clearly needed here and it relates to
the ability of identifying the segments of audio in which particular instruments
are playing. It also relates to the ability of identifying musical pieces representing
different types of emotions, which music clearly evokes, or generating human-like
expressive performances. Automatic content extraction may relate to many dif-
ferent types of semantic information related to musical pieces. Some information
can be stored as metadata provided by experts, but some has to be computed
in an automatic way. We believe that our approach based on KDD techniques
should advance research on automatic content extraction, not only on identify-
ing the segments of audio in which particular instruments are playing, but also
in identifying the segments of audio containing other, more complex semantic
information.

References

1. Brown, J. C., Houix, O., McAdams, S., ”Feature dependence in the automatic iden-
tification of musical woodwind instruments”, in J. Acoust. Soc. of America, 109,
2001, 1064-1072

2. Hornbostel, E. M. V., Sachs, C., ”Systematik der Musikinstrumente. Ein Ver-
such”, in Zeitschrift fur Ethnologie, Vol. 46, No. 4-5, 1914, 553-90, avail-
able at http://www.uni-bamberg.de/ppp/ethnomusikologie/HS-Systematik/HS-
Systematik

3. ISO/IEC JTC1/SC29/WG11, ”MPEG-7 Overview (version 9)”, Pattaya, March
2003, available at http://www.chiariglione.org/mpeg/standards/mpeg-7/mpeg-
7.htm

4. Kaminskyj, I, ”Multi-feature Musical Instrument Classifier”, MikroPolyphonie 6,
2000 (online journal at http://farben.latrobe.edu.au/)

5. Manjunath, B. S., Salembier, P., Sikora, T. (Eds.), ”Introduction to MPEG-7. Mul-
timedia Content Description Interface”, J. Wiley & Sons, 2002

6. Martin, K. D. and Kim, Y. E., ”Musical instrument identification: a pattern-
recognition approach”, in Proceedings of 136th Meeting of the Acoustical Society
of America, Norfolk, VA, October, 1998

7. Øhrn, A., Komorowski, J., Skowron, A., Synak, P. The design and implementation
of a knowledge discovery toolkit based on rough sets: The ROSETTA system. In:
Polkowski, L., Skowron, A. (Eds.), Rough Sets in Knowledge Discovery 1: Method-
ology and Applications, number 18 in Studies in Fuzziness and Soft Computing,
chapter 19, Physica-Verlag, Heidelberg, Germany (1998) 376–399



8. Opolko, F. and Wapnick, J., ”MUMS - McGill University Master Samples”, CD’s,
1987

9. Peltonen, V., Tuomi, J., Klapuri, A., Huopaniemi, J., Sorsa, T., ”Computational
Auditory Scene Recognition”, International Conference on Acoustics Speech and
Signal Processing ICASSP 2002, Orlando, Florida, May 2002

10. Quinlan, J. R.: C4.5: Programs for Machine Learning, Morgan Kaufmann, San
Mateo, California (1993)

11. Rosenthal, D., Okuno, H. G., (Eds.) ”Computational Auditory Scene Analysis”,
Proceedings of the IJCAI-95 Workshop, Lawrence Erlbaum Associates, Mahwah,
New Jersey, 1998.

12. Slezak, D., Synak, P., Wieczorkowska, A., Wroblewski, J., ”KDD-based approach
to musical instrument sound recognition”, Foundations of Intelligent Systems, Pro-
ceedings of ISMIS’02, Lyon, France, LNCS/LNAI, No. 2366, Springer, 2002, 29-37

13. Sowa, J.F. (2000) Knowledge Representation: Logical, Philosophical, and Compu-
tational Foundations, Brooks/Cole Publishing Co., Pacific Grove, CA.

14. Subrahmanian, V. S.: Multimedia Database Systems. Morgan Kaufmann Publish-
ers, San Francisco, CA (1998)

15. Wieczorkowska, A, ”The recognition efficiency of musical instrument sounds de-
pending on parameterization and type of a classifier”, PhD. thesis (in Polish), Tech-
nical University of Gdansk, Poland, 1999

16. Wieczorkowska, A., Ras, Z., ”Audio content description in sound databases”, in
Web Intelligence: Research and Development, Proceedings of WI’01, Maebashi City,
Japan, LNCS/LNAI 2198, Springer-Verlag, 2001, 175-183

17. Wyse L, Smoliar, S. W., ”Toward Content-Based Audio Indexing and Retrieval and
a New Speaker Discrimination Technique”, in Rosenthal, D., Okuno, H. G., (Eds.),
Computational Auditory Scene Analysis, Proceedings of the IJCAI-95 Workshop,
Lawrence Erlbaum Associates, Mahwah, New Jersey, 1998.


