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Abstract Recognition and separation of sounds played by various instruments is
very useful in labeling audio files with semantic information. Numerous approaches
on acoustic feature extraction have already been proposed for timbre recognition.
Unfortunately, none of these monophonic timbre estimation algorithms can be suc-
cessfully applied to polyphonic sounds, which are more usual cases in the real mu-
sic world. This has stimulated the research on a hierarchically structured cascade
classification system under the inspiration of the human perceptual process. This
cascade classification system makes first estimate on the higher level of the decision
attribute, which stands for the musical instrument family. Then, the further estima-
tion is done within that specific family range. However, the traditional hierarchical
structures were constructed in human semantics, which are meaningful from human
perspective but not appropriate for the cascade system. We introduce the new hier-
archical instrument schema according to the clustering results of the acoustic fea-
tures. This new schema better describes the similarity among different instruments
or among different playing techniques of the same instrument. The classification re-
sults show a higher accuracy of cascade system with the new schema compared to
the traditional schemas.

Wenxin Jiang
University of North Carolina, Dept. of Computer Science, Charlotte, NC 28223, USA e-mail:
wjiang3@uncc.edu

Zbigniew W. Raś
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1 Introduction

Different classifiers have been used in musical instrument estimation domain, usu-
ally for a small number of instruments [1], [7], [12]. Still, it is a non-trivial problem
to choose the one with the optimal performance in terms of estimation accuracy
for most western orchestral instruments. It is common to try different classifiers on
the same training database which contains the features extracted from audio files
and select the classifier which yields the highest accuracy for the training database.
The selected classifier is used for the timbre estimation on analyzed music sounds.
There are also boosting systems [3], [2] consisting of a set of weak classifiers and it-
eratively adding them to a final strong classifier. Boosting systems usually achieve a
better estimation model by training each given classifier on a different set of samples
from the training database, which uses the same number of features (attributes). In
other words, boosting system works under assumption that there is a (big) difference
between different groups of subsets of the training database, so different classifiers
are trained on the corresponding subset based on their expertise. However, due to
the homogeneous characteristics across all the data samples in a training database,
musical data usually cannot take full advantage of such panel of learners because
none of the given classifiers would get a majority weight. Thus the improvement
cannot be achieved by such a combination of different classifiers. Also, in many
cases, the speed of classification is also an important issue.

To achieve the applicable classification time while preserving high classification
accuracy, we introduce the cascade classifier which may further improve the instru-
ments’ recognition of the MIR system.

Cascade classifiers have been investigated in the domain of handwritten digit
recognition. Thabtah [18] used filter-and-refine processes and combined it with k-
Nearest Neighbor (KNN) classifier to give the rough but fast classification with
lower dimensionality of features at filter step and to rematch the objects marked by
the previous filter with higher accuracy by increasing dimensionality of features.
Also, Lienhart [8] used CART trees as base classifiers to build a boosted cascade of
simple feature classifiers to achieve rapid object detection. It is possible to construct
a simple instrument family classifier with a low recognition error, which is called
a classification pre-filter. When one musical frame is labeled by a specific family,
the training samples in other families can be immediately discarded, and further
classification is then performed within small subsets, which could be identified by
a stronger classifier through adding more features or even calculating the complete
spectrum. Since the number of training samples is reduced, the computational com-
plexity is reduced while the recognition rate still remains high.
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2 Hierarchical structure of musical instrument sound
classification

According to the experience regarding human recognition of musical instruments,
it is usually easier for one to tell the difference between violin and piano than violin
and viola. This is because violin and piano belong to different instrument families
and thus have quite different timbre qualities. Violin and viola fall into the same in-
strument family which indicates they share quite similar timbre quality. If we build
the classifiers both on the family level and the instrument level, then the polyphonic
music sound is first classified at the instrument family level. After a specific instru-
ment family label is assigned to the analyzed sound by the classifier, it can be further
classified at the instrument level by another classifier which is built on the training
data of that specific instrument family. Since there is a smaller number of possible
instruments in this family, the classifier trained on this family has the appropriate
expertise for the classification of the instruments within it.

Before we discuss how to build classifiers on different levels, let us first have a
look at the hierarchical structure of the western instruments. Erich von Hornbostel
and Curt Sachs published an extensive scheme for musical instrument classifica-
tion in 1914. Their scheme is widely used today, and is most often known as the
Hornbostel-Sachs system. Figure 1 shows a part of the Hornbostel/Sachs instru-
ment classification tree. The Hornbostel-Sachs system includes aerophones (wind
instruments), chordophones (string instruments), idiophones (made of solid, non-
stretchable, resonant material), and membranophones (mainly drums). Idiophones
and membranophones are called percussion. Additional groups include electro-
phones, i.e. instruments where the acoustical vibrations are produced by electric
or electronic means (electric guitars, keyboards, synthesizers), complex mechan-
ical instruments (including pianos, organs, and other mechanical music makers),
and special instruments (include bullroarers, but they can be classified as free aero-
phones). Each category can be further subdivided into groups, subgroups etc. and
finally into instruments. Idiophones’ subcategories include instruments classified as:
struck (e.g. gongs), struck together (by concussion - e.g. claves, clappers, castanets,
finger cymbals), scrapped, rubbed, stamped, shaken (e.g. rattles), and plucked (e.g.
Jew’s harp). Membranophones include the following subgroups: cylindrical drum,
conical drum, barrel drum, hourglass drum, goblet drum, footed drum, long drum,
kettle or pot drum, frame drum (e.g. tambourine), friction drum, and mirliton/kazoo.
Chordophones’ subcategories include: zithers, lutes plucked (e.g. mandolins, gui-
tars, ukuleles), lutes bowed (e.g. viols - fretted neck, fiddles, violin, viola, cello,
double bass, and hurdy-gurdy - no frets), and harp. Aerophones are classified into
the following subgroups: free aerophone (e.g. bullroarers), end-blown flute, side-
blown flute, nose flute, globular flute (e.g. ocarina), multiple flutes, Panpipes, whis-
tle mouthpiece (e.g. recorder), air chamber (e.g. accordion); single reed instruments
(such as clarinet, saxophones), double reed (such as oboe, bassoon) and lip vibrated
(trumpet or horn) - instruments classified according to the mouthpiece used to set
air in motion to produce sound. Some of Aerophones subcategories are also called
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woodwinds (single reed, double reed, flutes) or brass (lip vibrated), but this crite-
rion is not based on the material the instrument is made of, but rather on the method
of sound production. In woodwinds, the change of pitch is mainly obtained by the
change of the length of the column of the vibrating air. Additionally, over-blow is
applied to obtain second, third or fourth harmonic to become the fundamental. In
brass instruments, over-blows are very easy because of wide bell and narrow pipe,
and therefore over-blows are the main method of pitch changing.
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Fig. 1 A part of the Hornbostel-Sachs hierarchical tree

Sounds can be also classified according to the articulation, i.e. the method the
instrument is played. According to articulation, sounds can be basically classified
in the following 3 ways: (1) sustained or non-sustained sounds, (2) muted or not
muted sounds, (3) vibrated and not vibrated sounds. This classification may be dif-
ficult, since the vibration may not appear in the entire sound; some changes may
be visible, but no clear vibration. Also, brass is sometimes played with moving the
mute in and out of the bell. According to MPEG7 classification [9], there are four
classes of musical instrument sounds: (1) Harmonic, sustained, coherent sounds -
well detailed in MPEG7, (2) Non-harmonic, sustained, coherent sounds, (3) Percus-
sive, non-sustained sounds - well detailed in MPEG7, (4) Non-coherent, sustained
sounds.

Musical instruments may produce sound of definite or indefinite pitch. Still, most
of musical instrument sounds of definite pitch have some noises/continuity in their
spectra. In our experiments, we do not include membranophones because the in-
struments of this family usually do not produce the harmonic sound, so they need
special techniques to be identified. This chapter focuses on the instruments produc-
ing basically harmonic sounds.

Figure 2 shows another tree structure of instrument sound classification, in which
sounds are grouped according to the way how the musical instruments are played.
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Fig. 2 A part of the play method (articulation) hierarchical tree

3 MIR Framework based on cascade classification system

In this section, we describe cascade classification strategy investigated for musical
instruments estimation [15]. Based on how the hierarchical instrument family struc-
tures, we have implemented the cascade classification system for the polyphonic
sound estimation, as shown in the Figure 3.

Fig. 3 Timbre estimation with classifier and feature selection

Let S = {F,C,D} be the multiple-classifier timbre estimation system, where
D = {d1, . . . ,dn} is the set of all possible decision values of musical instruments
in S , F = { f1, . . . , fm} is the collection of all available feature sets which could be
extracted from the input signal and then used by the classifiers to identify the target
frame. C = {C1, . . . ,Cw} is the set of classifiers built on feature sets F after they
are extracted from the standard instrument sounds and saved as the feature training
database. Let X = {x1, . . . ,xt} be the set of segmented frames from the input au-
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dio sound. There are multiple processes of classification for each frame xt . First at
the root of the hierarchical tree, then down to its lower level, we have pairs (Cz, fy),
1≤ z≤w, 1≤ y≤m, where (Cz, fy) means ”use classifier Cz on the feature set fy”, to
perform classification at each level and get the estimation confidence, i.e. the proba-
bility of the classification result given by classifier (related to the similarity between
the analyzed frame and reference frames), con f (xi,α) = Cz( fy), where α is the spe-
cific node of the tree. The result should satisfy two constraints: con f (xi,α) ≥ λ1
and sup(xi,α)≥ λ2, where λ1 is the minimum confidence for the correct classifica-
tion and λ2 is the threshold for minimal support (λ1 and λ2 are given by the user).
Support is defined as the number of matched frames of a particular instrument from
the reference database (during classification process, the algorithm tries matching
frames to all available frames representing all instruments in the database, and the
most similar ones are returned as the matched frames). Confidence is the ratio of
support over the total number of matched frames.

After classifications are finished at all the levels, we get the final instrument es-
timations {dp} for the frame xi (multiple instrument estimations are given by clas-
sifier for each frame), where dp ∈D, and the overall confidence for each instrument
estimation is calculated by multiplying the confidence obtained previously at each
classification level con f (xi,dp) = ∏v

α=1 con f (xi,α),where v is the total number of
ancestors for node xi in the path of hierarchical tree. After all the individual frames
are estimated by the classification system, a smoothing process is performed within
a smoothing window. It is done by calculating the average confidence for each possi-
ble instrument within the window con f (dp) = ∑s

q=1 con f (dp)q/s where s is the size
of a smoothing window. The smoothing window is an indexing granule, which is
the smallest segment of the signal on which the estimation of instruments is yielded
by the indexing system - the indexing system yields the list of instruments for each
smoothing window instead of each frame; the smoothing window size usually is 1-2
seconds, whereas the analyzing frame is 0.12 second, which would be rather short
for such labeling, and too short for the users to estimate instruments by themselves.

Next, the output of the final results is further controlled by the threshold λ3. If
the mean value of the confidence within smoothing window con f (dp) > λ3, where
λ3 is given by the user, the instrument candidate is kept, otherwise it is discarded
as the noise signal which only occurs in a very short time period. According to the
indexing resolution requirement, smoothing window can be adjusted to the desired
size.

The advantage of this process is that it uses the information of music context
to further adjust the results from the frame-wise estimation phase. The system will
perform timbre estimation for the polyphonic sound with high accuracy while still
preserving the applicable analyzing speed by choosing the best feature and classifier
for the classification process at each level based on the knowledge derived from the
training database.
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4 Hierarchical Structure Based on Clustering Analysis

Clustering is the classification of data objects into similarity groups (clusters) ac-
cording to a defined distance measure. It is widely used as one of the important
techniques of machine learning and pattern recognition in such fields as biology,
genomics and image analysis. However, it has not been well investigated in the mu-
sic domain, since the category information of musical instruments has already been
defined by musicians as the two hierarchical structures demonstrated in the previ-
ous section. These structures group the musical instrument sounds according to their
semantic similarity which is concluded from the human experience. However, the
instruments that are assigned to the same family or subfamily by these hierarchical
structures often sound quite different from another. On the other hand, instruments
that have similar timbre qualities can be assigned to very different groups by these
hierarchical structures. Thus, the inconsistency between the timbre quality and the
family information causes the incorrect timbre estimation, given by the cascade clas-
sification system based on Hornbostel-Sachs instrument classification, used in our
previous research [5].

For instance, the trombone belongs to the aerophone family, but the system often
classifies it as the chordophone instrument, such as violin. In order to take the full
advantage of the cascade classification strategy, we have built a new hierarchical
structure of musical instruments by the matching learning technique.

Cluster analysis is commonly used to search for groups in data. It is most effec-
tive when the groups are not known a priori. We use the cluster analysis methods
to re-organize the instrument groups according to the similarity of timbre relevant
features among the instruments.

4.1 Clustering analysis methods

There exist many clustering algorithms. Basically, all the clustering algorithms can
be divided into two categories: partitional clustering and hierarchical clustering.
Partitional clustering algorithms determine all clusters at once without hierarchi-
cal merging or dividing process. K-means clustering is most common method in
this category [11]; K is the empirical parameter. Basically, it randomly assigns in-
stances to K clusters. Next, new centroid for each of the K clusters and the distance
of all items to these K centroids are calculated. Items are re-assigned to the clos-
est centroid and the whole process is repeated until cluster assignments are stable.
Hierarchical clustering generates a hierarchical structure of clusters which may be
represented in a structure called dendrogram. The root of the dendrogram consists of
a single cluster containing all the instances, and the leaves correspond to individual
instances. Hierarchical clustering can be further divided into two types according
to whether the tree structure is constructed by following agglomerative or divisive
approach. Agglomerative approach works in the bottom-up manner, it recursively
merges smaller clusters into larger ones till some stoping condition is reached. Algo-
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rithms based on divisive (or top-down) approach begin with the whole set and then
recursively split this set into smaller ones till some stoping condition is reached.

We have chosen the hierarchical clustering method to learn the new hierarchical
schema for music instruments, since it fits our scenario well. There are many options
to compute the distance between two clusters. The most common methods are the
following [19]:

• Single linkage (nearest neighbor). In this method, the distance between two clus-
ters is determined by the distance of the two closest objects (nearest neighbors)
in different clusters. This rule will string objects together to form the clusters,
and the resulting ones tend to represent long ”chains”.

• Complete linkage (furthest neighbor). In this method, the distances between clus-
ters are determined by the greatest distance between any two objects in different
clusters (the ”furthest neighbors”). This method usually performs quite well in
cases when the objects actually form naturally distinct ”clumps.” If the clusters
tend to be of a ”chain” type, then this method is inappropriate.

• Unweighted pair-group method using arithmetic averages (UPGMA). In this
method, the distance between two clusters is calculated as the average distance
between all pairs of objects in two different clusters. This method is also very
efficient when the objects form natural distinct ”clumps” and it performs equally
well with ”chain” type clusters.

• Weighted pair-group method using arithmetic averages (WPGMA). This method
is identical to the UPGMA method, except that in the computations, the size of
the respective clusters is used as a weight. Thus, this method should be used
when the cluster sizes are suspected to be greatly uneven [17].

• Unweighted pair-group method using the centroid average (UPGMC). The cen-
troid of a cluster is the average point in the multidimensional space, calculated
as the mean value (for each dimension separately). In a sense, it is the center
of gravity for the respective cluster. In this method, the distance between two
clusters is determined as the difference between centroids.

• Weighted pair-group method using the centroid average (WPGMC). This method
is identical to the previous one, except that weighting is introduced into the com-
putation. When there are considerable differences in cluster sizes, this method is
preferable to the previous one.

• Ward’s method. This method is distinct from all other methods because it uses an
analysis of variance approach to evaluate the distances between clusters. In short,
this method attempts to minimize the Sum of Squares of any two hypothetical
clusters that can be formed at each step. In general, this method is good at finding
compact, spherical clusters. However, it tends to create clusters of small size.

To complete the above definitions of a distance measure between two clusters,
we also have to define the distance between their instances or centroids. Here are
some most common distance measures between two objects:

1. Euclidean: Usual square distance between the two vectors. Disadvantages: not
scale invariant, not for negative correlations
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dxy =
√

∑(xi− yi)2

2. Manhattan: Absolute distance between the two vectors.
dxy = ∑ |xi− yi|

3. Maximum: Maximum distance between any two components of x and y
dxy = max|xi− yi|

4. Canberra: Canberra distance examines the sum of series of a fraction differences
between coordinates of a pair of objects. Each term of fraction difference has
value between 0 and 1. If one of coordinates is zero, the term corresponding to
this coordinate become unity regardless the other value, thus the distance will not
be affected; if both coordinates are zero, then the term is defined as zero.
dxy = ∑ |xi−yi|

|xi|+|yi|
5. Pearson correlation coefficient (PCC) is a correlation-based distance. It measures

the degree of association between two variables.

ρxy = [cov(X ,Y )]2

var(X)var(Y ) , dxy = 1− ρxy where cov(X ,Y ) is the covariance of the two

variables, var(X) and var(Y ) - the variance of each variable.
6. Spearman’s rank correlation coefficient is another correlation based distance.

ρxy = 1− 6∑d2
i

n(n2−1) , dxy = 1−ρxy

where di = xi− yi is the difference between the ranks of corresponding values
xi and yi, and n is the number of values in each data set (same for both sets).
Rank is calculated in the following way: 1 is assigned to the smallest element
of each data, 2 to the second smallest element, and so on; the average ranking is
calculated if there is a tie among different elements.

It is critical to choose an appropriate distance measure for objects in a musical
domain because different measures may produce different shapes of clusters which
represent different schema of instrument family. Different features also require the
appropriate measures to be chosen in order to give better description of feature vari-
ation. The inappropriate measure could distort the characteristics of timbre which
may cause the incorrect clustering.

4.2 Evaluation of different clustering algorithms for different
features

As we can see, each clustering method has its own different advantage and disadvan-
tage over others. It is a nontrivial task to decide which one is the most appropriate
method for generating the hierarchical instrument classification structure. Not only
the specific cluster linkage method needs to be decided in the hierarchical cluster-
ing algorithms, but also the good distance measurement has to be chosen in order
to generate the good schema that represents the actual relationships among those
instruments. We designed quite intensive experiments with the ”cluster” package
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in R system [14]. The R package provides two hierarchical clustering algorithms:
hclust (agglomerative hierarchical clustering), and diana (divisive hierarchi-
cal clustering). Table 1 shows all the clustering methods that we tested. We evalu-
ated six different distance measurements (Euclidean, Manhattan, Maximum, Can-
berra, Pearson correlation coefficient, and Spearman’s rank correlation coefficient)
for each algorithm. For the agglomerative type of clustering (hclust), we also
evaluated seven different cluster linkages that are available in this package: Ward,
single (single linkage), complete (complete linkage), average (UPGMA), mcquitty
(WPGMC), median(WPGMA), and centroid (UPGMC).

Table 1 All distance measures and linkage methods tested for agglomerative and divisive cluster-
ing

Clustering algorithm Cluster Linkage Distance Measure

hclust (agglomerative) average 6 distance metrics
centroid 6 distance metrics
complete 6 distance metrics
mcquitty 6 distance metrics
median 6 distance metrics
single 6 distance metrics
ward 6 distance metrics

diana (divisive) N/A 6 distance metrics

We have chosen the middle C pitch group which contains 46 different musical
sound objects. We have extracted three different feature sets (MFCC [10], spectral
flatness coefficients [9], and harmonic peaks [9]) from those sound objects. Each
feature set produces one dataset for clustering. Some sound objects belong to the
same instrument. For example, ”ctrumpet” and ”ctrumpet harmonStemOut” are ob-
jects produced by the same instrument: trumpet. We have preserved these particular
object labels in our feature database without merging them as the same label be-
cause they could have very different timbre quality which the conventional hierar-
chical structure ignores. We have tried to discover the unknown musical instrument
group information solely by the unsupervised machine learning algorithm, instead
of applying any human guidance. Each sound object was segmented into multiple
0.12s frames and each frame was stored as an instance in the testing dataset. Since
the segmentation is performed with overlap of 2/3 of the frame, there were totally
2884 frames from the 46 objects in each of the three feature datasets.

When our algorithm finishes the clustering job, a particular cluster ID is assigned
to each frame. Theoretically, one may expect the same cluster ID to be assigned to
all the frames of the same instrument sound object. However, the frames from the
same sound object are not uniform and have variations in their feature patterns as the
time evolves. Therefore, clustering algorithms do not perfectly identify them as the
same cluster. Instead, some frames are assigned into other groups where majority



Classifiers for Multi-Indexing of Polyphonic Music by Instruments 11

of the frames come from other instrument sounds. As a result, multiple (different)
cluster IDs are assigned to the frames of the same instrument object.

Our goal is to cluster the different instruments into the groups according to the
similarity of timbre relevant features. Therefore, one important step of the evaluation
is to check if a clustering algorithm is able to cluster most frames of an individual
instrument sound into one group. In other words, a clustering algorithm should be
able to differentiate most of the frames of one instrument sound from the others.
It is evaluated by calculating the accuracy of a cluster ID assignment. We use the
following example to illustrate this evaluation process. A hierarchical cluster tree
Tm is produced by a clustering algorithm Am. There are totally n instrument sound
objects in the dataset (n=46). The clustering package provides function cutree to cut
Tm into n clusters. One of these clusters is assigned to each frame. Table 2 shows a
contingency table (xi j represent numbers) derived from the clustering results after
the cutree is applied. It is a n× n matrix, where xi j is the number of frames of
instrumenti that are labeled by cluster j, and xi j ≥ 0.

Table 2 Format of the contingency table derived from clustering result

Cluster1 · · · Cluster j · · · Clustern

Instrument1 x11 · · · x1 j · · · x1n
· · · · · · · · · · · · · · · · · ·
Instrumenti xi1 · · · xi j · · · xin
· · · · · · · · · · · · · · · · · ·
Instrumentn xn1 · · · xn j · · · xnn

In order to calculate the accuracy of the cluster assignment, we need to decide
which cluster ID corresponds to which instrument object. If cluster k is assigned to
instrumenti, xik is the number of correct assignments for instrumenti, the accuracy
of the clustering for instrumenti is βi = xik/(∑n

j=1 xi j).
During clustering process, each frame of the sound object is clustered into one

particular group, and the group ID (i.e. instrument) is assigned to this frame. For
each row, the maximum value is found among n columns, and next the column
corresponding to the position of this maximum becomes the class label for frames
represented in this row. However, it may happen that the maximum value is found
in the same column also for other rows, and then the same group ID is linked to two
different sound objects, which means these two different instrument sounds could
not be distinguished by this particular clustering scheme. Clearly, we would like
to avoid such an ambiguity. On the other hand, we have to cluster many frames of
one sound object into a single group. Therefore, we would need permutations to
calculate the theoretic best solution for the whole table, but such a large number of
computations cannot be performed.

The overall accuracy for the clustering algorithm Am is the average accuracy of
all the instruments β = (∑n

i=1 βi)/n. To find the maximum β among all possible
cluster assignments to instruments, we should permute this matrix in order to find
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the maximum accuracy for the whole matrix (for each row of matrix, there are mul-
tiple values that could be selected among n columns), but it is not applicable to
perform such a large number of calculations. This is why we have chosen maximum
xi j in each row to approximate the optimal β .

Since it is possible to assign the same cluster to multiple instruments, we have
taken the number of clusters as well as accuracy into account. The final measure-
ment to evaluate the performance of clustering is scorem = β ·w, where w is the
number of clusters, w ≤ n. This measure reflects how well the algorithm clusters
the frames from the same instrument object into the same cluster. It also reflects the
ability of algorithm to separate instrument objects from each other.

In the experiments, we used two hierarchical clustering algorithms, hclust and
diana. Table 3 presents 15 results which yielded the highest score among 126
experiments based on hclust algorithm.

Table 3 Evaluation result of hclust algorithm

Feature method metric β̄ w score

Flatness Coefficients ward pearson 87.3% 37 32.30
Flatness Coefficients ward euclidean 85.8% 37 31.74
Flatness Coefficients ward manhattan 85.6% 36 30.83
mfcc ward kendall 81.0% 36 29.18
mfcc ward pearson 83.0% 35 29.05
Flatness Coefficients ward kendall 82.9% 35 29.03
mfcc ward euclidean 80.5% 35 28.17
mfcc ward manhattan 80.1% 35 28.04
mfcc ward spearman 81.3% 34 27.63
Flatness Coefficients ward spearman 83.7% 33 27.62
Flatness Coefficients ward maximum 86.1% 32 27.56
mfcc ward maximum 79.8% 34 27.12
Flatness Coefficients mcquitty euclidean 88.9% 33 26.67
mfcc ward average 87.3% 30 26.20

From the results, the Ward linkage outperforms other methods and it yields the
best performance when Pearson distance measure is used on the flatness coefficients
feature dataset.

Table 4 shows the results from diana algorithm. In this algorithm, Euclidean
yields the highest score on the mfcc feature dataset.

During the clustering process, we cut the hierarchical clustering result at a certain
level, when obtaining groups which could represent instrument objects. If most of
the frames from the same instrument object are clustered into one group, then this
algorithm is selected to generate the hierarchical tree.

When we compare the two algorithms (hclust and diana), hclust yields
better clustering results than diana. Therefore, we chose agglomerative clustering
algorithm to generate the hierarchical schema for musical instruments, using Ward
as the linkage method, Pearson distance measure as the distance metric, and Flatness
Coefficients as the feature dataset to perform clustering analysis.
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Table 4 Evaluation result of diana algorithm

Feature metric β̄ w score

Flatness Coefficients euclidean 77.3% 24 18.55
Flatness Coefficients kendall 75.7% 23 17.40
Flatness Coefficients manhattan 76.8% 25 19.20
Flatness Coefficients maximum 80.3% 23 18.47
Flatness Coefficients pearson 79.9% 26 20.77
mfcc euclidean 78.5% 29 22.78
mfcc kendall 77.2% 27 20.84
mfcc manhattan 77.7% 26 20.21
mfcc pearson 83.4% 25 20.86
mfcc spearman 81.2% 24 19.48

5 New hierarchical tree

Figure 4 shows the dendrogram result generated by the hierarchical clustering al-
gorithm we chose (i.e. agglomerative clustering), as mentioned in Section 4.2.
From this new hierarchical classification, we discover some instrument relationships
which are not represented in the traditional schemas.

A musical instrument can produce sounds with quite different timbre qualities
when different playing techniques are applied. One of the common techniques is
muting. A mute is a device fitted to a musical instrument to alter the sound produced.
It usually reduces the volume of the sound as well as affects the timbre. There are
several different mute types for different instruments. The most common type used
with the brass is the straight mute - a hollow, cone-shaped mute that fits into the
bell of the instrument. This results in a more metallic, sometimes nasal sound, and
when played at loud volumes can result in a very piercing note. The second common
brass mute is the cup mute. Cup mutes are similar to straight mutes, but attached to
the end of the mute’s cone is a large lip that forms a cup over the bell. The result
is removal of the upper and lower frequencies and a rounder, more muffled tone.
In the case of string instruments of the violin family, the mute takes the form of a
comb-shaped device attached to the bridge of the instrument, dampening vibrations
and resulting in a ”softer” sound.

In the hierarchical structure shown in Figure 4, ”trumpet” and ”ctrumpet har-
monStemOut” represent two different sounds produced by the trumpet. ”ctrumpet
harmonStemOut” is produced when a particular mute is applied, called Harmon
mute (different from the common straight or cup mutes). It is a hollow, bulbous
metal device placed in the bell of the trumpet. All air is forced through the middle
of the mute. This gives the mute a nasal quality. Protruding at the end of the device,
there is a detachable stem extending through the centre of the mute. The stem can be
removed completely or can be inserted to varying degrees. Name of this instrument
sound object shows whether the stem is extended or completely removed, which
darken the original piercing, strident timbre quality.
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Fig. 4 Clustering result from hclust algorithm with Ward linkage method, Pearson distance
measure, and Flatness Coefficients used as the feature set

From the spectra of various sound objects (Figure 5), we can clearly observe big
differences between them. The spectra also show that ”Bach trumpet” has more sim-
ilar spectral pattern to ”trumpet”. The relationships between C trumpet, C trumpet
muted (Harmon, stem out) and Bach trumpet are accurately represented in the new
hierarchical schema. Figure 4 shows that ”ctrumpet” and ”bachtrumpet” are clus-
tered into the same group. ”ctrumpet harmonStemOut” is clustered in one single
group instead of merging with ”ctrumpet” since it has a very unique spectral pattern.
The new schema also discovers the relationships among ”French horn”, ”French
horn muted” and ”bassoon”. Instead of clustering two ”French horn” sounds in one
group as the conventional schema does, bassoon is considered as the sibling of the
regular French horn. ”French horn muted” is clustered in another different group to-
gether with ”English Horn” and ”Oboe” (the extent of the difference between groups
is measured by the distance between the nodes in the hierarchical tree).
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Fig. 5 Spectrum comparison of different instrument objects. On the left hand side: C Trumpet,
C Trumpet muted (Harmon, Stem out) and Bach Trumpet; on the right hand side: French horn,
French horn muted, bassoon

According to this result, the new schema is more accurate than the traditional
schema, because it represents the actual similarity of timbre qualities of musical
instruments. Not only it better describes the differences between instruments, but
it also distinguishes the sounds produced by the same instrument that have quite
different timbre qualities due to different playing techniques.

6 Experiments and evaluation

In order to evaluate the new schema, we developed the cascade classification system
based on the multi-label classification method and tested it with the new schema, as
well as with the two previous conventional hierarchical schemas: Hornbostel-Sachs
and Playing Method. The system used MS SQLSERVER2005 database system to
store training dataset and MS SQLSERVER analysis server as the data mining server
to build decision tree and process the classification request.

Training data: The audio files used in this research consist of stereo musical
pieces from the McGill University Master Samples (MUMS, [13]). Each file has
two channels: left channel and right channel, in .au (or .snd) format. These audio
data files are treated as mono-channel, where only left channel is taken into con-
sideration, since successful methods for the left channel can also be applied to the
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right channel, or any channel if more channels are available. 2917 single instrument
sound files were used, representing 45 different instruments.

Each sound stands for one note played by a specific instrument. Many instru-
ments can produce different timbres when they are played using different tech-
niques. Therefore, sounds of various pitch and articulation were investigated for
each of these 45 instruments.

Power spectrum and 33 spectral flatness coefficients were extracted from each
frame of these single instrument sounds, according to the equations described by
the MPEG-7 standard [9]. The frame size was 120 ms and the overlap between two
adjacent frames was 80ms, to reduce the information loss caused by windowing
function (therefore, the hop size was 40ms). The total number of frames for the
entire feature database reaches to about one million, since each sound is analyzed
in many frames. For instance, the instrument sound which only lasts three seconds
is segmented into 75 overlapped frames. The classifier is trained by the obtained
feature database.

Testing data: 308 mixed sounds were synthesized by randomly choosing two
single instrument sounds from 2917 training data files. Spectral flatness coefficients
were extracted from the frames of mixes, in order to perform instrument family es-
timation on the higher level of the hierarchical tree. After reaching the bottom level
of the hierarchical tree, we used the power spectrum from the frames representing
mixes, in order to match against the reference spectral database. Since the spectrum
matching is performed in a small subgroup, the computation complexity is reduced.
The same analyzing frame size and hop size were used for the mixes as in the case
of training data.

Table 5 Comparison between non-cascade classification and cascade classification with different
hierarchical schemas

Experiment classification method Description Recall Precision F-Score

1 Non-Cascade Feature-based 64.3% 44.8% 51.4%
2 Non-Cascade Spectrum-Match 79.4% 50.8% 60.7%
3 Cascade Hornbostel-Sachs 75.0% 43.5% 53.4%
4 Cascade play method 77.8% 53.6% 62.4%
5 Cascade machine Learned 87.5% 62.3% 69.5%

The average recall, precision and F-score of all the 308 sounds estimations were
calculated to evaluate each method. The definitions of recall and precision are shown
in Figure 6. I1 is the number of actual instruments playing in the analyzed sound.
I2 is the number of instruments estimated by the system. I3 is the number of correct
estimations.

Recall is the measurement to evaluate the recognition rate and precision is to
evaluate the recognition accuracy. The F-score is often used in the field of informa-
tion retrieval for measuring search, document classification, and query classification
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Fig. 6 Precision and Recall

performance. It is the harmonic mean of precision and recall. F-score is calculated
as
F-score= 2×precision×recall

precision+recall

Since timbre estimation was performed for indexing segments (smoothing win-
dow), containing multiple frames, as described in Section 3, the measures mentioned
above were calculated for indexing segments of size 1 second.

K-Nearest Neighbor (KNN) [6] was used as the classifier, with k = 3. As shown
in Table 5, in Experiment 1 we applied the multiple label classification [5] based
on features representing spectral flatness coefficients only. In Experiment 2 we used
the power spectrum matching method, instead of features [4]. In Experiment 3 and
Experiment 4 we used two traditional hierarchical structures (Hornbostel-Sachs and
play method) in order to perform cascade classification based on both the power
spectrum and spectral flatness coefficients. In Experiment 5 we applied the new
hierarchical structure as the basis of the cascade system. The indexed window size
for all the experiments is one second, and the output of total number of estimations
for each indexed window is controlled by confidence threshold λ = 0.4, which is
the minimum average confidence of instrument candidates.

Fig. 7 Comparison between non-cascade classification and cascade classification with different
hierarchical schemas



18 Wenxin Jiang, Zbigniew W. Raś, Alicja A. Wieczorkowska

Figure 7 shows that generally the cascade classification improves the recall
compared to the non-cascade methods. The non-cascade classification based on
spectrum-match (Experiment 2) shows higher recall than the cascade classification
approaches based on the traditional hierarchical schema (Experiment 3 and Exper-
iment 4). However, the cascade classification based on the new schema learned by
the clustering analysis (Experiment 5) outperforms the non-cascade classification.
It increases the recall by 8 percent points, precision by 12 percent points and gen-
eral F-score by 9 percent points. This shows that the new schema yields significant
improvement in comparison to the other two traditional schemas. Also, since the hi-
erarchical tree has more levels, the size of the subset on the bottom level is reduced
to a very small size, which significantly reduces the cost of spectrum matching.

We evaluated the classification system by the mixed sounds which contain two
single instrument sounds. In the real world recordings, there could be more than two
instruments playing simultaneously, especially in the orchestra music. Therefore,
we also created 49 polyphonic sounds by randomly selecting three different single
instrument sounds and mixing them together. Next, we tested those three-instrument
mixes, using various classification methods (Table 6).

Table 6 Classification results of 3-instrument mixtures with different algorithms

Experiment Classifier Method Recall PrecisionF-Score

1 Non-Cascade single-label based on sound
separation

31.48% 43.06% 36.37%

2 Non-Cascade feature-based multi-label
classification

69.44% 58.64% 63.59%

3 Non-Cascade spectrum-match multi-label
classification

85.51% 55.04% 66.97%

4 Cascade
(Hornbostel-Sachs)

multi-label classification 64.49% 63.10% 63.79%

5 Cascade
(playmethod)

multi-label classification 66.67% 55.25% 60.43%

6 Cascade (machine
learned)

multi-label classification 63.77% 69.67% 66.59%

As we can see from Table 6, the lowest precision and recall is obtained for the
algorithm based on sound separation, i.e. separating sounds of mixes and then per-
forming instrument estimation on separated sounds. This is because there is no much
information left in the sound mix for the further classification of the third instrument
after two signal subtractions corresponding to the first two instrument estimations
are made. The cascade method based on multi-label classification again yields high
recall and precision of results.

This experiment shows the robustness and effectiveness of the algorithm for the
polyphonic sounds which contain more than two timbres. As the dendrogram in Fig-
ure 4 shows, the new schema has more hierarchical levels and looks more complex
and obscure to users. However, we only use it as the internal structure for the cas-



Classifiers for Multi-Indexing of Polyphonic Music by Instruments 19

cade classification process, and we do not use it in the query interface. Therefore,
when the user submits a query to QAS defined in the user’s semantic structure (e.g.
searching instrument sounds which are close in Hornbostel-Sachs classification, or
with respect to the play method), system translates it to the internal schema (based
on clustering). After the estimation is done, the answer is converted back to the user
semantics. The user does not need to know the difference between French horn and
French horn muted since only French horn is returned by the system as the final esti-
mation result. The internal hierarchical representation of musical instrument sound
classification is used as an auxiliary tool, assisting answering user’s queries.

7 Conclusion

In this chapter we have discussed the timbre estimation based on hierarchical classi-
fication. In order to deal with polyphonic sounds, multi-label classifiers were used,
with classification based on spectrum matching and also based on feature vectors
extracted from spectra. Given the fact that spectrum matching in a large training
database is much more expensive than feature based classification, the cascade clas-
sifier was introduced to give a good solution for achieving both high recognition rate
and high efficiency. Cascade classification system needs to acquire knowledge how
to choose the appropriate classifier and features at each level of hierarchical tree. The
experiments have been conducted to discover such knowledge based on the training
database. As a result, we introduced a new hierarchical structure for the cascade
classification system based on the obtained hierarchical clustering. Compared to the
traditional schemas which are manually designed by the musicians, the new schema
better represents the relationships between musical instrument sounds in terms of
their timbre similarity, since the hierarchical structures are directly derived from
the acoustic features based on their similarity matrix. This new hierarchical schema
shows better results in the cascade classification of musical instrument sounds.
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