Triangular norms

T norm is an equivalent to connective "and" (*) while S norm is related to "or" (+). To calculate the meaning M(a*b) of a*b, triangular T-norms will be used. To calculate the meaning M(a+b) of a+b, triangular S-norms will be used.

For any T-norm the following conditions apply:

- commutativity: T(a,b) = T(b,a)
- monotonicity: $T(a,b) \le T(c,d)$ if $a \le c \land b \le d$
- associativity: T(a,T(b,c)) = T(T(a,b),c)
- boundary: T(a,1) = T(1,a) = a; T(0,0) = 0

For any S-norm the following conditions apply:

- commutativity: S(a,b) = S(b,a)
- monotonicity: $S(a,b) \le S(c,d)$ if $a \le c \land b \le d$
- associativity: S(a, S(b, c)) = S(S(a, b), c)
- boundary: S(a,0) = S(0,a) = a; S(1,1) = 1

Both T and S norms are functions from $[0,1] \times [0,1]$ to [0,1].

The following T and S norms are the most popular:

T_0

$$T_0(x, y) = \min(x, y)$$
 when $\max(x, y) = 1$
0 otherwise

Norm T_0 is also called the Drastic T-Norm

Graph 1. T₀ 3D surface

T_1

$$T_1(x, y) = \max(0, x + y - 1)$$

Norm T_1 is also called the Łukasiewicz T-Norm

 $Graph\ 2-T_1\ 3D\ surface$

T_2

$$T_2(x, y) = \frac{x * y}{2 - (x + y - x * y)}$$

Graph $1.3 - T_2 3D$ surface

T_3

$$T_3(x, y) = x * y$$

Graph $1.4 - T_3$ 3D surface

T_4

$$T_4(x, y) = \frac{x * y}{x + y - x * y} \quad when \quad x > 0 \land y > 0$$
$$0 \quad when \quad x = y = 0$$

Norm T_4 is also called the Homacher product

Graph $1.5 - T_4$ 3D surface

T_{5}

$$T_5(x, y) = \min(x, y)$$

Norm T_4 is also called the Gödel T-norm

Graph 1.6 – T₅ 3D surface

S_0

 $T_0(x, y) = \max(x, y)$ when $\min(x, y) = 0$ 1 otherwise

Graph $1.7 - S_0$ 3D surface

S_1

 $S_1(x, y) = \min(1, x + y)$

Graph $1.8 - S_1$ 3D surface

S_2

$$S_2(x, y) = \frac{x+y}{1+x*y}$$

Graph 1.9 – S₂ 3D surface

S_3

$$S_3(x, y) = x + y - x * y$$

Graph $1.10 - S_3$ 3D surface

S₄

$$S_4(x, y) = \frac{x + y - 2 * x * y}{1 - x * y}$$

Graph $1.11 - S_4$ 3D surface

 S_5

$$S_5(x, y) = \max(x, y)$$

Graph 1.12 – S₅ 3D surface

Graphics generated with Wolfram Mathematica.5.1

1.3.2 Combinations of triangular norms

If there is a need to calculate a confidence of a given element in a probabilistic-type of set being a result of a combination involving both sum and intersection, we will use a pair (T_i, S_k) , where T_i and S_k norms. But, not all combination of T_i and S_k norms can be used however.

Some combinations do not preserve the distributivity law and therefore, if possible, they should not be used.

Below is a list of allowed combinations together with properties related to the corresponding distributivity law.

$$T_0$$

$$a T_0 (b S_2 c) \le (a T_0 b) S_2 (a T_0 c)$$

 $a T_0 (b S_3 c) \le (a T_0 b) S_3 (a T_0 c)$
 $a T_0 (b S_4 c) \le (a T_0 b) S_4 (a T_0 c)$
 $a T_0 (b S_5 c) = (a T_0 b) S_5 (a T_0 c)$

 T_1

$$a T_1 (b S_5 c) = (a T_1 b) S_5 (a T_1 c)$$

 T_2

$$a T_2 (b S_0 c) \le (a T_2 b) S_0 (a T_2 c)$$

 $a T_2 (b S_3 c) \le (a T_2 b) S_3 (a T_2 c)$
 $a T_2 (b S_4 c) \le (a T_2 b) S_4 (a T_2 c)$
 $a T_2 (b S_5 c) = (a T_2 b) S_5 (a T_2 c)$

 T_3

$$a T_3 (b S_0 c) \le (a T_3 b) S_0 (a T_3 c)$$

 $a T_3 (b S_1 c) \le (a T_3 b) S_1 (a T_3 c)$
 $a T_3 (b S_2 c) \le (a T_3 b) S_2 (a T_3 c)$
 $a T_3 (b S_3 c) \le (a T_3 b) S_3 (a T_3 c)$
 $a T_3 (b S_4 c) \le (a T_3 b) S_4 (a T_3 c)$
 $a T_3 (b S_5 c) = (a T_3 b) S_5 (a T_3 c)$

$$T_4$$

$$a T_4 (b S_0 c) \leq (a T_4 b) S_0 (a T_4 c)$$

 $a T_4 (b S_1 c) \leq (a T_4 b) S_1 (a T_4 c)$
 $a T_4 (b S_2 c) \leq (a T_4 b) S_2 (a T_4 c)$
 $a T_4 (b S_3 c) \leq (a T_4 b) S_3 (a T_4 c)$
 $a T_4 (b S_4 c) \leq (a T_4 b) S_4 (a T_4 c)$
 $a T_4 (b S_5 c) = (a T_4 b) S_5 (a T_4 c)$

 T_5

$$aT_5 (bS_0 c) \le (aT_5 b) S_0 (aT_5 c)$$

 $aT_5 (bS_1 c) \le (aT_5 b) S_1 (aT_5 c)$
 $aT_5 (bS_2 c) \le (aT_5 b) S_2 (aT_5 c)$
 $aT_5 (bS_3 c) \le (aT_5 b) S_3 (aT_5 c)$
 $aT_5 (bS_4 c) \le (aT_5 b) S_4 (aT_5 c)$
 $aT_5 (bS_5 c) = (aT_5 b) S_5 (aT_5 c)$

The above results have been obtained using heuristic approach.

For each combination of the norms, a million points $\{a,b,c\}$ were randomly chosen from $[0,1]^3$. The relation was then tested against each of them.

The results obtained from these tests are as follows:

$$T_0 S_2$$

For 994143 points
$$a T_0 (b S_2 c) = (a T_0 b) S_2 (a T_0 c)$$

For 5857 points $a T_0 (b S_2 c) < (a T_0 b) S_2 (a T_0 c)$
Conclusion $a T_0 (b S_2 c) \le (a T_0 b) S_2 (a T_0 c)$

$$T_0 S_3$$

For 994188 points
$$a T_0 (b S_3 c) = (a T_0 b) S_3 (a T_0 c)$$

For 5812 points $a T_0 (b S_3 c) < (a T_0 b) S_3 (a T_0 c)$

Conclusion $a T_0 (b S_3 c) \leq (a T_0 b) S_3 (a T_0 c)$

 $T_0 S_4$

For 994177 points $a T_0 (b S_4 c) = (a T_0 b) S_4 (a T_0 c)$

For 5823 points $a T_0 (b S_4 c) < (a T_0 b) S_4 (a T_0 c)$

Conclusion $a T_0 (b S_4 c) \le (a T_0 b) S_4 (a T_0 c)$

 $T_0 S_5$

For 1000000 points $a T_0 (b S_5 c) = (a T_0 b) S_5 (a T_0 c)$

Conclusion $a T_0 (b S_5 c) = (a T_0 b) S_5 (a T_0 c)$

 $T_1 S_5$

For 1000000 points $a T_1 (b S_5 c) = (a T_1 b) S_5 (a T_1 c)$

Conclusion $a T_1 (b S_5 c) = (a T_1 b) S_5 (a T_1 c)$

 $T_2 S_0$

For 299635 points $a T_2 (b S_0 c) = (a T_2 b) S_0 (a T_2 c)$

For 700365 points $a T_2 (b S_0 c) < (a T_2 b) S_0 (a T_2 c)$

Conclusion $a T_2 (b S_0 c) \le (a T_2 b) S_0 (a T_2 c)$

 $T_2 S_3$

For 299652 points $a T_2 (b S_3 c) = (a T_2 b) S_3 (a T_2 c)$

For 700348 points $a T_2 (b S_3 c) < (a T_2 b) S_3 (a T_2 c)$

Conclusion $a T_2 (b S_3 c) \le (a T_2 b) S_3 (a T_2 c)$

 $T_2 S_4$

For 299687 points $a T_2 (b S_4 c) = (a T_2 b) S_4 (a T_2 c)$

For 700131 points $a T_2 (b S_4 c) < (a T_2 b) S_4 (a T_2 c)$

```
Conclusion a T_2 (b S_4 c) \leq (a T_2 b) S_4 (a T_2 c)
```

 $T_2 S_5$

For 1000000 points
$$a T_2 (b S_5 c) = (a T_2 b) S_5 (a T_2 c)$$

Conclusion
$$aT_2(bS_5c) = (aT_2b)S_5(aT_2c)$$

 $T_3 S_0$

For 299455 points
$$a T_3 (b S_0 c) = (a T_3 b) S_0 (a T_3 c)$$

For 700545 points
$$a T_3 (b S_0 c) < (a T_3 b) S_0 (a T_3 c)$$

Conclusion
$$a T_3 (b S_0 c) \leq (a T_3 b) S_0 (a T_3 c)$$

 $T_3 S_1$

For 588730 points
$$a T_3 (b S_1 c) = (a T_3 b) S_1 (a T_3 c)$$

For 411270 points
$$a T_3 (b S_1 c) < (a T_3 b) S_1 (a T_3 c)$$

Conclusion
$$a T_3 (b S_1 c) \leq (a T_3 b) S_1 (a T_3 c)$$

 T_3 S_2

For 299176 points
$$a T_3 (b S_2 c) = (a T_3 b) S_2 (a T_3 c)$$

For 700824 points
$$a T_3 (b S_2 c) < (a T_3 b) S_2 (a T_3 c)$$

Conclusion
$$a T_3 (b S_2 c) \le (a T_3 b) S_2 (a T_3 c)$$

 T_3 S_3

For 299827 points
$$a T_3 (b S_3 c) = (a T_3 b) S_3 (a T_3 c)$$

For 700173 points
$$a T_3 (b S_3 c) < (a T_3 b) S_3 (a T_3 c)$$

Conclusion
$$a T_3 (b S_3 c) \le (a T_3 b) S_3 (a T_3 c)$$

 $T_3 S_4$

For 299406 points
$$a T_3 (b S_4 c) = (a T_3 b) S_4 (a T_3 c)$$

For 700594 points
$$a T_3 (b S_4 c) < (a T_3 b) S_4 (a T_3 c)$$

Conclusion $a T_3 (b S_4 c) \leq (a T_3 b) S_4 (a T_3 c)$

 $T_3 S_5$

For 1000000 points $a T_3 (b S_5 c) = (a T_3 b) S_5 (a T_3 c)$

Conclusion $a T_3 (b S_5 c) = (a T_3 b) S_5 (a T_3 c)$

 $T_4 S_0$

For 299858 points $a T_4 (b S_0 c) = (a T_4 b) S_0 (a T_4 c)$

For 700142 points $a T_4 (b S_0 c) < (a T_4 b) S_0 (a T_4 c)$

Conclusion $a T_4 (b S_0 c) \le (a T_4 b) S_0 (a T_4 c)$

 T_4 S_1

For 299771 points $a T_4 (b S_1 c) = (a T_4 b) S_1 (a T_4 c)$

For 700229 points $a T_4 (b S_1 c) < (a T_4 b) S_1 (a T_4 c)$

Conclusion $a T_4 (b S_1 c) \le (a T_4 b) S_1 (a T_4 c)$

 T_{4} S_{2}

For 299587 points $a T_4 (b S_2 c) = (a T_4 b) S_2 (a T_4 c)$

For 700413 points $a T_4 (b S_2 c) < (a T_4 b) S_2 (a T_4 c)$

Conclusion $a T_4 (b S_2 c) \le (a T_4 b) S_2 (a T_4 c)$

 $T_4 S_3$

For 299490 points $a T_4 (b S_3 c) = (a T_4 b) S_3 (a T_4 c)$

For 700510 points $a T_4 (b S_3 c) < (a T_4 b) S_3 (a T_4 c)$

Conclusion $a T_4 (b S_3 c) \le (a T_4 b) S_3 (a T_4 c)$

 $T_4 S_4$

For 299888 points $a T_4 (b S_4 c) = (a T_4 b) S_4 (a T_4 c)$

For 700112 points $a T_4 (b S_4 c) < (a T_4 b) S_4 (a T_4 c)$

Conclusion $a T_4 (b S_4 c) \leq (a T_4 b) S_4 (a T_4 c)$

 $T_4 S_5$

For 1000000 points $a T_4 (b S_5 c) = (a T_4 b) S_5 (a T_4 c)$

Conclusion $a T_4 (b S_5 c) = (a T_4 b) S_5 (a T_4 c)$

 $T_5 S_0$

For 299987 points $a T_5 (b S_0 c) = (a T_5 b) S_0 (a T_5 c)$

For 700013 points $a T_5 (b S_0 c) < (a T_5 b) S_0 (a T_5 c)$

Conclusion $aT_5(bS_0c) \leq (aT_5b)S_0(aT_5c)$

 $T_5 S_1$

For 395919 points $a T_5 (b S_1 c) = (a T_5 b) S_1 (a T_5 c)$

For 604081 points $a T_5 (b S_1 c) < (a T_5 b) S_1 (a T_5 c)$

Conclusion $aT_5(bS_1c) \leq (aT_5b)S_1(aT_5c)$

 $T_5 S_2$

For 431394 points $a T_5 (b S_2 c) = (a T_5 b) S_2 (a T_5 c)$

For 568606 points $a T_5 (b S_2 c) < (a T_5 b) S_2 (a T_5 c)$

Conclusion $aT_5(bS_2c) \le (aT_5b)S_2(aT_5c)$

 $T_5 S_3$

For 444371 points $a T_5 (b S_3 c) = (a T_5 b) S_3 (a T_5 c)$

For 555629 points $a T_5 (b S_3 c) < (a T_5 b) S_3 (a T_5 c)$

Conclusion $aT_5(bS_3c) \leq (aT_5b)S_3(aT_5c)$

 $T_5 S_4$

For 466996 points $a T_5 (b S_4 c) = (a T_5 b) S_4 (a T_5 c)$

For 533004 points $a T_5 (b S_4 c) < (a T_5 b) S_4 (a T_5 c)$

Conclusion
$$aT_5(bS_4c) \leq (aT_5b)S_4(aT_5c)$$

$$T_5 S_5$$

For 1000000 points
$$aT_5(bS_5c) = (aT_5b)S_5(aT_5c)$$

Conclusion
$$aT_5(bS_5c) = (aT_5b)S_5(aT_5c)$$

1.3.3 Ordering combinations of triangular norms

In [3], a partial order relation over pairs (T_i, S_k) has been proposed.

This ordering relation is defined as follows: $(T_{i1}, S_{k1}) \le (T_{i2}, S_{k2}) \iff (i1 \le i2) \land (k1 \le k2)$

For any i1, i2, k1, k2 the following inequalities are true:

$$(T_{\min(i1,i2)}, S_{\max(k1,k2)}) \le (T_{i1}, S_{k1}) \le (T_{\max(i1,i2)}, S_{\min(k1,k2)})$$

$$(T_{\min(i1,i2)},S_{\max(k1,k2)}) \leq (T_{i2},S_{k2}) \leq (T_{\max(i1,i2)},S_{\min(k1,k2)})$$

Described relation creates ordering of lattice type – not all elements are comparable.

There are however ordered chains, and all of them do have upper bounds.

Upon this properties, according to Kuratowski-Zorn lemma [4], the subject set contains maximal element, which is (T_5, S_5) .