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Abstract

Pitch and timbre detection methods applicable to monophonic digital signals are common. Conversely, successful detection
of multiple pitches and timbres in polyphonic time-invariant music signals remains a challenge. A review of these methods,
sometimes called ”Blind Signal Separation”, is presented in this paper. We analyze how musically trained human listeners
overcome resonance, noise, and overlapping signals to identify and isolate what instruments are playing and then what pitch
each instrument is playing. The part of the instrument and pitch recognition system, presented in this paper, responsible for
identifying the dominant instrument from a base signal uses temporal features proposed by Wieczorkowska [1] in addition to the
standard 11 MPEG?7 features. After retrieving a semantical match for that dominant instrument from the database, it creates
a resulting foreign set of features to form a new synthetic basen signal which no longer bears the previously extracted dominant
sound. The system may repeat this process until all recognizable dominant instruments are accounted for in the segment. The
proposed methodology incorporates Knowledge Discovery, MPEGT7 segmentation and Inverse Fourier Transforms.
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Detection; Blind Signal Separation.

1 Introduction

Blind Signal Separation (BSS) and Blind Audio Source
Separation (BASS) have recently emerged as the sub-
jects of intense work in the fields of Signal Analysis and
Music Information Retrieval. This paper focuses on the
separation of harmonic signals of musical instruments
from a polyphonic domain for purpose of music infor-
mation retrieval. First, it recognizes the state of the art
in the fields of signal analysis. Particularly, Indepen-
dent Component Analysis and Sparse Decompositions.
Next it reviews music information retrieval systems that
blindly identify sound signals. Herein we first present a
new approach to the separation of harmonic musical sig-
nals in a polyphonic time-invariant music domain and
then secondly, the construction of new correlating sig-
nals which include the inherent remaining noise. These
signals represent new objects which when included in the
database, with continued growth, improve the accuracy
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of the classifiers used for automatic indexing.

1.1 Signal Analysis

In 1986, Jutten and Herault proposed the concept of
Blind Signal Separation! as a novel tool to capture
clean individual signals from noisy signals containing un-
known, multiple and overlapping signals [9]. The Jutten
and Herault model comprised a recursive neural network
for finding the clean signals based on the assumption
that the noisy source signals were statistically indepen-
dent. Researchers in the field began to refer to this noise
as the cocktail party property, as in the undefinable buzz
of incoherent sounds present at a large cocktail party.
By the mid 1990’s researchers in neural computation, fi-
nance, brain signal processing, general biomedical signal
processing and speech enhancement, to name a few, em-
braced the algorithm. Two models dominate the field;
Independent Component Analysis (ICA) [3] and Sparse
Decompositions (SD) [19].

1 See Appendix A.
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1.1.1 Independent Component Analysis

ICA originally began as a statistical method that ex-
pressed a set of multidimensional observations as a com-
bination of unknown latent variables [9]. The principle
idea behind ICA is to reconstruct these latent, some-
times called dormant, signals as hypothesized indepen-
dent sequences where k¥ = the unknown independent
mixtures from the unobserved independent source sig-
nals:

€= f(@7 5)7 (1)

where x = (21, x3, ..., T, ) is an observed vector and f is
a general unknown function with parameters © [2] that
operates the variables listed in the vector s = (s1, ..., s,)

5(t) = [s1(t), ..., su(t)] . (2)

Here a data vector z(t) is observed at each time point t,
such that given any multivariate data, ICA can decorre-
late the original noisy signal and produce a clean linear
co-ordinate system using:

x(t) = As(t), (3)

where A is a n x k full rank scalar matrix. For in-
stance (Fig. 1), if a microphone receives input from a
noisy environment containing a jet fighter, an ambu-
lance, people talking and a speaker-phone, then z;(t) =
ai1 * $1(t) + azo * s2(t) + a3 * $3(t) + a4 * s4(¢). In this
case we are using ¢+ = 1 : 4 ratio. Rewriting it in a vec-
tor notation, it becomes x = A*s. For example, looking
at a two-dimensional vector x = [z125]7 ICA finds the
decomposition:

T1 a11 a12
= s1+ S2 (4)

Zo a1 a22
X = ajs1 + ass9 (5)

where a1, as are basis vectors and si, so are basis coeffi-
cients.

1.1.2  Sparse Decomposition

Sparse decomposition was first introduced in the field of
image analysis by Field and Olshausen[18]. Nowadays,
the most general SD algorithm is probably Zibulevsky’s
where his resulting optimization is made on two factors
based on the output vector’s entropy and sparseness.
Similar to ICA, in SD, the resulting signal z(%) is the sum
of the unknown n x k matrix A and noise £(t), where
n represents the sensors and k represents the unknown
scalar source signals.:

w(t) = As(t) + £(1). (6)

xS (1)
xS, (1)
xS, (1)
xS, (t)

Fig. 1. A noisy cocktail party

The signals are ”sparsely” represented in a signal dictio-
nary [24]:

k
si(t) = Z Cikor (1), (7)
k=1

where the ik and pk represent the atoms of the dictio-
nary.

1.2 Music Information Retrieval

In the field of Music Information Retrieval systems, al-
gorithms that analyze polyphonic time-invariant music
signals systems operate in either the time domain [7],
the frequency domain [21] or both the time and fre-
quency domains simultaneously [13]. Kostek takes a dif-
ferent approach and instead divides BSS algorithms into
either those operating on multichannel or single chan-
nel sources. Multichannel sources detect signals of vari-
ous sensors whereas single channel sources are typically
harmonic [6]. For clarity, let it be said that experiments
provided herein switch between the time and frequency
domain, but more importantly, per Kostek’s approach,
our experiments fall into the multichannel category be-
cause, at this point of experimentation two harmonic sig-
nals are presented for BSS. In the future, a polyphonic
signal containing a harmonic and a percussive may be
presented.

1.2.1 BSSin MIR, A Brief Review

In 2000, Fujinaga and MacMillan created a real time
system for recognizing orchestral instruments using an
exemplar-based learning system that incorporated a k
nearest neighbor classifier (k-NNC) [8] using a genetic
algorithm to recognize monophonic tones in a database
of 39 timbres taken from 23 instruments. Also, in 2000,
Eronen and Klapuri created a musical instrument recog-
nition system that modeled the temporal and spectral
characteristics of sound signals [11]. The classification
system used thirty-two spectral and temporal features



and a signal processing algorithms that measured the
features of the acoustic signals. The Eronen system was
a step forward in BSS because the system was pitch in-
dependent and it successfully isolated tones of musical
instruments using the full pitch range of 30 orchestral in-
struments played with different articulations. Also, both
hierarchic and direct forms of classification were evalu-
ated using 1498 test tones obtained from the McGill Uni-
versity Masters Samples (MUMs) CDs including ”home
made” recordings from amateur musicians.

In 2001 Zhang constructed a multi-stage system that seg-
mented the music into it individual notes, estimated the
harmonic partial estimation from a polyphonic source
and then normalized the features for loudness, length
and pitch [23]. The features included the 1) temporal
features accounting for rising speed, degree of sustain-
ing, degree of vibration, and releasing speed, 2) spectral
features accounting for the spectral energy distribution
between low, middle and high frequency sub-bands and
the partial harmonic such as brightness, inharmonic-
ity, tristimulus, odd partial ratio, irregularity and dor-
mant tones. Zhang’s system successfully identified in-
struments playing in a polyphonic music pieces. In one
the polyphonic source contained 12 instruments includ-
ing, cello, viola, violin, guitar, flute, horn, trumpet, pi-
ano, organ, erhu, zheng, and sarod. The significance of
Zhang’s system was in the manner it used artificial neu-
ral networks to find the dominant instrument: First it
segmented each piece into notes and then categorized
the music based on the what instrument played the most
notes. It then weighted this number by the likelihood
value of each note when it is classified to this instru-
ment. For example, if all the notes in the music piece
were grouped into K subsets: I1; Is;... Ik, with I; cor-
responding to the ith instrument, then a score for each
instrument was computed as:

s, =Y Oi(x), i=1~k (8)

zel;

where x denotes a note in the music piece, and O;(z) is
the likelihood that x will be classified to ith instrument.
Next, Zhang normalized the score to satisfy the following
condition:

k
S[,i = ZS(L‘) =1 (9)

It is interesting to note the similarity between this and
Zibulevsky’s Eq.07 infra. Zhang used 287 music mono-
phonic and polyphonic pieces and he reached an accu-
racy of 80 % success in identifying the dominant instru-
ment and 90 % if intra-family confusions were able to be
dismissed. Classification of the Zhang’s system incorpo-
rated a Kohonen self-organizing map to select the opti-
mal structure of each feature vector.

In 2002, Wieczorkowska, collaborated with Slezak,
Wréblewski and Synak [1] and used MPEG-7 based fea-
tures to create a testing database for training classifiers
used to identify musical instrument sounds. She used
seventeen MPEG-7 temporal and spectral descriptors
observing the trends in evolution of the descriptors over
the duration of a musical tone, their combinations and
other features. Wieczorkowska compared the classifica-
tion performance of the kNNC and rough set classifiers
using various combinations of features. Her results
showed that the kNNC classifier outperformed, by far,
the rough set classifiers.

In 2003, Eronen and Agostini both tested, in separate
tests, the viability of using decision tree classifiers in Mu-
sic Information retrieval. They both found that decision
tree classifiers ruined the classification results: Eronen’s
system recognized groups of musical instruments from
isolated notes using Hidden Markov Models [4]. Eronen
classified the instruments into groups such as strings
or woodwinds, not as individual instruments. Agostini’s
system [16] tested a monophonic base of 27 instruments
using eighteen temporal and spectral features with a
number of classification procedures to determine which
procedure worked most effectively. The experimentation
used a number of classical methods including canonical
discriminant analysis, quadratic discriminant analysis
and support vector machines. Agostini’s Support Vec-
tor tests yielded a 70 % accuracy on individual instru-
ments. Groups of instruments yielded 81% accuracy. As
in this paper’s experiments, Agostini’s classifiers were
MPEG-7 based. The experiments used 18 descriptors for
each tone to compute mean and standard deviation of 9
features over the length of each tone. Agostini’s system
used a 46 ms window for the zero-crossing rate to pro-
cure measurements directly from the waveform as the
number of sign inversions. To obtain a useable number
of harmonics a pitch tracking algorithm controlled each
signal by first analyzing it at a low-frequency and re-
peating it at smaller resolutions until a sufficient num-
ber of harmonics was estimated. Interestingly, they used
a variable window size to obtain a frequency resolution
of at least 1/24 of octaves. The team evaluated the har-
monic structure of their signals with FFT’s using half-
overlapping windows.

In 2004, Kostek developed a 3-stage classification sys-
tem that successfully identified up to twelve instruments
played under a diverse range of articulations [12]. The
manner in which Kostek designed her stages of signal
preprocessing, feature extraction and classification may
prove to be the standard in BSS MIR. In the prepro-
cessing stage Kostek incorporates 1) the average mag-
nitude difference function and 2) Schroeder’s histogram
for purposes of pitch detection. Her feature extraction
stage extracts three distinct sets of features: Fourteen
FF1’ based features, MPEG-7 standard feature param-
eters and wavelet analysis. In the final stage, for classifi-
cation, Kostek incorporates a multi layer ANN classifier.



Importantly, Kostek concluded that she retrieved the
strongest results when employing a combination of both
MPEG- 7 and wavelet features. Also the performance
deteriorated as the number of instruments increased.

2 Experiments

Stepping back and reviewing Kostek, Zhang and Agos-
tini, it became apparent to the authors that BSS works
diametrically in opposition to the manner in which
trained human listeners segment polyphonic sources of
music. When presented with a polyphonic source sig-
nal, trained humans overcome resonance, noise and the
complexity of instruments playing simultaneously to
identify and isolate what instruments are playing and
then also identify what pitch each instrument is playing.
The basis for the BSS system presented in this paper
began by the authors thinking very carefully on how hu-
mans, versus classical MIR systems, identify sounds in
polyphonic sources. Here a small, anecdotal test formed
the seed for the system presented herein:

2.0.2 Trained Human Being’s and BSS, a mini experi-
ment

In the Fall of 2006, in order to get a sense of how humans
listen to music, one of the authors, Lewis, took an origi-
nal piece of music he composed and performed with his
band, changed it slightly and tested the band members
as follows accordingly. Lewis knew these results would
be anecdotal and non scientific but he was intrigued by
what the outcome would be. Lewis knew that each band
member was very familiar with the song and with the
instrumentation of the song because they were present
when Lewis composed the song, they recorded it over the
course of weeks in a studio and they performed the song
live in front of audiences many hundreds of times. Es-
sentially, each member knew the song intimately. Lewis
made four new versions: Version 1 omitted the kick drum
and symbol on drum tracks. Version 2 changed bass notes
and omitted some bass notes. Version 3 swapped horn
sections around and changed the pitch of the horn at six
sections. Finally in Version 4, Lewis extracted the gui-
tar piece and inserted three never before played chords
into the song. Lewis asked each member to listen to the
three versions of the song - except for the version in
which Lewis changed the instrument in which the lis-
tener played. For example, Version 3 contained changes
to the horn section, here the horn player listened to Ver-
sion1,2, and 4, not version 3 where he would immediately
here his horn solo’s were swapped. As the horn player lis-
tened to versions 1,2 and 4 he began to get bored. Upon
being asked to listen carefully to see what was changed,
he could not here the missing drum tracks on version 1,
the missing and changed bass guitar on version 2 or the
changed guitar tracks on version 4. In fact each member
of the band could not hear any changes to other instru-
ments even when asked specifically to listen to them -

except for one instance, the bass player identified one of
the 14 changes in the guitar track and asked if it was
an "earlier” version where Lewis played the guitar track
differently.

The authors concluded that trained musicians practi-
cally block out instruments they are not interested in.
The bass player was interested in one particular guitar
sections because he cued one of his solos off of the timing
of the missing note. At this moment, he would tune into
the guitar and then block it out as he played his solo. The
issue became: How do musicians block out sound? How
do New Yorker’s block out the constant horn honking,
ambulance and police sirens so they can fall asleep, or,
conversely, how do farmers block out animal sounds so
they can fall asleep? The answer, for purposes of this pa-
per is, we do not know how humans block out sound but
clearly - they do. More so, even with an in depth study of
Kostek, Zhang an Agostini, the system developed trans-
mute the signal into frequency domains and manipulate
it but focusing on the dominant timbres, pitches, cep-
strums, tristimuluses and frequencies, to name a few.
The common factor in all of the above is that only the
original sound source is used. In other words, non of the
above insert into the equation a foreign entity - as hu-
mans probably do. Also, in non of the above approaches
we train the classifiers using artificial samples of music
objects produced by MIR system.

2.1  Trained Human Being’s and new instruments

A human that has never heard a South African Zulu
Penny Whistle, cannot - not hear it until he or she has
heard it a few times. Typically Lewis’ band members,
like most experienced musicians in bands, can hear a
song, listen to the counter instruments playing in the
song and play it almost immediately. Except when the
humans have not heard an instrument that they nor-
mally would block out. This became evident when Lewis
brought back to the USA, recordings of songs he pur-
chased in Johannesburg. The band members were not
able to focus on anything, let alone their own instrument
parts, because of the new instrument, the Zulu Penny
Whistle could not be blocked out. Why?

The authors believe the answer lies in the fact that be-
cause the band member’s had never heard a Zulu Penny
Whistle, they had no past data of Zulu Penny Whistle
Sounds that would be used to block them out and enable
them to focus on their counterpart in the song. Again
this lead the authors to believe that humans use a set of
sounds in their heads to block out noise in a song so they
can focus on exactly the portion of the song they want
to listen to. The seminal question the authors asked is
the same question that lead them to develop the system
presented in this paper which is a system that uses a for-
eign entities to block out signals in polyphonic signals.
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Fig. 2. 5C Piano @ 44,100Hz, 16 bit, stereo

2.2 Overview of the system

In short, when the system reads a polyphonic source, it
identifies a dominant aspect of the polyphonic source,
finds its match in the database and inserts this foreign
entity into the polyphonic source, to do what humans do,
i.e., block the portion of the original sound not interested
in.

To perform the experiments, the system analyzes 4 sep-
arate versions of a polyphonic source (see samples in
figures 3 to 6 below) containing two harmonic continu-
ous signals obtained from the McGill University Masters
Samples (MUMs) CDs. These samples contain a mix of
samples one and two, with various levels of noise. Specif-
ically, the first sample contains a C at octave 5 played
on a nine foot Steinway, recorded at 44,100HZ, in 16-bit
stereo. (Fig. 2) The second sample contains an A at oc-
tave 3 played on a Bb Clarinet, recorded at 44,100HZ, in
16-bit stereo. (Fig. 3) The third sample contains a mix
of the first and second samples with no noise added, us-
ing Sony’s Sound Forge 8.0 and containing a pure mix
recorded at 44,100HZ, in 16-bit stereo. (Fig. 4) Simi-
larly, the fourth sample contains a mix of the first and
second samples with noise added at -17.8 dB (-12.88
%)(Fig. 5). The fifth sample contains a mix of the first
and second samples with noise added at -36.05 dB (-1.58
%)(Fig. 6). Finally, the sixth sample contains a mix of
the first and second samples with noise added at -8.5 dB
(-37.58 %) (Fig. 7).

2.2.1 Formal Procedure

In explaining the system procedures reference will be
made to the two foreign samples housed in the database
(Fig. 2) (Fig. 3) containing the piano 5c and clarinet 3a.
The polyphonic input to the system will consist of the
four variations of the mix of piano 5¢ and clarinet 3a. For
the purpose of this discussion it is also assumed that the
clarinet 3a is the dominant feature of all four variations
of the mix. The system reads the input and uses an FFT
to transform it into the frequency domain. In the fre-
quency domain it determines that the fundamental fre-
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Fig. 3. 3A Bb Clarinet @ 44,100Hz, 16 bit, stereo
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quency of 3a with a woodwind-like timbre is dominant
Fig. 8). The system searches the database and first ex-
tracts all 3a pitches of each instrument. Next it separates
all woodwind-like sounds in the 3a temporary cache. At
this point it uses the MPEG-7 descriptors based classi-
fier to find 3a clarinet as close to the one identified. Here
it extracts the wave of 3a clarinet and performs a FFT
on this, a foreign sound entity. It subtracts the resultant
of the foreign entities FFT from the input entities FF'T
leaving an FFT, that when subjected to an IFFT pro-
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Fig. 8. Theoretical Procedure: Subtracting a foreign, ex-
tracted signal’s FFT from the source FFT

duces a wave that contains only the piano 5c¢, resonance,
harmonics and other negligible noise.

2.2.2 MPEG-7 features

In considering the use of MPEG-7, the authors recog-
nized that a sound segment containing musical instru-
ments may have three states: transient, quasi-steady and
decay. Identifying the boundary of the transient state en-

ables accurate timber recognition. Wieczorkowska pre-
sented a timbre detection system in [5] where she split
each sound segment into 7 equal intervals. Because dif-
ferent instruments require different lengths, we use a new
approach to look at the time it takes for the transient
duration to reach the quasi-steady state of the funda-
mental frequency. It is estimated by computing the local
cross-correlation function of the sound object and the
mean time to reach the maximum within each frame.
Our system developed herein is based on the following
MPEG-7 Descriptors:

2.2.3 AudioSpectrumCentroid

The AudioSpectrumCentroid is a description of the cen-
ter of gravity of the log-frequency power spectrum. Spec-
trum centroid is an economical description of the shape
of the power spectrum. It indicates whether the power
spectrum is dominated by low or high frequencies and,
additionally, it is correlated with a major perceptual di-
mension of timbre; i.e.sharpness. To extract the spec-
trum centroid: 1. Calculate the power spectrum coeffi-
cients; 2. Power spectrum coefficients below 62.5 Hz are
replaced by a single coefficient, with power equal to their
sum and a nominal frequency of 31.25 Hz; 3. Frequencies
of all coefficients are scaled to an octave scale anchored
at 1 kHz.

2.2.4 AudioSpectrumSpread

The AudioSpectrumSpread is a description of the spread
of the log-frequency power spectrum. Spectrum spread
is an economical descriptor of the shape of the power
spectrum that indicates whether it is concentrated in
the vicinity of its centroid, or else spread out over the
spectrum. It allows differentiating between tone-like and
noise-like sounds. To extract the spectrum Spread, we
Calculate the spectrum spread as the RMS deviation
with respect to the centroid, on an octave scale.

2.2.5 HarmonicSpectralCentroid

The HarmonicSpectralCentroid is computed as the av-
erage over the sound segment duration of the instanta-
neous HarmonicSpectralCentroid within a running win-
dow. The instantatneous HarmonicSpectralCentroid is
computed as the amplitude (linear scale) weighted mean
of the harmonic peaks of the spectrum. To extract the
Harmonic Spectral Centroid, 1. Estimate the harmonic
peaks over the sound segment. 2. Calculate the instanta-
neous HarmonicSpectralCentroid. 3. Calculate the aver-
age HarmonicSpectralCentroid for the sound segment.

2.2.6 HarmonicSpectralDeviation

HarmonicSpectralDeviation is computed as the average
over the sound segment duration of the instantaneous



HarmonicSpectralDeviation within a running window.
The instantaneous HarmonicSpectralDeviation is com-
puted as the spectral deviation of log-amplitude com-
ponents from a global spectral envelope. The Harmonic
Spectral Deviation is extracted using the following al-
gorithm 1. Estimate the harmonic peaks over the sound
segment. 2. Estimate the spectral envelope. 3. Calculate
the instantaneous HarmonicSpectralDeviation. 4. Cal-
culate the average HarmonicSpectralDeviation for the
sound segment.

2.2.7 HarmonicSpectralSpread

The HarmonicSpectralSpread is computed as the av-
erage over the sound segment duration of the instan-
taneous HarmonicSpectralSpread within a running
window. The instantaneous HarmonicSpectralSpread is
computed as the amplitude weighted standard devia-
tion of the harmonic peaks of the spectrum, normalized
by the instantaneous HarmonicSpectralCentroid. It is
extracted using the following algorithm 1. Estimate the
harmonic peaks over the sound segment. 2. Estimate
the instantaneous HarmonicSpectralCentroid. 3. Cal-
culate the instantaneous HarmonicSpectralSpread for
each frame. 4. Calculate the average HarmonicSpectral-
Spread for each sound segment.

2.2.8 HarmonicSpectral Variation

The HarmonicSpectralVariation, is the mean over the
sound segment duration of the instantaneous Harmon-
icSpectralVariation. The instantaneous HarmonicSpec-
tralVariation is defined as the normalized correlation be-
tween the amplitude of the harmonic peaks of two adja-
cent frames. It is extracted using the following algorithm.
1. Estimate the harmonic peaks over the sound segment.
2. Calculate the instantaneous HarmonicSpectral Varia-
tion each frame. 3. Calculate the HarmonicSpectral Vari-
ation for the sound segment.

2.8 Classifiers

The classifiers, applied in the investigations on mu-
sical instrument recognition, represent practically all
known methods. In our research, so far we have used
four classifiers (Bayesian Networks, Logistic Regression
Model, Decision Tree J-48 and Locally weighted learn-
ing) upon numerous music sound objects to explore the
effectiveness of our descriptors. Bayesian Networks is
a widely used statistical approach, which represent the
dependence structure between multiple variables by a
specific type of graphical model, where probabilities
and conditional-independence statements are strictly
defined. It has been successfully applied to speech recog-
nition [25], [10]. Logistic regression model is a popular
statistical approach of analyzing multinomial response
variables, since it does not assume normally distributed
conditional attributes which can be continuous, discrete,

dichotomous or a mix of any of these; it can handle
nonlinear relationships between the decision attribute
and the conditional attributes. It has been widely used
to correctly predict the category of outcome for new
instances by maximum likelihood estimation using the
most economical model. For details, see [14]. Locally
weighted regression is a well-known lazy learning algo-
rithm for pattern recognition. It votes on the prediction
based on a set of nearest neighbors (instances) of the
new instance, where relevance is measured by a distance
function. The local model consists of a structural and a
parametric identification, which involve parameter op-
timization and selection. For details see [17]. Decision
Tree-J48 is a supervised classification algorithm, which
has been extensively used for machine learning and
pattern recognition [20], [22]. A Tree-J48 is normally
constructed top-down, where parent nodes represent
conditional attributes and leaf nodes represent decision
outcomes. It first chooses a most informative attribute
that can best differentiate the dataset; it then creates
branches for each interval of the attribute where in-
stances are divided into groups; it repeats creating sub-
branches until instances are clearly separated in terms
of the decision attribute; finally it tests the tree by new
instances in a test dataset.

3 Results

The authors conducted the experiments bearing four is-
sues in mind: Firstly, what is the confidence of the sys-
tem in recognizing correctly either one of the two instru-
ments. Secondly, if new sound objects had to be build
and used for training classifiers in order to increase their
accuracy. Thirdly, when the system subtracted the first
instrument from the second instrument, out of curiosity,
the authors performed an inverse FFT to hear if indeed
the first instrument was missing, here the authors judged
how well the first instrument was subtracted. In all ex-
periments, presented below, we tested the sufficiency of
our features and sound objects for building successful
classifiers.

3.1 FExperiment 1: Classification of original sounds
from MUMs (10 folds).

Our system’s classification example was based on the
original sounds from MUM:s using Steinway 9’ piano and
the alto and bass flutes. Varying degrees of noise con-
stituted the progressively noisy mixture samples. Both
training/testing for piano vs. alto flute and bass flute
(10 folds) was performed. Here, the authors created 55
samples of piano, 30 alto flutes and 31 bass flutes. Note
"LGR” means Logistic Regression Model. "accuracy”
specifically denotes the Classification Accuracy. The re-
sults are presented in Tab. 1. ClassAcis the abbreviation
for Classification Accuracy.



Table 1
Experiment 1

MUM s

TreeJ48 LRM BayesianNet.

ClassAc 99.0991% 100% 99.0991%

Table 2
Experiment 2 with noise
MUMs TreeJ48 LRM BayesianNet.
ClassAc  50% 50% 50%
Table 3

Experiment 3 with noise

PianoW N TreeJ48 LRM BayesianNet.

ClassAc  100% 100% 100%

3.2  Ezperiment 2: Classification of echoed sounds.

For training, we have used the same data set as in the
Experiment 1. Testing was done for echoed sounds which
are foreign to the classifier. This experiment involved
substantial noise in the signal domain. The authors per-
formed testing for piano with noise vs. alto flute and bass
flute without noise. For the results see Tab. 2. All three
classifiers recognized only about half of the submitted
objects which means either additional features or new
objects for the training face are still needed.

3.8 Ezperiment 3: Classification of subtracted piano.

In training for piano vs. none piano (alto flute and bass
flute), the authors used 55 samples of piano from MUMs,
25 samples of piano with noise in the signal domain,
25 samples of piano obtained by subtracting flute from
mixed samples of piano, flute, and additional noise, 30
alto flutes and 31 bass flutes. In all cases we used Stein-
way 9’ piano. Testing was done for echoed sounds which
are foreign to the classifier. This experiment involved
substantial noise in the signal domain. The authors per-
formed testing for piano with noise vs. alto flute and
bass flute without noise. For the results see Tab. 3. All
sound objects submitted and accepted by the classifier
have been recognized correctly. All three classifiers rec-
ognized about half of the submitted objects which means
additional features for the training face are still needed.
PianoWN is the abbreviation for piano with noise.

Table 4
Experiment 4 with noise

ClarinetWN TreeJ48 LRM BayesianNet.

ClassAc 100% 100% 100%

3.4  Ezperiment 4: Classification of subtracted Clarinet
(10 folds).

In training/testing for Clarinet vs. none clarinet (alto
flute and bass flute), the authors used 13 samples of clar-
inet obtained by subtracting flute from mixed MUMs
samples of clarinet, flute, and additional noise, 30 alto
flutes and 31 bass flutes also from MUMs. This exper-
iment also involved substantial noise in the signal do-
main. For the results see Tab. 4. All sound objects sub-
mitted and accepted by the classifier have been recog-
nized correctly. Similarly to Experiment 3, all three clas-
sifiers recognized about half of the submitted objects
which means additional features for the training face are
needed. ClarinetWN is the abbreviation for clarinet with
noise.

4 Conclusion

This paper presents initial research concerning auto-
matic indexing of audio by musical instruments of def-
inite pitch, used in contemporary orchestras. Our ulti-
mate goal is to perform automatic classification of mu-
sical instrument sound from real recordings for broad
range of sounds, independently on the fundamental fre-
quency of the sound. Full range of musical scale for each
instrument will be investigated.
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A ICA Timeline

This paper addresses the state of the art in BSS and ICA
from 2000 to 2006. Herein is a brief history of ICA work
achievements prior to 2000.[15]

1986 — Herault and Jutten - introduce Concept
1991 — Jutten and Herault.

1994 — Karhunen and Joutsensalo.

1994 — Cichocki Unbehauen and Rummert.

1994 — Comon - cost functions between the sensors.

Unsupervised learning ruleso

1961 — Barlow.

1992 — Linsker.

1992 — Atick.

1994 — Nadal and Parga - low-noise neurals.
1995 — Bell and Sejnowsk - forecasting

1996 — Roth and Baram.

1995 — Bell and Sejnowski - information-theoret.
1996 — Cardoso and Laheld.

Other algorithms for performing ICA.

1990 — Gaeta and Lacoume - maximum likelihood.
1995 — Bell and Sejnowski.

1992 — Pham.

1996 — Pearlmutter and Parra.

1996 — MacKay.

1997 — Cardoso.

1997 — Girolami and Fyfe.

1991 — Cover and Thomas - negentropy.

1997 — Girolami and Fyfe - multiple output.

Nonlinear PCA algorithms for ICA.

1994 — Karhunen and Joutsensalo.

1997 — Xu

1993 — Oja

1994 — Comon

1997— Girolami and Fyfe.

1995 — Bell and Sejnowski — infomax algorithm.
1998 — Lee et al - infomax principle.

The original infomax learning rules.

1995 — Bell and Sejnowski - super-Gaussian sources.
1997 — Girolami and Fyfe - negentropy.

1997 — Lee Girolami and Sejnowski - infomax.

1997 — Amari - natural gradients.

1996 — Cardoso and Laheld - relative gradients.

1997 — Lee Girolami and Sejnowski - physiological data.

Demonstrating the power of the learning algorithm.
1996 — Makeig et al - EEG and ERP data.

1997 — Jung et al - EEG - line noise.

1997 — McKeown et al - human brain.

1997 — Bell and Sejnowski — edge filterss.

1997 — TBartlett and Sejnowskihe - sparse distribution
1997 — Gray Movellan and Sejnowski - face recognition .

Multichannel blind source separation problem.

1994 — Yellin and Weinstein .

1995 — Ngyuen and Jutten.

1996 — Torkkola - convolved sources.

1997 — Lee Bell and Lambert - feedforward system.

1996 — Lambert - polynomial filter matrix.

1997 — Lee Bell and Orglmeister — speech recognition system.

Tackle limitations of ICA - nonlinear mixing model.
1996 — In Hermann and Yang.



1997
1997
1992
1997
1997
1997
1998

Lin and Cowan.

Pajunen - nonlinear self-organizing.

Burel Lee.

Koehler and Orglmeister.

Taleb and Jutten.

Yang Amari and Cichocki - flexible mixing model.

Hochreiter and Schmidhuber —low complexity coding.
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