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Abstract. The high volume of digital music recordings in the inter-
net repositories has brought a tremendous need for a cooperative rec-
ommendation system to help users to find their favorite music pieces.
Music instrument identification is one of the important subtasks of a
content-based automatic indexing, for which authors developed novel
new temporal features and built a multi-hierarchical decision system S
with all the low-level MPEG7 descriptors as well as other popular de-
scriptors for describing music sound objects. The decision attributes in
S are hierarchical and they include Hornbostel-Sachs classification and
generalization by articulation. The information richness hidden in these
descriptors has strong implication on the confidence of classifiers built
from S. Rule-based classifiers give us approximate definitions of values
of decision attributes and they are used as a tool by content-based Au-
tomatic Indexing Systems (AIS). Hierarchical decision attributes allow
us to have the indexing done on different granularity levels of classes of
music instruments. We can identify not only the instruments playing in a
given music piece but also classes of instruments if the instrument level
identification fails. The quality of AIS can be verified using precision
and recall based on two interpretations: user and system-based [16]. AIS
engine follows system-based interpretation.

1 Introduction

The state of art technologies in semantic web and computer storage boost the
fast growing of music repositories throughout the internet, which in turn brought
the need for intelligent search methods and efficient recommendation systems to
help users to find their favorite music pieces.

Mining for knowledge in different representations of musical files (e.g., mu-
sic recordings, MIDI files, and music notes) involves very different techniques.
Research in MIDI files and music notes tackles problems in text mining. Digi-
tal recordings contain only sound signals unless manually labelled with seman-
tic descriptions (e.g., author, title, and company). Knowledge mining in digital



recordings requires prior retrieval of a large number of sound features from these
musical sound signals. Timbre identification is one of the important subtasks for
mining digital recordings, where timbre is a quality of sound that distinguishes
one music instrument from another. Researchers in this area have investigated a
number of acoustical features to build computational model for timbre identifi-
cation. In this paper, authors focus on developing automated indexing solutions
for digital recordings based on MIR (Music Information Retrieval) techniques of
instruments and their types.

The real use of timbre-based grouping of music is very nicely discussed in
[3]. Methods in research on automatic musical instrument sound classification go
back to the last few years. We review these methods with respect to monophonic
and polyphonic musical sounds.

For monophonic sounds, a number of acoustic features have been explored
in [1], [4]. Some of them are quite successful for certain classes of sound data
(monophonic, short, limited type of instruments). A digital multimedia file nor-
mally contains a huge amount of data, where subtle changes of sound amplitude
in time can be critical for human perception system, thus the data-driven tim-
bre identification process demands lots of information to be captured and also
demands to describe the patterns among those subtle changes. Since after the
dimensional approach to timbre description was proposed in [3], there is no stan-
dard parameterization used as a classification basis. Researchers in the area have
explored a number of statistical parameters to describe patterns and properties
of spectrums of music sounds to distinguish different timbre, such as Tristimulus
parameters [14], [6], and irregularity [22], etc.

MPEG-7 standard provides a set of low-level temporal and spectral sound
features where some of them are in a form of vector or matrix of a large size.
Flattening and summarizing these features for traditional classifiers intuitively
increases the number of features but losses some potentially useful information.
Therefore, in this paper, authors have proposed a new set of features, sufficient in
musical timbre signatures and suitable in format for machine learning classifiers.
Authors compare them against popular features in the literature.

For polyphonic sounds, different methods have been investigated by various
researchers, such as Independent Component Analysis (ICA) ([8], [21]), Factorial
Hidden Markov Models (HMM) ([12], [19]), and Harmonic Sources Separation
Algorithms ([2], [25], [9], [26]). ICA requires multiple channels of different sound
sources. Most often, HMM works well for sound sources separation where fun-
damental frequency range is small and the variation is subtle. Harmonic Sources
Separation Algorithms can be used to isolate sound sources within a single chan-
nel, where efficient solution in one channel can be intuitively applied to other
channels and therefore facilitates more types of sound recordings (e.g., mono-
channel and stereo with two or more channels).

Our multi-hierarchical decision system is a database of about 1,000,000 mu-
sical instrument sounds, each one represented as a vector of approximately 1,100
features. Each instrument sound is labelled by a corresponding instrument. There
are many ways to categorize music instruments, such as by playing methods, by



instrument type, or by other generalization concepts [23]. Any categorization
process is usually represented as a hierarchical schema which can be used by an
automatic indexing system and a related cooperative Query Answering System
(QAS) [7], [15], [17]. By definition, a cooperative QAS is relaxing a failing query
with a goal to find its smallest generalization which does not fail. Two differ-
ent hierarchical schemas [17] have been used as models of a decision attribute:
Hornbostel-Sachs classification of musical instruments and classification of mu-
sical instruments by articulation. Each hierarchical classification represents a
unique decision attribute, in a database of music instrument sounds, leading to
a construction of a new classifier and the same to a different system for automatic
indexing of music by instruments and their types [17], [28].

2 Audio Features in our Research

In their previous work, authors implemented aggregation [28] to the MPEG7
spectral descriptors as well as other popular sound features. This section in-
troduces new temporal features and other popular features used to describe
sound objects which we implemented in MIRAI database of music instruments
[http://www.mir.uncc.edu]. The spectrum features have two different frequency
domains: Hz frequency and Mel frequency. Frame size was carefully designed to
be 120ms, so that the 0th octave G (the lowest pitch in our audio database)
can be detected. The hop size is 40ms with a overlapping of 80ms. Since the
sample frequency of all the music objects is 44,100Hz, the frame size is 5,292.
A hamming window is applied to all STFT transforms to avoid jittering in the
spectrum.

2.1 Temporal features based on pitch

Pitch trajectories of instruments behave very differently in time. The authors
designed parameters to capture the power change in time.

Pitch Trajectory Centroid PC is used to describe the center of gravity
of the power of the fundamental frequency during the quasi-steady state.

(1.) PC =
∑length(P )

n=1
[

n·P (n)
length(P ) ]∑length(P )

n=1
P (n)

where P is the pitch trajectory in the quasi-steady state, n is the nth frame.

Pitch Trajectory Spread PS is the RMS deviation of the pitch trajectory
with respect to its gravity center.

(2.) PS =

√∑length(P )

n=1
[( n

length(P )−PC)2·P (n)]∑length(P )

n=1
P (n)

Pitch Trajectory Max Angle PM is an angle of the normalized power
maximum vs. its normalized frame position along the trajectory in the quasi-
steady state.



(3.) PM =
[

MAX(P (n))−P (0)

1
length(P )

·
∑length(P )

n=1
P (n)

]

[
F (n)−F (0)
length(P ) ]

where F (n) is the position of nth frame in the steady state.

Harmonic Peak Relation HR is a vector describing the relationship among
the harmonic partials.

(4.) HR = 1
m

∑m
j=1

Hj

H0

where m is the total number of frames in the steady state, Hj is the jth

harmonic peak in the ith frame.

2.2 Aggregation features

MPEG7 descriptors can be categorized into two types: temporal and spectral.
The authors applied aggregation among all the frames per music object for all
the following instantaneous spectral features.

MPEG7 Spectrum Centroid [29] describes the center-of-gravity of a log-
frequency power spectrum. It economically indicates the pre-dominant frequency
range. Coefficients under 62.5Hz have been grouped together for fast computa-
tion.

MPEG7 Spectrum Spread is the root of mean square value of the devia-
tion of the Log frequency power spectrum with respect to the gravity center in a
frame [29]. Like spectrum centroid, it is an economic way to describe the shape
of the power spectrum.

MPEG7 Harmonic Centroid is computed as the average over the sound
segment duration of the instantaneous harmonic centroid within a frame [29].

The instantaneous harmonic spectral centroid is computed as the amplitude
in linear scale weighted mean of the harmonic peak of the spectrum.

MPEG7 Harmonic Spread is computed as the average over the sound
segment duration of the instantaneous harmonic spectral spread of frame [29].

The instantaneous harmonic spectral spread is computed as the amplitude
weighted standard deviation of the harmonic peaks of the spectrum with respect
to the instantaneous harmonic spectral centroid.

MPEG7 Harmonic Variation is defined as the mean value over the sound
segment duration of the instantaneous harmonic spectral variation [29].

The instantaneous harmonic spectral variation is defined as the normalized
correlation between the amplitude of the harmonic peaks of two adjacent frames.

MPEG7 Harmonic Deviation is computed as the average over the sound
segment duration of the instantaneous harmonic spectral deviation in each frame.

The instantaneous harmonic spectral deviation is computed as the spectral
deviation of the log amplitude components from a spectral envelope.

MPEG7 Harmonicity Rate is the proportion of harmonics in the power
spectrum. It describes the degree of harmonicity of a frame. It is computed by



the normalized correlation between the signal and a lagged representation of the
signal.

MPEG7 Fundamental Frequency is the frequency that best explains the
periodicity of a signal. The ANSI definition of psycho-acoustical terminology
says that ”pitch is an auditory attribute of a sound according to which sounds
can be ordered on a scale from low to high”.

MPEG7 Upper Limit of Harmonicity describes the frequency beyond
which the spectrum cannot be considered harmonic. It is calculated based on
the power spectrum of the original and a comb-filtered signal.

Tristimulus and similar parameters describe the ratio of the amplitude of
a harmonic partial to the total harmonic partials [26]. They are first modified
tristimulus parameter, power difference of the first and the second tristimulus
parameter, grouped tristimulus of other harmonic partials, odd and even tris-
timulus parameters.

Brightness is calculated as the proportion of the weighted harmonic partials
to the harmonic spectrum [10].

(4.) B =
∑N

n=1
[n·An]∑N

n=1
An

Transient, steady and decay duration. In this research, the transient
duration is considered as the time to reach the quasi-steady state of fundamental
frequency. At this duration the sound contains more timbre information than
pitch information that is highly relevant to the fundamental frequency. Thus
differentiated harmonic descriptors values in time are calculated based on the
subtle change of the fundamental frequency [27].

Zero crossing counts the number of times that the signal sample data
changes signs in a frame [20]

(5.) ZCj = 0.5
∑N

n=1 | sign(sj [n])− sign(sj [n− 1]) |
(6.) sign(x) = [if x ≥ 0 then 1, else -1]
where sj is the nth sample in the jth frame, N is the frame size.
Spectrum Centroid describes the gravity center of the spectrum [24]

(7.) Cj =
∑N

2
k=1

f(k)·|Xj(k)|∑N
2

k=1
|Xj(k)|

where N is the total number of the FFT points, Xj(k) is the power of the
kth FFT point in the ith frame, f(k) is the corresponding frequency of the FFT
point.

Roll-off is a measure of spectral shape, which is used to distinguish be-
tween voiced and unvoiced speech [11]. The roll-off is defined as the frequency
below which C percentage of the accumulated magnitudes of the spectrum is
concentrated, where C is an empirical coefficient.

Flux is used to describe the spectral rate of change [18]. It is computed by
the total difference between the magnitude of the FFT points in a frame and its
successive frame.



(8.) Fj =
∑N

2
k=1(| Xj(k) | − | Xj−1(k) |)2

2.3 Statistical parameters

In order to flatten the matrix data to suitable format for the classifiers, statistical
parameters (e.g., maximum, minimum, average, distance of similarity, standard
deviation) are applied to the power of each spectral band.

MPEG7 Spectrum Flatness describes the flatness property of the power
spectrum within a frequency bin, which is ranged by edges in the corresponding
formula (see [29]). The value of each bin is treated as an attribute value in the
database. Since the octave resolution in our research is 1/4, the total number of
bands is 32.

MPEG7 Spectrum Basis Functions are used to reduce the dimensional-
ity by projecting the spectrum from high dimensional space to low dimensional
space with compact salient statistical information (see [29]).

Mel Frequency Cepstral Coefficients describe the spectrum according to
the human perception system in the Mel scale. They are computed by grouping
the STFT points of each frame into a set of 40 coefficients by a set of 40 weighting
curves with logarithmic transform and a discrete cosine transform (DCT).

2.4 MPEG7 temporal descriptors

The temporal descriptors in MPEG7 [29] have been applied directly into the fea-
ture database. MPEG7 Spectral Centroid is computed as the power weighted
average of the frequency bins in the power spectrum of all frames in a sound
segment with Welch method. MPEG7 Log Attack Time is defined as the
logarithm of the time duration between the time when the signal starts to the
time it reaches its stable part, where the signal envelope is estimated by comput-
ing the local mean square value of the signal amplitude in each frame. MPEG7
Temporal Centroid is calculated as the time average over the energy envelope.

3 Discriminant Analysis for Feature Selection

Logistic regression model is a popular statistical approach of analyzing multi-
nomial response variables. It does not assume normally distributed conditional
attributes which can be continuous, discrete, dichotomous or a mix of any of
these; it can handle nonlinear relationships between the discrete responses and
the explanatory attributes. It has been widely used to investigate the relationship
between decision attribute and conditional attributes, using the most economical
model. An ordinal response logit model has a form:

(9.) ( Pr(Y =i|x)
Pr(Y =k+1|x) ) = αi + βi · x, i = 1, 2, ..., k

where the k + 1 possible responses have no natural ordering and α1,..., αk

are k intercept parameters, β1,..., βk are k vectors of parameters, and Y is the



response. For details, see [5]. The system fits a common slopes cumulative model
which is a parallel lines regression model based on the cumulative probabilities
of the response categories. The significance of an attribute is calculated with the
likelihood ratio or chi-square difference test by the Fisher’s Score algorithm. A
final model is selected, where adding another variable would not improve the
model significantly.

4 Experiments

The authors used a subset of their feature database [http://www.mir.uncc.edu]
containing 1,569 music recording sound objects of 74 instruments. The authors
discriminated instrument types on different levels of a classification tree. The
tree consists of three levels: the top level (e.g., aerophone, chordophone, and
idiophone), the second level (e.g., lip-vibrated, side, reed, composite, simple,
rubbed, shaken, and struck), and the third level (e.g., piano, violin, and flute).
All classifiers were 10-fold cross validation with a split of 90% training and 10%
testing. We used WEKA for all classifications and SAS LOGISTIC procedure
for discriminant analysis. In each experiment, a 99% confidence level was used.
Feature extraction was implemented in .NET C++ with connection to MS SQL
Server. In LISP notation, we used the following Music Instrument Classification
Tree:

(Instrument(Aerophone(Lip-vibrated (-,-,-), Side(-,-), Reed(-,-)),
Chordophone(Composite, Simple), Idiophone(Rubbed(-), Shaken(-,-),
Struck(-,-) )))

For classification on the first level in the music instrument family tree, the se-
lected feature set was stored in List I: {PeakRelation8, PeakRelation16, PeakRe-
lation24, MPEGFundFreq, MPEGHarmonicRate, MPEGULHarmonicity,
MPEGHarmoVariation, MPEGHarmoDeviation, MPEGFlat3, MPEGFlat8,
MPEGFlat18, MPEGFlat30, MPEGFlat36, MPEGFlat46, MPEGFlat55,
MPEGFlat56, MPEGFlat66, MPEGFlat67, MPEGFlat76, MPEGFlat77,
MPEGFlat83, MPEGFlat85, MPEGFlat94, MPEGFlat96, MPEGSpectrumCen-
troid, MPEGTC, MPEGBasis59, MPEGBasis200, TristimulusRest, ZeroCross-
ing, MFCCMaxBand1, MFCCMaxBand3, MFCCMaxBand5, MFCCMaxBand6,
MFCCMaxBand7, MFCCMaxBand8, MFCCMaxBand10, MFCCMaxBand13,
MFCCMinBand1, MFCCMinBand13, PitchSpread, MaxAngle}. Experiment was
also performed on the rest of features after List I was removed from the whole
feature set, which was stored in List II. In the table below, ”All” stands for all
the attributes used for classifier construction.

Table 1 shows the precisions of the classifiers constructed with selected fea-
tures at the family level. After the less significant features, elected by the logistic
model, have been removed, the group of List I slightly improved the precision for
aerophone instruments. However, the selected significant feature group (List I)
significantly outperformed in precision for aerophone instruments and in recall
for both chordophone and aerophone instruments.



Precision Recall

Class List I All List II List I All List II

Idiophone 87.00% 91.10% 95.10% 82.10% 91.40% 94.80%

Chordophone 86.80% 91.30% 88.50% 88.60% 88.90% 84.70%

Aerophone 91.50% 91.30% 87.30% 91.80% 93.50% 90.90%

Table 1. Results of three groups of features at the top level of the music family tree

For classification at the second level in the music instrument family tree,
the selected feature set was stored in List I: {PeakRelation8, PeakRelation16,
PeakRelation30, MPEGFundFreq, MPEGHarmonicRate, MPEGULHarmonic-
ity, MPEGHarmoDeviation, MPEGFlat3, MPEGFlat11, MPEGFlat14,
MPEGFlat18, MPEGFlat22, MPEGFlat26, MPEGFlat36, MPEGFlat44,
MPEGFlat46, MPEGFlat58, MPEGFlat67, MPEGFlat81, MPEGFlat82,
MPEGFlat83, MPEGFlat85, MPEGFlat93, MPEGFlat94, MPEGFlat95,
MPEGSpectrumCentroid, MPEGTC, MPEGBasis50, MPEGBasis57, MPEG-
Basis59, MPEGBasis69, MPEGBasis73, MPEGBasis116, MPEGBasis167, MPEG-
Basis206, Tristimulus1, TristimulusRest, TristimulusBright, ZeroCrossing, Spec-
trumCentroid2, RollOff, MFCCMaxBand1, MFCCMaxBand3, MFCCMaxBand4,
MFCCMaxBand6, MFCCMaxBand7, MFCCMaxBand9, MFCCMinBand2, MFC-
CMinBand5, MFCCMinBand10, MFCCMinBand13, MFCCAvgBand10, MFC-
CAvgBand11, PitchSpread, MaxAngle}. Experiment was also performed on List
II obtained by removing List I from the whole feature set.

Precision Recall

Class List I All List II List I All List II

Lip− V ibrated 83.80% 84.40% 77.30% 84.70% 88.80% 82.30%

Side 74.30% 73.20% 66.40% 75.70% 64.00% 64.00%

Reed 77.10% 78.30% 70.50% 78.40% 80.10% 70.50%

Composite 84.50% 86.20% 84.90% 86.70% 84.30% 83.90%

Simple 71.20% 74.10% 72.20% 67.20% 80.00% 72.80%

Rubbed 85.30% 82.10% 75.00% 78.40% 86.50% 73.00%

Shaken 79.20% 91.00% 89.50% 64.80% 92.00% 87.50%

Struck 78.20% 86.30% 85.40% 80.40% 79.00% 77.60%

Table 2. Results of three groups of features at the second level of the music family
tree

Table 2 shows the precisions of the classifiers constructed with the selected
features, all features, and the rest of the features after selection at the second
level of the instrument family tree. After the less significant features, elected by
the logistic model, have been removed, the group of List I improved the precision
for side and rubbed instruments and recall for the side, composite, and struck



instruments. Also, the selected significant feature group (List I) significantly
outperformed in precision for lip-vibrated, side, reed, and rubbed instruments
and in recall for all the types except for simple and shaken instruments.

For classification at the third level in the music instrument family tree, the se-
lected feature set was stored in List I: {MPEGTristimulusOdd, MPEGFundFreq,
MPEGULHarmonicity, MPEGHarmoVariation, MPEGFlatness6, MPEGFlat-
ness14, MPEGFlatness27, MPEGFlatness35, MPEGFlatness43, MPEGFlatness52,
MPEGFlatness63, MPEGFlatness65, MPEGFlatness66, MPEGFlatness75,
MPEGFlatness76, MPEGFlatness79, MPEGFlatness90, MPEGFlatness91,
MPEGSpectrumCentroid, MPEGSpectrumSpread, MPEGBasis41, MPEGBa-
sis42, MPEGBasis69, MPEGBasis87, MPEGBasis138, MPEGBasis157, MPEG-
Basis160, MPEGBasis170, MPEGBasis195, TristimulusBright, TristimulusEven,
TristimulusMaxFd, ZeroCrossing, SpectrumCentroid2, Flux, MFCCMaxBand2,
MFCCMaxBand3, MFCCMaxBand6, MFCCMaxBand7, MFCCMaxBand9, MFC-
CMaxBand10, MFCCMinBand1, MFCCMinBand2, MFCCMinBand3, MFCCMin-
Band6, MFCCMinBand7, MFCCMinBand10, MFCCAvgBand1, MFCCAvgBand12,
SteadyEnd, Length}. Experiment was also performed on List II obtained by re-
moving List I from the whole feature set.

Precision Recall

Class List I All List II List I All List II

Flute 92.90% 67.70% 70.40% 89.70% 72.40% 65.50%

TubularBells 86.70% 60.00% 52.40% 72.20% 66.70% 61.10%

Tuba 85.70% 81.80% 85.70% 90.00% 90.00% 90.00%

ElectricBass 83.10% 87.50% 89.10% 80.60% 83.60% 85.10%

Trombone 80.60% 80.60% 76.30% 69.20% 82.10% 74.40%

Marimba 79.20% 89.50% 90.00% 71.40% 89.50% 86.50%

Piano 78.50% 82.40% 83.00% 81.60% 78.40% 74.40%

FrenchHorn 78.00% 83.70% 82.90% 87.70% 88.90% 84.00%

BassF lute 77.40% 75.50% 71.20% 68.30% 61.70% 61.70%

AltoF lute 76.70% 82.80% 78.60% 79.30% 82.80% 75.90%

DoubleBass 75.40% 60.80% 60.00% 75.40% 54.40% 52.60%

Piccolo 74.50% 69.20% 62.00% 71.70% 67.90% 58.50%

CTrumpet 72.00% 68.90% 69.10% 83.10% 78.50% 72.30%

V iolin 71.00% 75.00% 77.10% 78.00% 72.70% 76.50%

Oboe 70.30% 71.00% 35.90% 81.30% 68.80% 43.80%

V ibraphone 69.30% 91.40% 85.70% 73.20% 90.10% 93.00%

Bassoon 68.80% 66.70% 45.50% 61.10% 55.60% 27.80%

Cello 67.00% 63.20% 63.50% 61.50% 62.50% 68.80%

Saxophone 66.70% 51.70% 53.60% 46.70% 50.00% 50.00%

Table 3. Results of three groups of features at the third level of the music family tree

Table 3 shows statistics of the precisions of the classifiers constructed with
the selected features, all features, and the rest of the features after selection in



the bottom level of the family tree for some instruments in the experiment. The
overall accuracy of all the features was slightly better than that of the selected
features. The computing time for List I, All, and List II is 7.33, 61.59, and 54.31
seconds respectively.

5 Conclusion and future work

A large number of attributes is generated in a table during fattening the fea-
tures into a single value attributes for classical classifiers by statistical and other
feature design methods. Some of the derived attributes may not significantly
contribute to the classification models, or sometimes may distract the classifica-
tion. In the light of the results from the experiments, we conclude that attributes
have different degree of influence on the classification performance for different
instrument families. The new temporal features related to harmonic peaks sig-
nificantly improved the classification performance when added into the database
with all other features. However, the new features were not suitable to replace
the MPEG7 harmonic peak related features and Tristimulus parameters as the
logistic studies shows. We also noticed that classifications at a higher level of
granularity tended to use more features for correct prediction than those at the
lower level. This may especially benefit a cooperative query answering system
to choose suitable features for classifiers at different levels.
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