
In Search for Best Meta-Actions to Boost
Businesses Revenue

Jieyan Kuang1 and Zbigniew W. Raś1,2

1 University of North Carolina, Dept. of Computer Science,
Charlotte, NC, 28223, USA

2 Warsaw Univ. of Technology, Inst. of Computer Science, 00-665 Warsaw, Poland
e-mail: jkuang1@uncc.edu, ras@uncc.edu

Abstract. The ultimate goal of our research is to build recommender system
driven by action rules and meta-actions for providing proper suggestions to im-
prove revenue of a group of clients (companies) involved with similar businesses.
Collected data present answers from 25,000 customers concerning their personal
information, general information about the service and customers’ feedback to
the service. This paper proposes a strategy to classify and organize meta-actions
in such a way that they can be applied most efficiently to achieve desired goal.
Meta-actions are the triggers that need to be executed for activating action rules.
In previous work, the method of mining meta-actions from customers’ reviews
in text format has been proposed and implemented. Performed experiments have
proven its high effectiveness. However, it turns out that the discovered action rules
need more than one meta-action to be triggered. The way and the order of execut-
ing triggers causes new problems due to the commonness, differential benefit and
applicability among sets of meta-actions. Since the applicability of meta-actions
should be judged by professionals in the field, our concentration is put on de-
signing a strategy to hierarchically sort and arrange so called meta-nodes (used to
represent action rules and their triggers in a tree structure) as well as to compute
the effect of each meta-node. Furthermore, users will have more concrete options
to consider by following the path in trees built from these meta-nodes.

1 Introduction

The competition between companies dealing with similar businesses is always inten-
sive and full of gunpowder, and all of them are trying their best to attract and keep as
many customers as possible. To evaluate and improve the performance of a company’s
growth engine, NPS (Net Promoter System) has been designed and becomes one of the
most important measurements nowadays. Generally speaking, NPS system divides cus-
tomers into three groups: Promoter, Passive and Detractor, which represent customers’
satisfaction, loyalty and likelihood to recommend the company to their friends in a de-
scending order [9].

In our project, we intend to build a hierarchical recommender system driven by ac-
tion rules and meta-actions for providing proper suggestions to improve clients’ NPS
rating. There are 34 clients (companies) in our dataset and they deal with similar busi-
nesses all over US and south Canada. To collect the research data, over 25,000 cus-
tomers have been randomly selected to answer a questionnaire that asks customers’



personal information, general information about the service and customers’ feedback
to the service. In terms of giving feedback about the service by customers, they can as-
sign numeric scores ranging from 0 to 10 to express their satisfaction (higher the score
is, more satisfied the customer is), and they are also welcomed to give more details
which are recorded in text format. Based on the numeric values, customers are cate-
gorized into three NPS statuses: 9-10 is promoter, 7-8 is passive and 0-6 is detractor.
Furthermore, the NPS rating of a client can be calculated as the percentage difference
between customers that are promoter and customers that are detractor.

In previous work, a hierarchical dendrogram has been generated by applying ag-
glomerative clustering algorithm to the semantic distance matrix covering 34 clients
[3], which demonstrates the similarity among clients concerning the knowledge hid-
den in datasets and is the foundation of our project. With the dendrogram and the fact
that clients can learn from each other by exchanging their hidden knowledge, a strategy
called HAMIS (Hierarchically Agglomerative Method for Improving NPS) has been de-
signed to maximally extend individual dataset for each client by merging it with datasets
of clients who are semantically similar, have better NPS rating and better classification
results [4]. Then action rules, that show what minimum changes are needed for each
client to move its ratings to the Promoter’s group, are generated from their datasets
enlarged by HAMIS. Meta-actions are the ultimate triggers that will be executed by
clients to make action rules effective. Strategy for generating meta-actions is proposed
and experiments have been conducted to prove its effectiveness and efficiency.

Clearly, each action rule can be triggered by different groups of meta-actions. In
the ideal scenario, all discovered actions rules should be triggered. So the problem of
finding the smallest sets of meta-actions triggering all action rules seems important to
be solved. However each meta-action has a number of parameters assign to it like its
cost or benefit. We may sort all meta-actions in a certain way and then apply them one
by one to the discovered action rules only if the increment in NPS by triggering these
rules is above some threshold value. Saying another words, some meta-actions may not
be executed at all. The same some action rules will not get triggered because the benefit
of doing that will be too small.

The main contribution in this paper lays on designing a strategy to classify and or-
ganize meta-actions hierarchically for providing clients with an efficient way of picking
right choices out of an the entire mass. Traditional influence matrix is transformed into
a more straightforward structure named advanced matrix. Meta-node, introduced in this
paper, is used to store a set of action rules and their triggers. So each meta-node is seen
as a possible option to be recommended by our system to a client. When processing
meta-actions from the most common one to the least one (number of action rules it
is associated with), a new meta-node is built or updated if a new action rule can be
triggered. Some meta-nodes are connected and form a ”tree”. Lower a meta-node is
located in a tree, greater is its effect. Our strategy will result in a forest of trees. Details
concerning the process of generating these trees is illustrated thoroughly in this paper.



2 Action Rules

The concept of an action rule was firstly proposed by Ras and Wieczorkowska in [6]
and investigated further in [2], [5], [1] and [8]. Action rules indicate possibly the
smallest sets of changes that should be made to achieve the desirable effect under certain
possibilities. An action rule usually consists of three types of features: stable attribute,
flexible attribute and decision attribute. Stable attributes refer to these features of which
values can not be changed, while flexible attributes denote the features of which values
can be changed. Decision attribute is a flexible attribute and the most distinguished one
because it contains the decisional values that we aim to transition from or to.

Before explaining the definition of action rules, let’s first recall the definition of
an information system (dataset). By an information system, we mean a triple S =
(X,A, V ), where:

1. X is a nonempty, finite set of objects
2. A is a nonempty, finite set of attributes, i.e.

a : U −→ Va is a function (can be partial function) for any a ∈ A, where Va is
called the domain of a

3. V =
∪
{Va : a ∈ A}.

Based on the partition of attributes in an action rule, we assume that A = ASt ∪
AFl, where ASt and AFl denote stable attributes and flexible attributes respectively.
Additionally, AFl = Afl ∪ Ad, where Ad and Afl represent decision attribute and
flexible attributes other than decision attribute respectively. Information system S is a
decision system if decision attribute defined.

An action rule is composed of atomic action sets. By an atomic action set we mean
a singleton set containing an expression (a, a1 → a2) called atomic action, where a
is an attribute and a1, a2 ∈ Va. If a1 = a2, then a is called stable on a1. Instead of
(a, a1 → a1), we usually write (a, a1) for any a1 ∈ Va. By Action Sets we mean a
smallest collection of sets such that:

1. If t is an atomic action set, then t is an action set.
2. If t1, t2 are action sets, then t1 ∪ t2 is a candidate action set.
3. If t is a candidate action set and for any two atomic actions (a, a1 → a2), (b, b1 →

b2) contained in t we have a ̸= b, then t is an action set. Here b is another attribute
(b ∈ A), and b1, b2 ∈ Vb.

By the domain of an action set t, denoted by Dom(t), we mean the set of all attribute
names listed in t. By an action rule we mean any expression r = [t1 ⇒ t2], where
t1 and t2 are action sets. Additionally, we assume that Dom(t2) ∪ Dom(t1) ⊆ A
and Dom(t2) ∩ Dom(t1) = ∅. The domain of action rule r is defined as Dom(t1) ∪
Dom(t2).

Now we give an example assuming that a, b and d are stable attribute, flexible
attribute and decision attribute respectively in S. Expressions (a, a2), (b, b1 → b2),
(d, d1 → d2) are examples of atomic actions. Expression (a, a2) means that the value
a2 of attribute a remains unchanged. Expression (b, b1 → b2) means that the value



of attribute b is changed from b1 to b2. Expression r = [{(a, a2), (b, b1 → b2)} ⇒
{(d, d1 → d2)}] is an example of an action rule saying that if value a2 of a remains
unchanged and value of b will change from b1 to b2, then the value of d will be expected
to transition from d1 to d2.

In early research, action rules can be constructed from two classification rules [7].
Taking the example of action rule r shown above for instance, r can be seen as the com-
position of two association rules r1 and r2, where r1 = [{(a, a2), (b, b1)} → (d, d1)]
and r2 = [{(a, a2), (b, b2)} → (d, d2)]. In [11], the definition of support and confidence
of action rule r has been proposed. However, there is a slight difference in defining the
support in our case. The definition of support and confidence of r, used in this paper, is
given below:

– sup(r) = sup(r1)
– conf(r) = conf(r1) · conf(r2)

The confidence of an action rule is still the multiplication of the confidences of
two involved association rules. But the support of action rule becomes the support of
association rule r1. In our example, it is the number of objects x (x ∈ X) which values
of attributes a, b and d are equal to a2, b1 and d1 respectively. By defining support of
action rules this way, the number of objects x in S that potentially can be affected by
applying this action can be tracked and used to evaluate its performance.

3 Meta-Actions

As an action rule can be seen as a set of atomic actions that need to be made happen
for achieving the expected result, meta-actions are the actual solutions that should be
executed to trigger the corresponding atomic actions, Table 1 below shows an example
of influence matrix which describes the relationships between the meta-actions and
atomic actions influenced by them.

Table 1. Meta-actions Influence Matrix for S

a b d

{M1,M2,M3} b1 → b2 d1 → d2
{M1,M3,M4} a2 b2 → b3
{M5} a1 b2 → b1 d2 → d1
{M2,M4} b2 → b3 d1 → d2
{M1,M5,M6} b1 → b3 d1 → d2

In Table 1, a, b and d are same attributes in decision system S as mentioned in
previous section, and {M1,M2,M3,M4,M5,M6} is a set of meta-actions which hy-
pothetically trigger action rules generated from S. Each cell in a row shows an atomic
action that can be invoked by the set of meta-actions listed in the first column of that
row. For instance, the first row shows that the atomic actions (b1 → b2) and (d1 → d2)



can be activated by executing meta-actions M1, M2 and M3 together. Unlike the tradi-
tional influence matrix in [11] and [10] which involves only one single meta-action in
each row, here the transaction of atomic actions in our domain relies on one or more
meta-actions.

Clearly, an action rule can be triggered with the set of meta-actions listed in one
single row of an influence matrix as long as all of its atomic actions are listed in that
row. Otherwise, selecting a proper set of meta-actions combined from multiple rows
becomes necessary. If we would like to activate action rule r given in previous sec-
tion, it is quite obvious that the combination of meta-actions listed in the first and
second row of Table 1 could trigger r, as meta-actions {M1,M2,M3,M4} cover all
required atomic actions (a, a2), (b, b1 → b2) and (d, d1 → d2) in r. On the other
hand, one set of meta-actions could possibly trigger multiple action rules, like the meta-
action set {M1,M2,M3,M4} triggers not only r as mentioned but also action rule
[{(a, a2), (b, b2 → b3)} ⇒ {(d, d1 → d2)}] by following the second and forth row in
Table 1, if such action rule exists in S.

Suppose a set of meta-actions M = {M1,M2, ...,Mn : n > 0} can trigger a set of
action rules {r1, r2, ..., rm : m > 0} that covers certain objects in S. The coverage or
support of M is the summation of support of all covered action rules as shown below,
which is the total number of objects in the initial state that are going to be affected
by M . The confidence of M is calculated by averaging the confidence of all covered
action rules. Furthermore, the effect of applying M is defined as the product of its
support and confidence (sup(M) · conf(M)). It represents the number of objects in the
system that are going to be improved by applying M which also is used for calculating
the increment of NPS rating caused by it. Therefore, greater is the effect of M , larger
increment of NPS rating will be produced.

– sup(M) =
∑m

i=1 sup(ri)

– conf(M) =
∑m

i=1 sup(ri)·conf(ri)∑m
i=1 sup(ri)

4 Process of the Strategy

4.1 Background

The importance of a well organized and informative result is mentioned briefly earlier.
Now, the reasons for pursuing that are explained thoroughly below:

1. The commonness between sets of meta-actions tells about an enhancement. Al-
though actions rules are triggered by different sets of meta-actions, there are some
meta-actions which exist in different sets. The commonness between two sets of
meta-actions is defined as the percentage of the common meta-actions both sets
occupy in the smaller set. If the commonness between two sets equals to 1, then
the smaller set belongs to the larger one. In this case, with the larger set of meta-
actions applied, besides the action rules covered by it, the action rules covered by
the smaller set are also invoked. So the effect of executing the larger set of meta-
actions is expected to be enhanced with the effect of smaller one added.



2. The effect of sets of meta-actions tells about preference. Generally speaking, in
contrast to the smaller set of meta-actions, it is understandable that the larger set to
which a smaller one belongs is more preferable to clients due to its greater effect.
On the other hand, for disjoint sets of meta-actions, the selection preference is no
longer built on the commonness, but to some extent directly on their effect. Another
words, the ones with more significant effect are certainly more preferable to clients.

3. The applicability of certain meta-actions tells about rejection. In our domain, an
action rule will not be effective unless all required meta-actions have been taken.
So, clients are encouraged to perform all given meta-actions to achieve the expected
improvement. But in real life, we can foresee that some of them will be rejected by
clients as it is undeniable that some meta-actions are more acceptable and easier
to be executed than other ones because of their cost or other issues. For example,
if clients are given a set of meta-actions in which lowering the price is mentioned,
clients will not like it, even though they are advised by the system to do it for
pleasing the customers who complain about the cost. So meta-actions with poor
applicability will lead to the rejections from clients.

Considering these three reasons together, the decision of choosing meta-actions to
apply does not solely depend on us any more, as our system can calculate the effect
of sets of meta-actions, but we are not the experts in estimating the difficulty or cost
of adopting certain meta-actions in the field. The decision must be done by clients and
technicians who have professional knowledge about this practice. Also, it should be
mentioned that clients probably would ignore a set of meta-actions if its effect and cost
are remarkably unbalanced and there is an alternative. So the final decision should be
determined by our clients who weight the effect and cost of applying some actions with
their experience and expertise, which proves the necessity of the strategy proposed in
this paper.

This strategy aims to create actionable paths that are well classified from groups of
meta-actions and lead to certain increment of NPS rating. These actionable paths can
be seen as a forest of trees where each tree is made of one or more meta-nodes that are
hierarchically structured regarding their relation. A meta-node is a choice for client to
consider and it represents a set of action rules and their triggers. So, the effect of a meta-
node is the effect of the group of meta-actions in it. In a tree (or path), the connection
between two nodes is a parent-child relationship and it indicates that the commonness
between the groups of meta-actions contained in them equals to 1. So, the node with
smaller set of meta-actions is defined as the parent of the node with larger set and it is
put on an upper level. The parent-child relationship is a one to many mapping, as one
node has at most one parent, but a parent node can have more than one child.

The details concerning the strategy will be explained in following parts, which is
the main focus of this paper.

4.2 Advanced Matrix: Transformation of Influence Matrix

To find triggers for action rules, influence matrix mentioned earlier is a semi-product
for us and it should be transformed into an advanced representation to demonstrate the
triggers for each rule straightforwardly. Table 2 is an example of advanced matrix. In



the table, there are n meta-actions in total and Mi represents every single meta-action,
where 0 < i < n + 1. There are m action rules and ”rule j” denotes every generated
action rule, where 0 < j < m + 1. For each row, each cell corresponding to the meta-
action that is responsible for triggering rule j is filled with 1, while other cells are filled
with 0.

Table 2. Advanced Matrix: Action Rules and Their Triggers (Meta-actions)

M1 M2 M3 ... Mn

rule 1 0 1 1 ... 1
rule 2 1 0 1 ... 1
rule 3 0 0 1 ... 1
rule 4 0 1 0 ... 1

... ... ... ... ... ...
rule m 0 0 1 ... 1

Advanced matrix is transformed from influence matrix. Based on advanced matrix,
the association between meta-actions and action rules becomes more apparent and it is
easy to sort all the meta-action by their popularity, which is the basis of the following
procedures.

4.3 Presentation of the Strategy

As mentioned earlier, the goal of our strategy is to build a forest of trees where each tree
is composited by meta-nodes that are linked via a parent-child relationship. Algorithm
1 is designed to organize the advanced matrix in a hierarchical manner and generate a
list of meta-nodes T, so it is obvious that an advanced matrix M should be given. At the
beginning of Algorithm 1, meta-list and rules are generated, which are a list of meta-
actions descendingly sorted by their popularity in M and a set of all action rules in M
respectively. Meanwhile, a map MetaMap and a list T are initialized as well. MetaMap
is created to store the mappings (entries) from sets of meta-actions to their sets of action
rules during the entire process. Generally speaking, the content in an entry or mapping
in MetaMap is identical to a meta-node at the end of the algorithm and each action rule
can be involved with only one mapping. The list T will be used to store the continually
generated meta-nodes and it will be our final product.

With a sorted list of meta-actions, the algorithm repeatedly runs the main part with
one meta-action at a time from the most frequent to least frequent one. Given a meta-
action (which is represented as meta) in each round, all the action rules are iterated one
by one and only the ones associated with meta in M will be continued to the following
procedures. For each continued action rule (which is denoted as r), the existence of a
mapping established in MetaMap involving r differs the way of handling it and we can
easily tell its existence by attempting to retrieve a mapping E associated with r. If the
mapping is valid, it indicates that other triggers for r have been processed and stored in
E before meta, so a non-empty set of meta-actions (which is denoted as meta-action-
set) is retrieved along with its mapped-rules set from E; Otherwise, a new mapping



Algorithm 1 Hierarchically Organize Triggers Algorithm
Input: M: an advanced matrix containing action rules and their corresponding triggers.
Output: T: a list containing all generated metaNodes.

Generate meta-list: a list of meta-actions that are descendingly sorted by their popularity in M ;
Generate rules: a set of all action rules in M ;
Initialize MetaSets (meta-action-set, mapped-rules);
Initialize a list T for storing all generated metaNodes;
for meta ∈ meta-list do

for r ∈ rules do
if meta is one of r’s triggers then

retrieve entry E (meta-action-set, mapped-rules) for r ∈ mapped-rules from MetaSets;
if E is valid then

add a new entry E′(meta-action-set ∪ {meta}, {r}) to MetaSets;
mapped-rules = mapped-rules \ {r};
if mapped-rules is empty then

remove entry E (meta-action-set, mapped-rules) from MetaSets;
else

keep entry E (meta-action-set, mapped-rules) in MetaSets;
end if

else
retrieve entry E′ ({meta}, mapped-rules);
put entry E′ ({meta}, mapped-rules ∪ {r}) to MetaSets;

end if
if meta-action-set ∪ {meta} trigger r completely then

T = TreeEditor(meta, r, meta-action-set, T);
end if

end if
end for

end for
Sort meta-nodes in T by their effect in a descending order.
return T ;

from meta to r should be established instead. In terms of a valid mapping, it is defined
as a mapping with a non-empty key (set of meta-actions) in our domain, so an empty
entry will be found if a mapping is invalid. For the former situation with a valid existing
mapping discovered, it is apparent that a new mapping E′ to r has to be built due to the
enlargement of its triggers, and the existing mapping E has to be updated accordingly to
keep the distinctness of action rules. Building a new mapping in MetaMap by creating
a new entry E′ with meta added into the retrieved meta-action-set and mapped to r is
straightforward, so is the removal of r from mapped-rules in the existing entry E. But
there is no necessity of keeping E if its action rule set becomes empty after the removal,
with regards to the definition of a valid mapping. Similarly, building a new entry E′

with only {meta} mapped to {r} in MetaMap for the latter situation is simple as well.
However, it is possible that a mapping from meta already exists. If this is the case,
which implies another set of actions rules that can be triggered by meta have already
been stored, then r should be added into the existing set of action rules mapped from
meta, instead of creating a new mapping.



Algorithm 2 TreeEditor
Input: meta: a single meta-action.

r: an action rule.
meta-action-set: a set of meta-actions.
T: a tree storing the current added metaNodes and their relationship.

Output: T
retrieve metaNode N (meta-action-set ∪ {meta}, *) from T;
if N is valid then

set N as (meta-action-set ∪ {meta}, * ∪{r});
set effect(N) = effect(N) + sup(r) · conf(r);
if N is someone’s parent then

update N’s children’s effect.
end if

else
set N as (meta-action-set ∪ {meta}, {r});
set effect(N) = sup(r) · conf(r);
add N into T;
retrieve metaNode P (meta-action-set, *) in T;
if P is valid then

set P as N’s parent;
set effect(N) = effect(N) + effect(P);

end if
end if
return T ;

Every time a new mapping (or entry) E′ is put into MetaMap, no matter if it is from
an existing mapping or not, Algorithm 2 will be called on the condition that current
action rule r is fulfilled. By r is fulfilled, we mean that the set of meta-actions in the
new entry E′ is all we need to trigger r according to advanced matrix M. Algorithm 2
is responsible for two aspects: constructing meta-nodes and building trees by linking
meta-nodes regarding their relation, which requires relevant information including cur-
rent meta-action meta, current action rule r, meta-action-set from E and of course T for
storing meta-nodes. To construct a meta-node for a most recently fulfilled rule r, the
first step is to check whether there is a meta-node in T which contains the same set of
meta-actions as r does but fulfilling other rules. Since every meta-node can be seen as
a mapping in MetaMap, the validity of a meta-node is evaluated in a similar way as we
did for validating a mapping previously. As shown in Algorithm 2, if the meta-node N
retrieved for the purpose of validation from T is non-empty, then r should be added into
the action rule set along with other rules represented as ”*” that have already been stored
in N. Otherwise, it means that N is empty, so a new entry (meta-action-set ∪ {meta},
{r}) should be assigned to N and added into T as a new meta-node. With a newborn
meta-node N, the last but not least step is to set up the parent-child relationship through
looking for its parent node. The parent node will not exist unless the mapping E′ is
extended from an existing mapping E in previous procedures in Algorithm 1, in other
words, meta-action-set is not empty. Therefore, as long as the meta-node P retrieved
by looking for a meta-node which has meta-action-set is valid, P is N’s parent and N is



one of P’s children. On the other hand, it is unnecessary to set up the relationship for a
newly updated meta-node because its parent must be found when it has been made.

Besides organizing sets of meta-nodes hierarchically as a tree, computing the ex-
pected effect of each meta-node during the process is another characteristic step in our
strategy. It provides clients with concrete clues to evaluate the worth of those meta-
actions. Since the effect of triggering a single action rule is defined as the product of
its support and confidence, the effect of a meta-node is the summation of the effect of
triggering all action rules in it. So whenever a new action rule is added into an existing
meta-node, its effect must be added into the meta-node as well. Additionally, if this
existing meta-node which has just been updated has any children, its children’s effect
need to be updated as well. And for a newborn meta-node, besides its own influence
computed on the basis of our regulations, its effect is strengthened with its parent’s help
unless its parent does not exist.

Algorithm 1 will sort the meta-nodes in T by their effect in a descending order and
return it after all the meta-actions in meta-list have been processed. An example of
printed result will be shown in the next section.

5 Experiment

To test its performance, experiments are carried out with the JAVA based implementa-
tion of the proposed algorithm. Firstly, we take a small sample of data as an example
to show the procedures in Algorithm 1 and the representation of final results. Table 3 is
the advanced matrix in our example, and there are six action rules and four meta-actions
involved in the sample. These four meta-actions are descendingly sorted by their popu-
larity in meta-list as {M3, M4, M2, M1} and they will be checked one by one in such
order. Hence, with M3 as the most frequent meta-action in the list, all the action rules
associated with it will be stored in an entry in MetaMap at the first round, which is
({M3}, {r1, r2, r3, r4, r6}). There is no action rule that has been fulfilled, so no meta-
node will be made yet. When it comes to M4, the action rules involving it are handled
in different ways. Action rules that have already been stored in MetaMap, like r1, r2, r3
and r6, should be moved to another mapping with {M3, M4}, and the previous mapping
becomes ({M3}, {r4}). For action rules that are new to MetaMap, a new entry is built
and it is ({M4}, {r5}) in this example. In terms of building meta-nodes, when iterating
action rules top down, we would find that r3 is fulfilled with {M3, M4}. Obviously a
meta-node ({M3, M4}, {r3}) should be built and its parent who is suppose to be ({M3},
*) doesn’t exist, so no parent is affiliated and its effect is sup(r3) · conf(r3). The same
meta-actions trigger r6 as well, so the meta-node becomes ({M3, M4}, {r3, r6}), and
its effect is updated as sup(r3) · conf(r3)+sup(r6) · conf(r6). We should take care of
its children’s effect as well, but there isn’t any, so nothing needs to be done. As all the
action rules are appeared in MetaMap now, we focus on creating new mappings from
existing ones and updating the existing mappings by following the requirements. Along
with the same procedures being performed to the rest meta-actions, more meta-nodes
will be built, such as ({M3, M4, M2}, {r1}), ({M2, M4}, {r4}) and so on. Whenever
a new meta-node is made, it is necessary to look for its parent. For instance, meta-
node ({M3, M4, M2}, {r1}) is a mapping extended from {M3, M4}, and meta-node



({M3, M4}, {r3, r6}) does exist, thus these two meta-nodes should be connected with
a parent-child relationship as the former is a child of the latter. Meanwhile, the effect of
the child’s node is its own effect plus its parent’s effect.

Table 3. Advanced Matrix for the Sample Data

M1 M2 M3 M4

r1 0 1 1 1
r2 1 0 1 1
r3 0 0 1 1
r4 0 1 0 1
r5 1 1 1 0
r6 0 0 1 1

When the algorithm comes to the end, a list of meta-nodes will be printed as Fig. 1
shows. There are five meta-nodes generated and they are listed in an descending order
according to their effect, which is basically the priority that clients follow to judge them.
Similar as running the program with this sample, we run it with a larger set consisting
of 127 action rules and 627 meta-actions, and the program sorts the result in a format
as shown in Fig 1, which lists 78 meta-nodes, their relations and their effect.

Fig. 1. Experiment Result with Given Example

6 Conclusion

From the example result shown in Fig.1, it is clear that the strategy helps clients select
actions of top priority by considering the predicted effect as a partial reason for the



final decision. What’s more, the experiment with larger dataset proves the efficiency
of organizing the meta-actions in the proposed way. It is justified by the number of
generated meta-nodes which is much smaller than the number of action rules or sets
of meta-actions triggering them (it is over 30% off the original choices within clients’
evaluation). On the other hand, the effect of applying sets of meta-actions is calculated
more accurately with the definition of parent-child relationship. Therefore, this strategy
provides a more effective way for clients to choose the right set of meta-actions out of
the generated suggestions, and conclusively fits our anticipation.

References

1. A. Hajja, Z.W. Ras, A. Wieczorkowska (2014) Hierarchical object-driven action rules, Journal
of Intelligent Information Systems, Springer, Vol. 42, No. 2, 2014, pp. 207-232

2. Z. He, X. Xu, S. Deng, R. Ma (2005) Mining action rules from scratch, in Expert Systems
with Applications, Vol. 29, No. 3, Elsevier, pp. 691-699

3. J. Kuang, A. Daniel, J. Johnston, Z.W. Ras. (2014) Hierarchically Structured Recommender
System for Improving NPS of a Company. Proceedings of 9th International Conference,
RSCTC 2014, Granada and Madrid, Spain, LNAI, Vol. 8526, Springer, pp. 347-357.

4. J. Kuang, Z.W. Ras, A. Daniel (2015) Hierarchical agglomerative method for improving NPS.
Proceedings of the International Conference on Pattern Recognition and Machine Intelligence,
LNCS, Vol. 9124, Springer, 2015, pp. 54-64

5. R. Paul, A.S. Hoque (2010) Mining irregular association rules based on action and non-action
type data, in Proceedings of the Fifth International Conference on Digital Information Man-
agement (ICDIM), pp. 63-68

6. Z.W. Ras, A. Wieczorkowska (2000) Action-rules: how to increase profit of a company, in
Principles of Data Mining and Knowledge Discovery, (Eds. D.A. Zighed, J. Komorowski, J.
Zytkow), Proceedings of PKDD’00, Lyon, France, LNAI, No. 1910, Springer, pp. 587-592

7. Z. Ras, A. Dardzinska (2011) From Data to Classification Rules and Actions, in Proceedings
of the Joint Rough Sets Symposium (JRS07), LNAI, Vol. 4482, Springer, pp. 322-329

8. J. Rauch, M. Simunek (2009) Action rules and the GUHA method: Preliminary con- sidera-
tions and results, in Proceedings of ISMIS 2009, LNAI 5722, Springer, pp. 76-87

9. F.F. Reichheld (2003) The one number you need to grow, in Harvard Business Review, De-
cember 2003, pp. 1-8

10. H. Touati, J. Kuang, A. Hajja and Z. Ras (2013) Personalized Action Rules for Side Effects
Object Grouping. International Journal of Intelligence Science, Vol. 3 No. 1A, pp. 24-33

11. A. Tzacheva, Z.W. Ras (2010) Association action rules and action paths triggered by meta-
actions, in Proceedings of 2010 IEEE Conference on Granular Computing, Silicon Valley,
CA, IEEE Computer Society, pp. 772-776


