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Abstract

The paper concerns discovery of knowledge needed to establish the shared mean-
ing of attributes in a Distributed Autonomous Information Systems (DAIS).
We present a Distributed Autonomous Knowledge System (DAKS) which is
an extension of DAIS and it uses discovery mechanisms to de�ne attributes
missing in one information system by mining other information systems. The
applications include knowledge and data sharing at the large scale by intelligent
information systems, public veri�cation of knowledge and others. In this paper
we mainly focus on intelligent answers to queries.

1 Introduction

Query Answering System (QAS) for Distributed Autonomous Information Sys-
tems (DAIS) is concerned with identifying objects satisfying a given description
in one of systems in DAIS. For example an information systems S in DAIS might
contain information about students in a school and classify them using attributes
such as hair color, eye color, gender and size. But S has no data concerning the
nationality of a student.

A simple query might be to �nd in a system S all Swedes who are males
with brown hair. One option of handling such a query is to retrieve from S all
males who have brown hair. Clearly this way we have no information about the
nationality of the retrieved students. Another option of handling such a query
is to ask other information systems in DAIS for de�nitions of the term Swede.
Assume that a de�nition discovered in a system S1 is represented by a certain
rule in S1 and it states that:

(eyes; blue) ^ (gender;male)) (nationality; Swede).

Also, assume that another de�nition discovered at S1 is represented by a
possible rule and it states that:

(eyes; brown) ^ (hair; blond)) (nationality; Swede).
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Rule is called certain if its con�dence is 100 percent and is called possible if
its con�dence is greater than 0 percent. The above two rules discovered at S1

can be used to replace the word Swede in a query
q = [male:Swede:with:brown:hair]

translating q to its rough representation [q1; q2] =
[male:with:blue:eyes:and:brown:hair;

male:with:brown:eyes:and:hair:which:is:blond:and:brown].

Assuming that there is no person which satis�es statement q2, the original query
will be replaced by the query
[male:with:blue:eyes:and:brown:hair].

Clearly this new query can be handled in S without any problem. The pair
[q1; q2] is called a rough representation of q if q1 is seen as the description of
certain objects described by q and q2 is seen as the description of possible objects
described by q.

There is a number of strategies which allow us to �nd certain and possi-
ble rules describing decision attributes in terms of classi�cation attributes. We
should mention here such systems like LERS (developed by J. Grzymala-Busse),
DQuest (developed by W. Ziarko), C4:5 (developed by J. Quinlan) or AQ17 (de-
veloped by R. Michalski). System FortyNiner developed by J. Zytkow allows
to describe one attribute as a function of other attributes. It is especially useful
when attributes are numerical and when rough representation of a query is too
general.

In this paper we show how to use de�nitions (of attribute values) extracted
at sites ofDAIS and how to use reducts to build better query answering systems
in a distributed environment.

For more than 10 years research has been devoted to the question of informa-
tion retrieval from heterogenous distributed databases. This research has sought
to provide integrated access to such databases and has focused on distributed
databases, multidatabases, federated databases and their interoperability. The
main purpose of integrated access is to enable a number of heterogeneous dis-
tributed databases to be queried as if they were a single homogeneous database.
Common practice in integrating database systems involves manual integration
of each database schema into a global schema [1]. This approach does not work
when the number of database systems is large. Navathe and Donahoo [16] pro-
pose to allow the database designers to develop a metadata description of their
database schema. The collection of metadata descriptions can be automatically
processed by a schema builder to create a partially integrated global schema.
The heterogeneity problem can be eliminated ([15]) by using an intermediate
model that controls the knowledge translation from a source database or knowl-
edgebase. The intermediate model they developed is based on the concept of
abstract knowledge representation. It has two components: a modeling behavior
which separates the knowledge from its implementation, and a performative be-
havior which establishes context abstraction rules over the knowledge.
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Data mining provides tools for summarizing database contents and trans-
forming low-level heterogeneous data into high-level homogeneous knowledge
about the domain described by data. To deal with semantic heterogeneity in
multiple autonomous databases, J. Han [10], [11] suggests to use generalization
technique to transform low level diverse data into relatively high level, commonly
sharable information. The construction of a Multiple Layered Database (MLD)
composed of several layers of information is based on this methodology [11]. The
lowest layer of MLD corresponds to the primitive information stored in a con-
ventional database. Its higher layers store more general information extracted,
by data mining techniques, from the lower layers. Many techniques proposed
in the area of cooperative query answering ([3], [4], [7], [5]) in a single-layer
databases can be naturally extended to cooperative query answering in MLD.

To address the problem of semantic heterogeneity in multiple autonomous
databases we introduce a Distributed Autonomous Knowledge Systems (DAKS)
where each knowledge system consists of a database (information system), a
knowledgebase and, an agent. We assume that:

{ Databases in DAKS consist of data catalogs, data tables, and metadata
(additional information about data).

{ Knowledgebases in DAKS consist not only of knowledge derived from data
(rules, classi�cation trees, equations or, taxonomies) but also they contain
knowledge of other domains, knowledge of other sites and, communication
knowledge. The knowledge derived from the data is stored either in a dis-
covery layer or a knowledge layer. Discovery layer for a given site contains
knowledge extracted only from that site. Knowledge layer for each site con-
tains knowledge extracted at other sites of DAKS. Initially, the knowledge
layers in DAKS are empty.

{ Agents in DAKS interact with one another and use meaning uni�cation and
knowledge discovery to induce from accessible data sources a new knowledge
needed to answer queries. Each agent is represented by an Intelligent Query
Answering System (IQAS), knowledge discovery algorithms (Forty Niner,
Rough Sets Library, AQ15, C4.5) and communicationprotocols to coordinate
knowledge.

Figure 1 shows the proposed initial structure of a Distributed Autonomous
Knowledge System. Discovery layers linked with databases at two di�erent sites
of DAKS can easily be inconsistent because the knowledge they contain is ex-
tracted from two di�erent sources. So, we added a shared (higher) discovery
layer which contains knowledge extracted and repaired (if inconsistent) from the
discovery layers of those sites which are frequently exchanging their knowledge.
The shared discovery layers divide DAKS into separate clusters. The process
of answering queries will be greatly simpli�ed because the knowledge exchange
between sites of the same cluster is not needed.

We consider two types of queries called local (use only local attributes) and
global (use some attributes which are locally not available). Global queries are
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Fig. 1. Distributed Autonomous Knowledge System

queries which can be resolved only through the interaction of agents (exchanging
knowledge in a form of de�nitions of attributes) either of the same or of di�erent
clusters in DAKS. Local queries are resolved entirely by a query answering
system of a local agent who will access, if needed, the local discovery layer
and/or the shared discovery layer stored in a locally shared memory of the
agent's cluster. For example, a query

select � from F lights

where airline = "Delta"
and departure time = "morning"
and departure airport = "Charlotte"
and aircraft = "Boeing"

will be called global for a database

F lights(airline; departure time; arrival time; departure airport; arrival airport)

if the attribute aircraft is not de�ned in both local and locally shared dis-
covery layers.
A shared discovery layer of any cluster in DAKS can also be seen as a shared
knowledge layer (since its knowledge is extracted from many sites of a single
cluster).
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2 Basic De�nitions

By an information system we mean a structure S = (X;A; V ), where X is a
�nite set of objects, A is a �nite set of attributes, and V =

S
fVa : a 2 Ag is a

set of their values. We assume that:

{ Va; Vb are disjoint for any a; b 2 A such that a 6= b,
{ a : X �! Va is a function for every a 2 A.

Instead of a, we often write a[S] to denote that a in an attribute in S.
We assume here that the reader is familiar with the basic de�nitions in rough

sets theory including the notion of a covering. The main idea of the use of rough
set theory for discovering rules is presented in Figure 2.
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Certain
Rules
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Fig. 2. Rough Set Rule Generation

By a distributed information system [20], [21], [23] we mean a pair DS =
(fSigi2I ; L) where:

{ Si = (Xi; Ai; Vi) is an information system for any i 2 I,
{ L is a symmetric, binary relation on the set I,
{ I is a set of sites.

Distributed information system DS = (fSigi2I ; L) is consistent if:

(8i)(8j)(8x 2 Xi \Xj)(8a 2 Ai \Aj) [a[Si](x) = a[Sj ](x)].

In the remainder of this paper we assume that DS = (fSigi2I ; L) is a dis-
tributed information system which is consistent. Also, we assume that Sj =
(Xj ; Aj; Vj) and Vj =

S
fVja : a 2 Ajg, for any j 2 I.

We will use A to name the set of all attributes in DS, A =
S
fAj : j 2 Ig.

The shared semantics is de�ned for the set A of all attributes in all informa-
tion systems in DS. For each attribute a in A, the operational meaning of a is
de�ned by:

1. the set of information systems in which a is available directly: Si : a 2 Ai;
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2. the set of information systems in which a has been de�ned; and the set of
de�nitions in each information system. De�nitions can be equations, boolean
forms, etc.

3. the set of information systems in which the de�nitions of a can be used,
because the de�ning attributes are available there. An attribute a is a de�ned
attribute in an information system S if:

(a) a de�nition DEF of a has been discovered in one of information systems
in DS;

(b) all other attributes in the de�nition DEF are present in S; in such cases
they can be put together in a JOIN table and DEF can be directly
applied.

3 Syntax of De�nitions

Now, we de�ne the syntax of de�nitions in the form of equations. Partial de�ni-
tions are included, as they are often useful. They can be automatically discovered
by system 49er (developed by J. Zytkow). In the next subsection we give the in-
terpretation of partial de�nitions.

Functors are the building blocks from which equations and inequalities can
be formed. Those in turn are the building blocks for partial de�nitions. Assume
that x is a variable over Xi and r1; r2; :::; rk are functors. Also, we assume here
that mj is the number of arguments of the functor rj, j = 1; 2; ::; k. The number
of arguments can be zero. A zero argument functor is treated as a constant.

By a set of s(i)-atomic-terms we mean a least set T0i such that:

{ 0;1 2 T0i,

for any symbolic attribute a 2 Aj ,

{ [a(x) = w] 2 T0i for any a 2 Ai and w 2 Via,
{ � [a(x) = w] 2 T0i for any a 2 Ai and w 2 Via,

for any numerical attributes a; a1; a2; :::; amj
in Ai,

{ [a(x) � rj(a1; a2; :::; amj
)(x)] 2 T0i, where � 2 f=;�;�g.

s(i)-atomic-terms of the form [a(x) = w] and [a(x) = rj(a1; a2; :::; amj
)(x)]

are called equations.

By a set of s(i)-partial-de�nitions (s(i)-p-defs in short) we mean a least set
Ti such that:

{ if t(x) 2 T0i is an equation, then t(x) 2 Ti,
{ if a 2 Ai and t(x) is a conjunction of s(i)-atomic-terms and s(x) is an
equation, then [t(x) �! s(x)] 2 Ti,

{ if t1(x); t2(x) 2 Ti, then (t1(x) _ t2(x)); (t1(x) ^ t2(x)) 2 Ti.
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For simplicity we often write t instead of t(x).

The set of s(I)-defs is de�ned in a similar way to s(i)-p-defs: the set Vi is
only replaced by

S
fVj : j 2 Ig and the set Ai is replaced by

S
fAj : j 2 Ig.

s(I)-defs represents all possible candidate de�nitions built from attributes that
can come from di�erent databases (information systems).

Standard interpretation Mi of s(i)-p-defs in a distributed information system
DS = (fSjgj2I ; L) is de�ned as follows:

{ Mi(0) = ;, Mi(1) = Xi

{ Mi(a(x) = w) = fx 2 Xi : a[Si ](x) = wg,
{ Mi(� (a(x) = w)) = fx 2 Xi : a[Si](x) 6= wg,
{ for any � 2 f=;�;�g,
Mi(a(x) � rj(a1; a2; :::; amj

)(x)) =
fx 2 Xi : a[Si ](x) � rj(a1[Si ](x); a2[Si](x); :::; amj[Si ](x))g,

{ Mi([t �! s]) = fx 2 Xi : if [x 2Mi(t)] then [x 2Mi(s)]g,
{ if t1; t2 are s(i)-p-defs, then
Mi(t1 _ t2) = Mi(t1) [Mi(t2),
Mi(t1 ^ t2) = Mi(t1) \Mi(t2),
Mi(t1 = t2) = (if Mi(t1) =Mi(t2) then True else False).

Let us assume that [t1 �! (a1(x) = w1)]; [t2 �! (a2(x) = w2)] are s(i)-p-
defs. We say that they are Si-consistent, if either a1 6= a2 or Mi(t1 ^ t2) = ; or
w1 = w2. Otherwise, these two s(i)-p-defs are called Si-inconsistent.

Similar de�nitions apply when w1 and w2 in those partial de�nitions are
replaced by r1(a1; a2; :::; amj

)(x) and r2(a1; a2; :::; amj
)(x).

4 Discovery layer

In this section, we introduce the notions of a discovery layer and a distributed
autonomous knowledge system. Also, we introduce the concept of a dynamic
operational semantics to re
ect the dynamics of constantly changing discovery
layers.

Notice that while in the previous sections s(i)�p�defs have been interpreted
at the sites at which all relevant attributes have been present, we now consider
s(I) � defs imported from site k to site i.

By a discovery layer Dki we mean any s(i)-consistent set of s(k)�p�defs, of
the two types speci�ed below, which are satis�ed, by means of the interpretation
Mk, by most of the objects in Sk:

{ [t �! [(a = rm(a1; a2; :::; am))(x)]], where a1; a2; :::; am 2 Ai and a 2 Ak

and t is a conjunction of atomic terms that contain attributes that occur
both in Ai and in Ak

{ [t �! (a(x) = w)], where a 2 Ak and t satis�es the same conditions as
above.
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Suppose that a number of partial de�nitions have been imported to site i

from a set of sites Ki. All those de�nitions can be used at site i.
Thus, the discovery layer for site i 2 I is de�ned as a subset of the set

Di =
S
fDki : k 2 Kig where Ki is a set of sites.

By Distributed Autonomous Knowledge System (DAKS) we mean DS =
(f(Si; Di)gi2I ; L) where (fSigi2I ; L) is a distributed information system and Di

is a discovery layer for a site i 2 I.

Let Mi be a standard interpretation of s(i)-p-defs in DS = (fSjgj2I ; L) and
Ci =

S
fVk : k 2 Ig � Vi. By i-operational semantics of s(I)-defs in DS =

(f(Si; Di)gi2I ; L) where Si = (Xi; Ai; Vi) and Vi =
S
fVia : a 2 Aig, we mean

the interpretation Ni such that:

{ Ni(0) = ;, Ni(1) = Xi

{ for any w 2 Via,
Ni(a(x) = w) = Mi(a(x) = w),
Ni(� (a(x) = w)) = Mi(� (a(x) = w))

{ for any w 2 Ci \ Vka where k 6= i,
Ni(a(x) = w) = fx 2 Xi : ([t �! [a(x) = w]] 2 Di ^ x 2Mi(t))g
Ni(� (a(x) = w)) = fx 2 Xi : (9v 2 Va)[(v 6= w) ^ ([t �! [a(x) = v]] 2
Di) ^ (x 2Mi(t))]g

{ for any w 2 Ci \ Vka where k 6= i and a is a numeric attribute,
Ni((a(x) = w)) =

S
fx 2 Xi : (9y 2 Xk)

([a1[Si](x) = a1[Sk](y)]^ [a2[Si](x) = a2[Sk](y)]^ :::^ [am[Si](x) = am[Sk ](y)]^
[a(y) = w = rm(a1; a2; :::; am)] 2 Di)g
Ni(� (a(x) = w)) = Xi � Ni(a(x) = w)

{ for any s(I)-terms t1; t2
Ni(t1 + t2) = Ni(t1) [Ni(t2),
Ni(t1 � t2) = Ni(t1) \Ni(t2),
Ni(� (t1 + t2)) = Ni(� t1) \Ni(� t2),
Ni(� (t1 � t2)) = Ni(� t1) [Ni(� t2),
Ni(�� t) = Ni(t).

{ for any s(I)-terms t1; t2
Ni(t1 = t2) = ( if Ni(t1) = Ni(t2) then True else False)

Rules and equations in a Knowledge Layer are collected from many sites of
DAKS. Next, any inconsistencies among rules and equations are resolved so the
resulting knowledge has more chance to be globally true.

Formal logic has been chosen to represent knowledge in DAKS and to give
foundations of handling s(I)�defs. Many other representations (not necessarily
based on mathematical logic) are, of course, possible. We have chosen formal logic
because of the need to manipulate s(I) � defs syntactically without changing
their semantical meaning. This syntactical manipulation of s(I) � defs will be
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described in a separate paper. We need an assurance that the transformation
process for s(I) � defs based on logical axioms either will not change their
semantical meaning or will change it in a controlled way (it will produce s(i) �
partial�definitions approximating initial s(I)�defs). Clearly, such a property
is very much needed. Without it, we may be looking for an answer to queries
which are semantically entirely di�erent from the queries asked by the user. Such
a situation has to be avoided.

5 Distributed Autonomous Knowledge System

The conventional distributed database system can be implemented using a three-
tiered structure: Client, Server and a database. The DAKS adds one more tier
between server and a database (information system), so that the structure be-
comes a four-tiered one. This tier is called a knowledgebase and it contains a
discovery layer and a knowledge layer. Both layers are used to store rules ac-
quired either locally or from remote hosts.
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The working 
ow of DAKS is described using a 
ow diagram (see Figure 3).
It demonstrates a way to implement DAKS. When user sends a query to the
local client application, the client decides whether the query is local or not, i.e.
whether the query contains locally unknown attributes. If the answer is negative,
then the query is sent to the local server application. The question raises when
client decides that the query is a non-local one. In this case the client sends two
lists to an optimal remote server: a singleton list containing the unknown at-
tribute and the list of its locally known attributes. Then the remote server calls
RSL (Rough Sets Library) to generate rules from its local database describing the
remote-client-unknown attribute in terms of the remote-client-known attribute
list. These rules are sent back to the remote client. The client saves the rules in
the local knowledge layer for a future use. Also the client applies these rules to
approximate the non-local query by a local query. This approximation can have
a form of a rough query if either RSL, LERS, or Rosetta is used for knowledge
discovery (both certain and possible rules have to be extracted by remote server
to construct a rough query).

Now, we brie
y discuss the strategy of chosing an optimal site k for a discov-
ery of de�nitions of locally unknown attribute values. Let us assume that for a
site k there are sites Ik which meet the conditions needed for mining unknown
attribute values. In [20], [21] any site from fi 2 Ik : card(Ak \Ai) = maxg can
be chosen as a favorite one. Clearly the reducts and coverings for each site i 2 Ik
should also be taken into consideration.

Assume that c 2 Ai and Op(k; i; c) denotes the set of coverings of c at site
i where each of the coverings is a superset of some reduct at site k. We claim
that any site from fi 2 Ik : (9Ri)[Ri � Ak \Ai&Ri 2 Op(k; i; c)g is optimal for
discovering a de�nition of the attribute c.

If Op(k; i; c) is empty then some heuristic function weakening assumptions
used to build this set should be used helping to choose an optimal site for
discovering the de�nition of c.
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