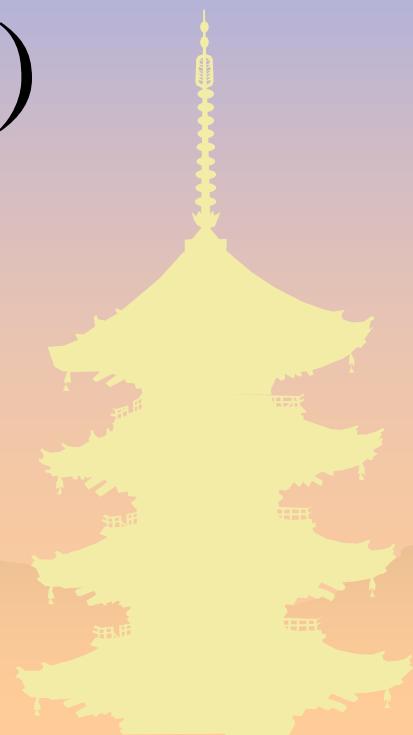


Rough Sets □ (Granular Computing)



Basic Concepts of Rough Sets

- Information/Decision Systems (Tables)
- Indiscernibility
- Set Approximation
- Reducts and Core
- Dependency of Attributes

Information Systems/Tables

	Age	LEMS
x1	16-30	50
x2	16-30	0
x3	31-45	1-25
x4	31-45	1-25
x5	46-60	26-49
x6	16-30	26-49
x7	46-60	26-49

- IS is a pair (U, A)
- U is a non-empty finite set of objects.
- A is a non-empty finite set of attributes such that $a:U \rightarrow V_a$ for every $a \in A$.
- V_a is called the value set of a .

Decision Systems/Tables

	Age	LEMS	Walk
x1	16-30	50	yes
x2	16-30	0	no
x3	31-45	1-25	no
x4	31-45	1-25	yes
x5	46-60	26-49	no
x6	16-30	26-49	yes
x7	46-60	26-49	no

- DS: $T = (U, A \cup \{d\})$
- $d \notin A$ is the *decision* attribute (instead of one we can consider more decision attributes).
- The elements of A are called the *condition* attributes.

Indiscernibility

- The equivalence relation

A binary relation $R \subseteq X \times X$ which is reflexive (xRx for any object x) , symmetric (if xRy then yRx), and transitive (if xRy and yRz then xRz).

- The equivalence class $[x]_R$ of an element $x \in X$ consists of all objects $y \in X$ such that xRy .

Indiscernibility (2)

- Let $IS = (U, A)$ be an information system, then with any $B \subseteq A$ there is an associated equivalence relation:

$$IND_{IS}(B) = \{(x, x') \in U^2 \mid \forall a \in B, a(x) = a(x')\}$$

where $IND_{IS}(B)$ is called the *B-indiscernibility relation*.

- If $(x, x') \in IND_{IS}(B)$, then objects x and x' are indiscernible from each other by attributes from B .
- The equivalence classes of the *B-indiscernibility relation* are denoted by $[x]_B$.

An Example of Indiscernibility

	Age	LEMS	Walk
x1	16-30	50	yes
x2	16-30	0	no
x3	31-45	1-25	no
x4	31-45	1-25	yes
x5	46-60	26-49	no
x6	16-30	26-49	yes
x7	46-60	26-49	no

- The non-empty subsets of the condition attributes are $\{Age\}$, $\{LEMS\}$, and $\{Age, LEMS\}$.
- $IND(\{Age\}) = \{\{x1, x2, x6\}, \{x3, x4\}, \{x5, x7\}\}$
- $IND(\{LEMS\}) = \{\{x1\}, \{x2\}, \{x3, x4\}, \{x5, x6, x7\}\}$
- $IND(\{Age, LEMS\}) = \{\{x1\}, \{x2\}, \{x3, x4\}, \{x5, x7\}, \{x6\}\}.$

Set Approximation

- Let $T = (U, A)$ and let $B \subseteq A$ and $X \subseteq U$. We can approximate X using only the information contained in B by constructing the *B-lower* and *B-upper* approximations of X , denoted $\underline{B}X$ and $\overline{B}X$ respectively, where

$$\underline{B}X = \{x \mid [x]_B \subseteq X\},$$

$$\overline{B}X = \{x \mid [x]_B \cap X \neq \emptyset\}.$$

An Example of Set Approximation

	Age	LEMS	Walk
x1	16-30	50	yes
x2	16-30	0	no
x3	31-45	1-25	no
x4	31-45	1-25	yes
x5	46-60	26-49	no
x6	16-30	26-49	yes
x7	46-60	26-49	no

□ Let $W = \{x \mid \text{Walk}(x) = \text{yes}\}$.

$$\underline{AW} = \{x1, x6\},$$

$$\overline{AW} = \{x1, x3, x4, x6\},$$

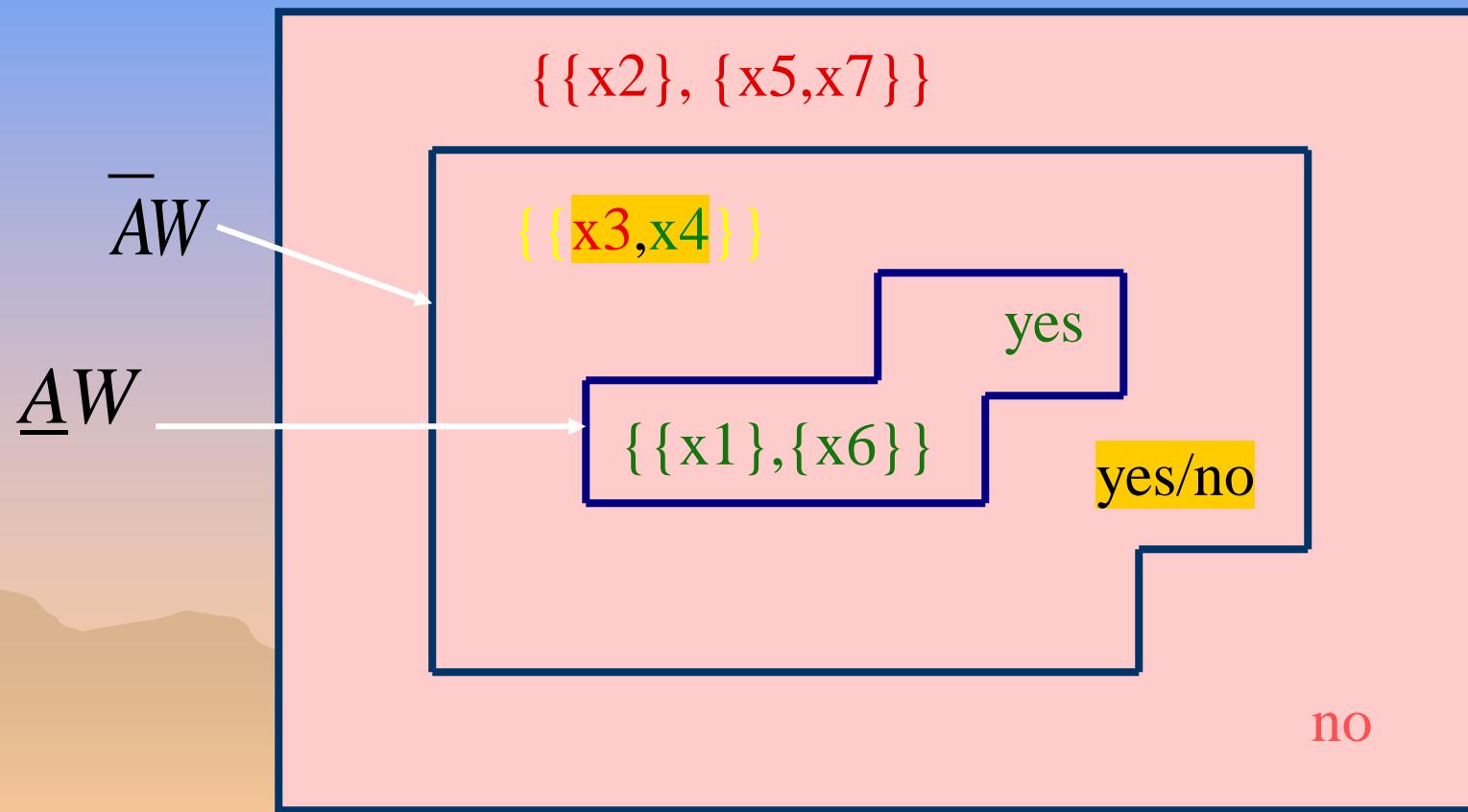
$$BN_A(W) = \{x3, x4\},$$

$$U - \overline{AW} = \{x2, x5, x7\}.$$

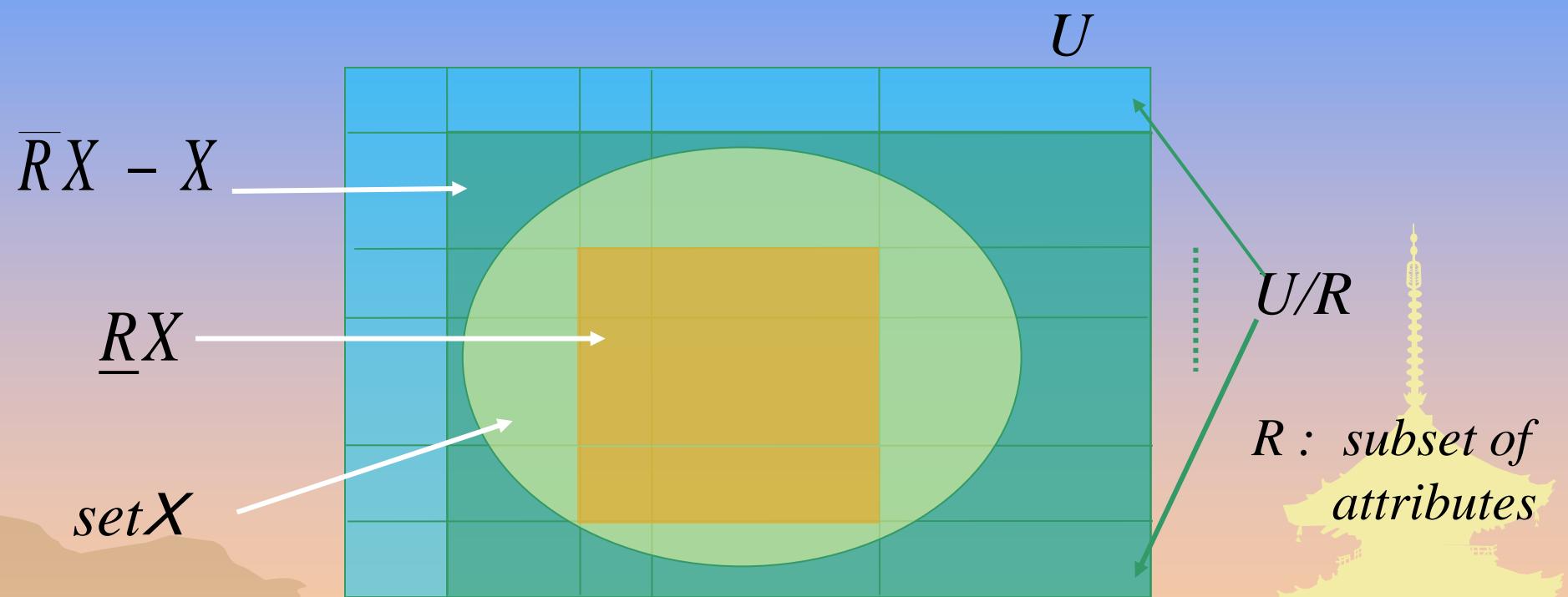
□ The decision class, *Walk*, is **rough** since the boundary region is not empty.

$$\text{IND}(\{\text{Age}, \text{LEMS}\}) = \{\{x1\}, \{x2\}, \{x3, x4\}, \{x5, x7\}, \{x6\}\}$$

An Example of Set Approximation (2)



Lower & Upper Approximations



Lower & Upper Approximations

(2)

Upper Approximation:

$$\overline{R}X = \bigcup\{Y \in U/R : Y \cap X \neq \emptyset\}$$

Lower Approximation:

$$\underline{R}X = \bigcup\{Y \in U/R : Y \subseteq X\}$$

Lower & Upper Approximations (3)

<i>U</i>	<i>Headache</i>	<i>Temp.</i>	<i>Flu</i>
<i>U1</i>	Yes	Normal	No
<i>U2</i>	Yes	High	Yes
<i>U3</i>	Yes	Very-high	Yes
<i>U4</i>	No	Normal	No
<i>U5</i>	<i>No</i>	<i>High</i>	<i>No</i>
<i>U6</i>	<i>No</i>	<i>Very-high</i>	<i>Yes</i>
<i>U7</i>	<i>No</i>	<i>High</i>	<i>Yes</i>
<i>U8</i>	<i>No</i>	<i>Very-high</i>	No

$$\begin{aligned}
 X1 &= \{u \mid \text{Flu}(u) = \text{yes}\} \\
 &= \{u2, u3, u6, u7\}
 \end{aligned}$$

$$\begin{aligned}
 \underline{R}X1 &= \{u2, u3\} \\
 \overline{R}X1 &= \{u2, u3, u6, u7, u8, u5\}
 \end{aligned}$$

The indiscernibility classes defined by $R = \{\text{Headache}, \text{Temp.}\}$ are $\{u1\}, \{u2\}, \{u3\}, \{u4\}, \{u5, u7\}, \{u6, u8\}$.

$$\begin{aligned}
 X2 &= \{u \mid \text{Flu}(u) = \text{no}\} \\
 &= \{u1, u4, u5, u8\}
 \end{aligned}$$

$$\begin{aligned}
 \underline{R}X2 &= \{u1, u4\} \\
 \overline{R}X2 &= \{u1, u4, u5, u8, u7, u6\}
 \end{aligned}$$

Lower & Upper Approximations

(4)

$R = \{Headache, Temp.\}$

$U/R = \{ \{u1\}, \{u2\}, \{u3\}, \{u4\}, \{u5, u7\}, \{u6, u8\} \}$

$X1 = \{u \mid \text{Flu}(u) = \text{yes}\} = \{u2, u3, u6, u7\}$

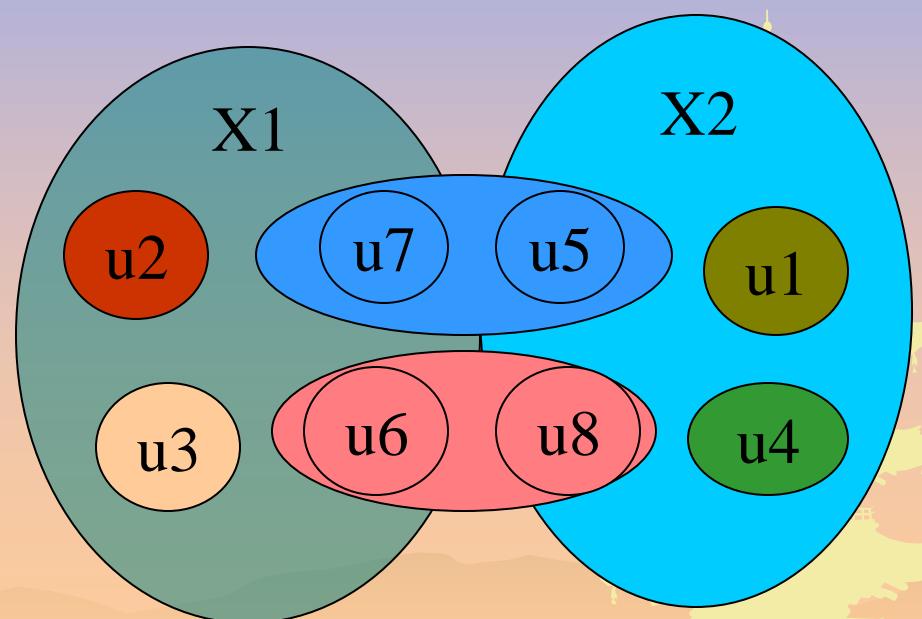
$X2 = \{u \mid \text{Flu}(u) = \text{no}\} = \{u1, u4, u5, u8\}$

$\underline{R}X1 = \{u2, u3\}$

$\overline{R}X1 = \{u2, u3, u6, u7, u8, u5\}$

$\underline{R}X2 = \{u1, u4\}$

$\overline{R}X2 = \{u1, u4, u5, u8, u7, u6\}$



Issues in the Decision Table

- The same or indiscernible objects may be represented several times.
- *Some of the attributes may be superfluous (redundant).*

That is, their removal cannot worsen the classification.

Reducts

- Keep only those attributes that preserve the indiscernibility relation and, consequently, set approximation.
- There are usually several such subsets of attributes and those which are minimal are called *reducts*.

Reduct & Core

- The set of attributes $R \subseteq C$ is called a *reduct* of C , if $T' = (U, R, D)$ is independent and $POS_R(D) = POS_C(D)$.
- The set of all the condition attributes indispensable in T is denoted by $CORE(C)$.

$$CORE(C) = \bigcap RED(C)$$

where $RED(C)$ is the set of all *reducts* of C .

An Example of Reducts & Core

<i>U</i>	<i>Headache</i>	<i>Muscle pain</i>	<i>Temp.</i>	<i>Flu</i>
<i>U1</i>	Yes	Yes	Normal	No
<i>U2</i>	Yes	Yes	High	Yes
<i>U3</i>	Yes	Yes	Very-high	Yes
<i>U4</i>	No	Yes	Normal	No
<i>U5</i>	No	No	High	No
<i>U6</i>	No	Yes	Very-high	Yes

Reduct1 = {Muscle-pain, Temp.}

<i>U</i>	<i>Muscle pain</i>	<i>Temp.</i>	<i>Flu</i>
<i>U1, U4</i>	Yes	Normal	No
<i>U2</i>	Yes	High	Yes
<i>U3, U6</i>	Yes	Very-high	Yes
<i>U5</i>	No	High	No

Reduct2 = {Headache, Temp.}

<i>U</i>	<i>Headache</i>	<i>Temp.</i>	<i>Flu</i>
<i>U1</i>	Yes	Norlmal	No
<i>U2</i>	Yes	High	Yes
<i>U3</i>	Yes	Very-high	Yes
<i>U4</i>	No	Normal	No
<i>U5</i>	No	High	No
<i>U6</i>	No	Very-high	Yes

CORE = {Headache, Temp} \cap {MusclePain, Temp} = {Temp}

Discernibility Matrix

(used to find reducts)

- Let $T = (U, C, D)$ be a decision table, with $U = \{u_1, u_2, \dots, u_n\}$.

By a discernibility matrix of T , denoted $M(T)$, we will mean $n \times n$ matrix defined as:

$$m_{ij} = \begin{cases} \{c \in C: c(u_i) \neq c(u_j)\} & \text{if } \exists d \in D [d(u_i) \neq d(u_j)] \\ \lambda & \text{if } \forall d \in D [d(u_i) = d(u_j)] \end{cases}$$

for $i, j = 1, 2, \dots, n$ such that u_i or u_j belongs to the C -positive region of D .

- m_{ij} is the set of all the condition attributes that classify objects u_i and u_j into different classes.

Discernibility Function

- For any $u_i \in U$,

$$f_T(u_i) = \bigwedge_j \{\vee m_{ij} : j \neq i, j \in \{1, 2, \dots, n\}\}$$

where (1) $\vee m_{ij}$ is the disjunction of all variables a such that $a \in m_{ij}$, if $m_{ij} \neq \phi$.

(2) $\vee m_{ij} = \perp$ (*false*), if $m_{ij} = \phi$.

(3) $\vee m_{ij} = t$ (*true*), if $m_{ij} = \lambda$.

Each logical product in the minimal disjunctive normal form (DNF) defines a reduct of instance u_i .

Example of Discernibility Matrix

No	a	b	c	d
u1	a_0	b_1	c_1	y
u2	a_1	b_1	c_0	n
u3	a_0	b_2	c_1	n
u4	a_1	b_1	c_1	y

$$C = \{a, b, c\}$$

$$D = \{d\}$$

$$(a \vee c) \wedge b \wedge c \wedge (a \vee b)$$

$$= b \wedge c$$

$$\text{Reduct} = \{b, c\}$$

In order to discern equivalence classes of the decision attribute d , to preserve conditions described by the discernibility matrix for this table

	u1	u2	u3
u2	a,c		
u3	b	λ	
u4	λ	c	a,b

Example of Discernibility Matrix (2)

	<i>a</i>	<i>b</i>	<i>c</i>	<i>d</i>	<i>E</i>
<i>u1</i>	1	0	2	1	1
<i>u2</i>	1	0	2	0	1
<i>u3</i>	1	2	0	0	2
<i>u4</i>	1	2	2	1	0
<i>u5</i>	2	1	0	0	2
<i>u6</i>	2	1	1	0	2
<i>u7</i>	2	1	2	1	1

Core = {*b*}

Reduct1 = {*b,c*}

Reduct2 = {*b,d*}

$$\begin{aligned}
 F(a,b,c,d) &= (b+c+d)b(a+b+c+d)(b+c)(b+d)(a+b+c)(c+d)(a+b) = \\
 &= b(c+d) = bc + bd
 \end{aligned}$$

Reducts: {*b,c*}, {*b,d*}

	<i>u1</i>	<i>u2</i>	<i>u3</i>	<i>u4</i>	<i>u5</i>	<i>u6</i>
<i>u2</i>		λ				
<i>u3</i>	b,c,d		b,c			
<i>u4</i>	b		b,d	c,d		
<i>u5</i>	a,b,c,d	a,b,c		λ	a,b,c,d	
<i>u6</i>	a,b,c,d	a,b,c		λ	a,b,c,d	λ
<i>u7</i>	λ	λ	a,b,c,d	a,b	c,d	c,d

The Goal of Attribute Selection

Finding an optimal subset of attributes in a database according to some criterion, so that a classifier with the highest possible accuracy can be induced by learning algorithm using information about data available only from the subset of attributes.

Attribute Evaluation Criteria

- Selecting the attributes that cause the number of consistent instances to increase faster
 - To obtain the subset of attributes as small as possible
- Selecting an attribute that has smaller number of different values
 - To guarantee that the number of instances covered by rules is as large as possible.

An Example of Attribute Selection

<i>U</i>	<i>a</i>	<i>b</i>	<i>c</i>	<i>d</i>	<i>e</i>
<i>u1</i>	1	0	2	1	1
<i>u2</i>	1	0	2	0	1
<i>u3</i>	1	2	0	0	2
<i>u4</i>	1	2	2	1	0
<i>u5</i>	2	1	0	0	2
<i>u6</i>	2	1	1	0	2
<i>u7</i>	2	1	2	1	1

Condition Attributes:

$$a: V_a = \{1, 2\}$$

$$b: V_b = \{0, 1, 2\}$$

$$c: V_c = \{0, 1, 2\}$$

$$d: V_d = \{0, 1\}$$

Decision Attribute:

$$e: V_e = \{0, 1, 2\}$$

Searching for *CORE*

Removing attribute *a*

<i>U</i>	<i>b</i>	<i>c</i>	<i>d</i>	<i>e</i>
<i>u1</i>	0	2	1	1
<i>u2</i>	0	2	0	1
<i>u3</i>	2	0	0	2
<i>u4</i>	2	2	1	0
<i>u5</i>	1	0	0	2
<i>u6</i>	1	1	0	2
<i>u7</i>	1	2	1	1

Removing attribute *a* does not cause inconsistency.

Hence, *a* is not used as *CORE*.

Searching for *CORE*(2)

Removing attribute b

U	a	c	d	e	
$u1$	1	2	1	1	
$u2$	1	2	0	1	
$u3$	1	0	0	2	
$u4$	1	2	1	0	
$u5$	2	0	0	2	
$u6$	2	1	0	2	
$u7$	2	2	1	1	

Removing attribute b
cause inconsistency.

$$u_1 : a_1 c_2 d_1 \rightarrow e_1$$
$$u_4 : a_1 c_2 d_1 \rightarrow e_0$$

Hence, b is used as CORE.

Searching for *CORE*(3)

Removing attribute c

U	a	b	d	e
$u1$	1	0	1	1
$u2$	1	0	0	1
$u3$	1	2	0	2
$u4$	1	2	1	0
$u5$	2	1	0	2
$u6$	2	1	0	2
$u7$	2	1	1	1

Removing attribute c
does not cause inconsistency.
Hence, c is not used
as *CORE*.

Searching for *CORE*(4)

Removing attribute d

U	a	b	c	e	
$u1$	1	0	2	1	
$u2$	1	0	2	1	
$u3$	1	2	0	2	
$u4$	1	2	2	0	
$u5$	2	1	0	2	
$u6$	2	1	1	2	
$u7$	2	1	2	1	

Removing attribute d
does not cause inconsistency.

Hence, d is not used
as *CORE*.

Searching for $CORE(5)$

Attribute b is the unique indispensable attribute.

$$CORE(C) = \{b\}$$

Initial subset $R = \{b\}$

$R = \{b\}$

T

U	a	b	c	d	e
$u1$	1	0	2	1	1
$u2$	1	0	2	0	1
$u3$	1	2	0	0	2
$u4$	1	2	2	1	0
$u5$	2	1	0	0	2
$u6$	2	1	1	0	2
$u7$	2	1	2	1	1

T'

U'	b	e
$u1$	0	1
$u2$	0	1
$u3$	2	2
$u4$	2	0
$u5$	1	2
$u6$	1	2
$u7$	1	1

$\because b_0 \rightarrow e_1$

The instances containing $b0$ will not be considered.

Attribute Evaluation Criteria

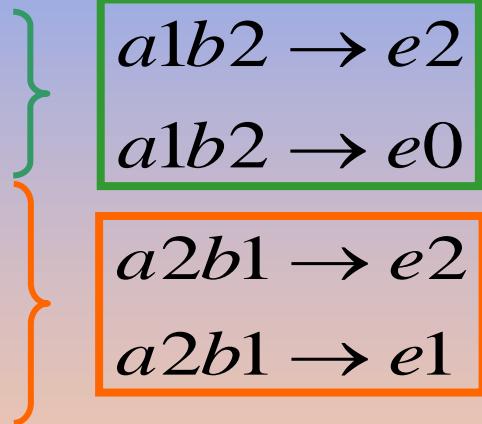
- Selecting the attributes that cause the number of consistent instances to increase faster
 - To obtain the subset of attributes as small as possible
- Selecting the attribute that has smaller number of different values
 - To guarantee that the number of instances covered by a rule is as large as possible.

Selecting Attribute from $\{a, c, d\}$

1. Selecting $\{a\}$

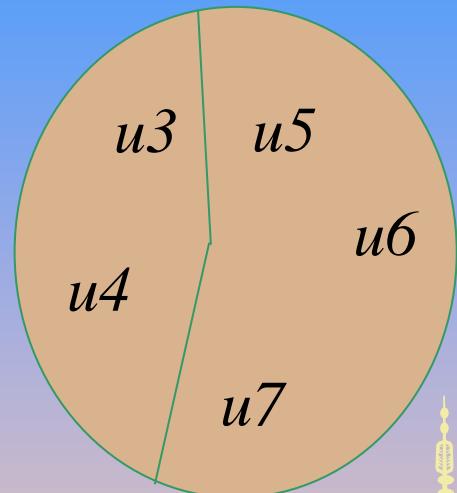
$$R = \{a, b\}$$

U'	a	b	e
$u3$	1	2	2
$u4$	1	2	0
$u5$	2	1	2
$u6$	2	1	2
$u7$	2	1	1

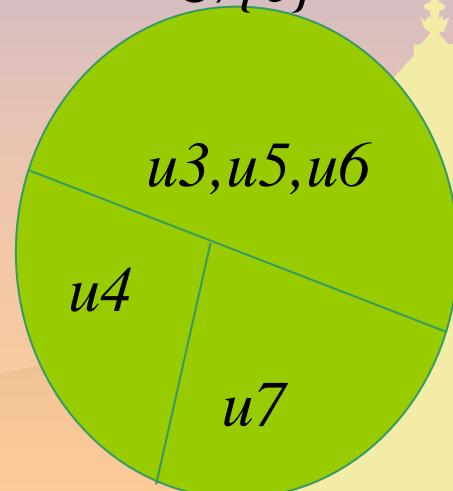


$$\bigcup_{X \in U / \{e\}} POS_{\{a, b\}}(X) = \phi$$

$$U / \{a, b\}$$



$$U / \{e\}$$



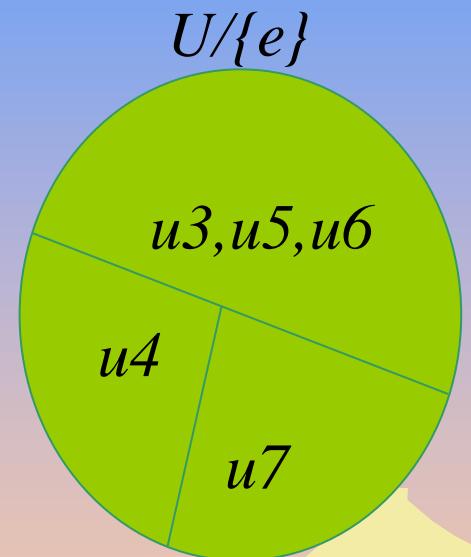
Selecting Attribute from $\{a,c,d\}$ (2)

2. Selecting $\{c\}$

$$R = \{b,c\}$$

U'	b	c	e
$u3$	2	0	2
$u4$	2	2	0
$u5$	1	0	2
$u6$	1	1	2
$u7$	1	2	1

$$\begin{aligned}
 b_2c_0 &\rightarrow e_2 \\
 b_2c_2 &\rightarrow e_0 \\
 b_1c_0 &\rightarrow e_2 \\
 b_1c_1 &\rightarrow e_2 \\
 b_1c_2 &\rightarrow e_1
 \end{aligned}$$



$$\bigcup_{X \in U/\{e\}} POS_{\{b,c\}}(X) = \{u3, u4, u5, u6, u7\};$$

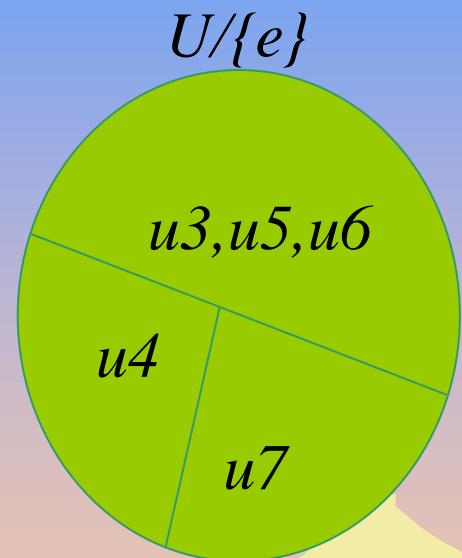
Selecting Attribute from $\{a,c,d\}$ (3)

3. Selecting $\{d\}$

$$R = \{b,d\}$$

U'	b	d	e
$u3$	2	0	2
$u4$	2	1	0
$u5$	1	0	2
$u6$	1	0	2
$u7$	1	1	1

$$\begin{aligned}
 & \rightarrow b_2d_0 \rightarrow e_2 \\
 & \rightarrow b_2d_1 \rightarrow e_0 \\
 & \left. \right\} \quad \boxed{b_1d_0 \rightarrow e_2} \\
 & \rightarrow b_1d_1 \rightarrow e_1
 \end{aligned}$$

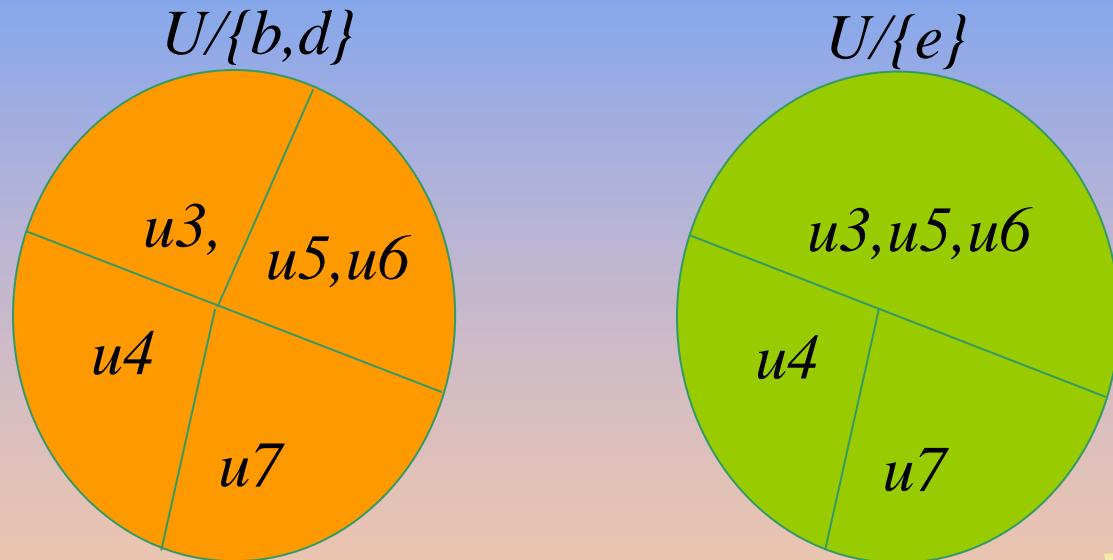


$$\bigcup_{X \in U/\{e\}} POS_{\{b,d\}}(X) = \{u3, u4, u5, u6, u7\};$$

Selecting Attribute from $\{a,c,d\}$ (4)

3. Selecting $\{d\}$

$$R = \{b, d\}$$



$$POS_{\{b,d\}}(\{u3, u5, u6\})/\{b, d\} = \{ \{u3\}, \underline{\{u5, u6\}} \}$$

$$\max_size(POS_{\{b,d\}}(\{u3, u5, u6\})/\{b, d\}) = 2$$

Result: Subset of attributes = $\{b, d\}$