
Rough Sets

(Granular Computing)



Basic Concepts of Rough Sets

Information/Decision Systems (Tables)

Indiscernibility

Set Approximation

Reducts and Core

Dependency of Attributes



Information Systems/Tables

IS is a pair (U, A)

U is a non-empty 

finite set of objects.

A is a non-empty finite 

set of attributes such 

that                   for 

every 

is called the value 

set of a.

aVUa →:

.Aa

aV

Age      LEMS

x１ 16-30      50

x2    16-30      0

x3    31-45     1-25

x4    31-45     1-25

x5    46-60     26-49

x6    16-30     26-49

x7    46-60     26-49



Decision Systems/Tables

DS:  

is the decision  

attribute (instead of one 

we can consider more 

decision attributes).

The elements of A are 

called the condition 

attributes.

Age      LEMS    Walk

x１ 16-30     50         yes

x2    16-30      0            no             

x3    31-45     1-25        no

x4    31-45     1-25       yes

x5    46-60     26-49     no

x6    16-30     26-49     yes

x7    46-60     26-49      no

}){,( dAUT =
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Indiscernibility

The equivalence relation

A binary relation                   which is      

reflexive (xRx for any object x) ,

symmetric (if xRy then yRx), and

transitive (if xRy and yRz then xRz).  

The equivalence class        of an element 

consists of all objects          such that 

xRy.

XXR 

Xx Xy

Rx][



Indiscernibility (2)

Let IS = (U, A) be an information system, then  
with any            there is an associated equivalence 
relation:

where                is called the B-indiscernibility 
relation.

If                              then objects x and x’ are 
indiscernible from each other by attributes from B.

The equivalence classes of the B-indiscernibility 
relation are denoted by 

AB 

)}'()(,|)',{()( 2 xaxaBaUxxBIND IS ==

)(BINDIS
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An Example of Indiscernibility

The non-empty subsets of 

the condition attributes 

are {Age}, {LEMS}, and 

{Age, LEMS}.

IND({Age}) = {{x1,x2,x6}, 

{x3,x4}, {x5,x7}}

IND({LEMS}) = {{x1}, 

{x2}, {x3,x4}, {x5,x6,x7}}

IND({Age,LEMS}) = 

{{x1}, {x2}, {x3,x4}, 

{x5,x7}, {x6}}. 

Age      LEMS    Walk

x１ 16-30 50 yes   

x2    16-30 0 no             

x3    31-45 1-25 no

x4    31-45 1-25 yes

x5    46-60     26-49     no

x6    16-30 26-49     yes

x7    46-60 26-49      no



Set Approximation

Let T = (U, A) and let            and                  

We can approximate X using only the 

information contained in B by constructing 

the B-lower and B-upper approximations of 

X, denoted       and        respectively, where   

AB  .UX 

XB XB

},][|{ XxxXB B =

}.][|{ = XxxXB B



An Example of Set Approximation

Let W = {x | Walk(x) = yes}.  

The decision class, Walk, is 
rough since the boundary 
region is not empty.

Age      LEMS    Walk

x１ 16-30     50         yes   

x2    16-30      0            no             

x3    31-45     1-25        no

x4    31-45     1-25       yes

x5    46-60     26-49     no

x6    16-30     26-49     yes

x7    46-60     26-49      no
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IND({Age, LEMS}) = {{x1}, {x2}, {x3,x4}, {x5,x7}, {x6}} 



An Example of

Set Approximation (2)

yes

yes/no

no

{{x1},{x6}}

{{x3,x4}}

{{x2}, {x5,x7}}

AW

WA



U

setＸ

U/R

R :  subset of   

attributes

XR

XXR −

Lower & Upper Approximations



Lower & Upper Approximations 

(2)

}:/{ XYRUYXR =

}:/{ = XYRUYXR 

Lower Approximation:

Upper Approximation:



Lower & Upper Approximations
(3)

X1 = {u | Flu(u) = yes}

= {u2, u3, u6, u7}

RX1 = {u2, u3}

= {u2, u3, u6, u7, u8, u5}

X2 = {u | Flu(u) = no}

= {u1, u4, u5, u8}

RX2 = {u1, u4}

= {u1, u4, u5, u8, u7, u6}X1R
X2R

U Headache Temp. Flu

U1 Yes Normal No

U2 Yes High Yes

U3 Yes Very-high Yes

U4 No Normal No

U5 NNNooo HHHiiiggghhh NNNooo

U6 No Very-high Yes

U7 NNNooo HHHiiiggghhh YYYeeesss

U8 No Very-high No

The indiscernibility classes defined by            

R = {Headache, Temp.} are                        
{u1}, {u2}, {u3}, {u4}, {u5, u7}, {u6, u8}.



Lower & Upper Approximations
(4)

R = {Headache, Temp.}
U/R = { {u1}, {u2}, {u3}, {u4}, {u5, u7}, {u6, u8}}

X1 = {u | Flu(u) = yes} = {u2,u3,u6,u7}
X2 = {u | Flu(u) = no} = {u1,u4,u5,u8}

RX1 = {u2, u3}

= {u2, u3, u6, u7, u8, u5}

RX2 = {u1, u4}

= {u1, u4, u5, u8, u7, u6}

X1R

X2R

u1

u4u3

X1 X2

u5u7u2

u6 u8



Issues in the Decision Table

The same or indiscernible objects may be 

represented several times.

Some of the attributes may be superfluous 

(redundant).

That is, their removal cannot worsen the 

classification.  



Reducts

Keep only those attributes that preserve the 

indiscernibility relation and, consequently, 

set approximation. 

There are usually several such subsets of 

attributes and those which are minimal are 

called reducts.



Reduct & Core

The set of attributes            is called a reduct

of C, if T’ = (U, R, D) is independent and 

The set of all the condition attributes  

indispensable in T is denoted by CORE(C).

where RED(C) is the set of all reducts of C.

CR 

).()( DPOSDPOS CR =

)()( CREDCCORE =



An Example of Reducts & Core

U Headache Muscle

pain

Temp. Flu

U1 Yes Yes Normal No

U2 Yes Yes High Yes

U3 Yes Yes Very-high Yes

U4 No Yes Normal No

U5 No No High No

U6 No Yes Very-high Yes

U Muscle

pain

Temp. Flu

Ｕ1,U4 Yes Normal No

U2 Yes High Yes

U3,U6 Yes Very-high Yes

U5 No High No

U Headache Temp. Flu

U1 Yes Norlmal No

U2 Yes High Yes

U3 Yes Very-high Yes

U4 No Normal No

U5 No High No

U6 No Very-high Yes

Reduct1 = {Muscle-pain,Temp.}

Reduct2 = {Headache, Temp.}

CORE = {Headache,Temp}    

{MusclePain, Temp} = {Temp}




Discernibility Matrix          
(used to find reducts)

Let T = (U, C, D) be a decision table, with                                     

By a discernibility matrix of T, denoted M(T), 
we will mean         matrix defined as:

for i, j = 1,2,…,n such that    or     belongs to 
the C-positive region of D.

is the set of all the condition attributes that 
classify objects ui and uj into different classes.
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Discernibility Function 

For any  ,Uui 

}},...,2,1{,:{)( njijmuf ij
j

iT =

where (1)             is the disjunction of all variables a

such that                if 

(2)                                           if                

(3)                                         if

ijm
,ijma .ijm

),( falsemij ⊥= .=ijm
),(truetmij = .=ijm

Each logical product in the minimal disjunctive normal 

form (DNF) defines a reduct of instance   .iu



Example of Discernibility Matrix

No  a    b     c    d

u1  a0  b1   c1   y
u2  a1  b1   c0   n
u3  a0  b2   c1   n
u4  a1  b1   c1   y

C = {a, b, c}

D = {d}

In order to discern equivalence 

classes of the decision attribute d,

to preserve conditions described 

by the discernibility matrix for 

this table 

u1    u2    u3      

u2

u3

u4

a,c

b     

c      a,b

Reduct = {b, c}

cb

bacbca

=

 )()(







Example of Discernibility Matrix (2)

ａ ｂ ｃ ｄ Ｅ

ｕ1 1 0 2 1 1

ｕ2 1 0 2 0 1

ｕ3 1 2 0 0 2

ｕ4 1 2 2 1 0

ｕ5 2 1 0 0 2

ｕ6 2 1 1 0 2

ｕ7 2 1 2 1 1

u1      u2      u3       u4        u5       u6

u2

u3

u4

u5

u6

u7

b,c,d    b,c

b          b,d    c,d

a,b,c,d a,b,c           a,b,c,d

a,b,c,d a,b,c           a,b,c,d    

a,b,c,d   a,b      c,d      c,d

Core = {b}

Reduct1 = {b,c}

Reduct2 = {b,d} 





 

 

F(a,b,c,d)=(b+c+d)b(a+b+c+d)(b+c)(b+d)(a+b+c)(c+d)(a+b)=

b(c+d)=bc+bd                         Reducts: {b,c}, {b,d}



The Goal of Attribute Selection

Finding an optimal subset of attributes in a 

database according to some criterion, so that 

a classifier with the highest possible 

accuracy can be induced by learning 

algorithm using information about data 

available only from the subset of attributes.



Attribute Evaluation Criteria 

Selecting the attributes that cause the number 

of consistent instances to increase faster

– To obtain the subset of attributes as small as 

possible

Selecting an attribute that has smaller number 

of different values

– To guarantee that the number of instances covered 

by rules is as large as possible.



An Example of                 

Attribute Selection

U a ｂ ｃ ｄ e

ｕ1 1 0 2 1 1

ｕ2 1 0 2 0 1

ｕ3 1 2 0 0 2

ｕ4 1 2 2 1 0

ｕ5 2 1 0 0 2

ｕ6 2 1 1 0 2

ｕ7 2 1 2 1 1

Condition Attributes:

a: Va = {1, 2}

b: Vb = {0, 1, 2}

c: Vc = {0, 1, 2}

d: Vd = {0, 1}

Decision Attribute: 
e: Ve = {0, 1, 2} 



U ｂ ｃ ｄ e

ｕ1 0 2 1 1

ｕ2 0 2 0 1

ｕ3 2 0 0 2

ｕ4 2 2 1 0

ｕ5 1 0 0 2

ｕ6 1 1 0 2

ｕ7 1 2 1 1

Searching for ＣＯＲＥ

Removing attribute a

Removing attribute a does 

not cause inconsistency.

Hence, a is not used as 

CORE.



Searching for ＣＯＲＥ (2)

Removing attribute ｂ

U a ｃ ｄ e

ｕ1 1 2 1 1

ｕ2 1 2 0 1

ｕ3 1 0 0 2

ｕ4 1 2 1 0

ｕ5 2 0 0 2

ｕ6 2 1 0 2

ｕ7 2 2 1 1

01214

11211

  :

  :

edcau

edcau

→

→

Removing attribute b

cause inconsistency.

Hence, b is used as CORE.



Searching for ＣＯＲＥ (3)

Removing attribute c

U a ｂ ｄ e

ｕ1 1 0 1 1

ｕ2 1 0 0 1

ｕ3 1 2 0 2

ｕ4 1 2 1 0

ｕ5 2 1 0 2

ｕ6 2 1 0 2

ｕ7 2 1 1 1

Removing attribute c

does not cause inconsistency.

Hence, c is not used 

as CORE.



Searching for ＣＯＲＥ (4)

Removing attribute d

U a ｂ ｃ e

ｕ1 1 0 2 1

ｕ2 1 0 2 1

ｕ3 1 2 0 2

ｕ4 1 2 2 0

ｕ5 2 1 0 2

ｕ6 2 1 1 2

ｕ7 2 1 2 1

Removing attribute d

does not cause inconsistency.

Hence, d is not used 

as CORE.



Searching for ＣＯＲＥ (5)

CORE(C)={b}

Initial subset R = {b}

Attribute b is the unique indispensable 

attribute.



R={b}
Ｕ a ｂ ｃ ｄ e

ｕ1 1 0 2 1 1

ｕ2 1 0 2 0 1

ｕ3 1 2 0 0 2

ｕ4 1 2 2 1 0

ｕ5 2 1 0 0 2

ｕ6 2 1 1 0 2

ｕ7 2 1 2 1 1

10 eb →

U’ ｂ e

ｕ1 0 1

ｕ2 0 1

ｕ3 2 2

ｕ4 2 0

ｕ5 1 2

ｕ6 1 2

ｕ7 1 1

The instances containing b0 will not be considered.

T T’



Attribute Evaluation Criteria 

Selecting the attributes that cause the number 

of consistent instances to increase faster

– To obtain the subset of attributes as small as 

possible

Selecting the attribute that has smaller number 

of different values

– To guarantee that the number of instances covered 

by a rule is as large as possible.



Selecting Attribute from {a,c,d}

U’ a ｂ e

ｕ3 1 2 2

ｕ4 1 2 0

ｕ5 2 1 2

ｕ6 2 1 2

ｕ7 2 1 1

1. Selecting {a}

R = {a,b}

021

221

eba

eba

→

→

112

212

eba

eba

→

→

=



}/{

},{ )(
eUX

ba XPOS

u3,u5,u6

u4

u7

U/{e}

u3

u4

u7

U/{a,b}

u5

u6



Selecting Attribute from {a,c,d} (2)

2. Selecting {c}

R = {b,c}

121

211

201

022

202

ecb

ecb

ecb

ecb

ecb

→

→

→

→

→
Ｕ’ ｂ ｃ e

ｕ3 2 0 2

ｕ4 2 2 0

ｕ5 1 0 2

ｕ6 1 1 2

ｕ7 1 2 1

u3,u5,u6

u4

u7

U/{e}

Ｕ’ ｂ ｃ e

ｕ3 2 0 2

ｕ4 2 2 0

ｕ5 1 0 2

ｕ6 1 1 2

ｕ7 1 2 1

};7,6,5,4,3{)(
}/{

},{ uuuuuXPOS
eUX

cb =






Selecting Attribute from {a,c,d} (3)

3. Selecting {d}

R = {b,d}

111

201

012

202

edb

edb

edb

edb

→

→

→

→
Ｕ’ ｂ ｄ e

ｕ3 2 0 2

ｕ4 2 1 0

ｕ5 1 0 2

ｕ6 1 0 2

ｕ7 1 1 1

u3,u5,u6

u4

u7

U/{e}

};7,6,5,4,3{)(
}/{

},{ uuuuuXPOS
eUX

db =






Selecting Attribute from {a,c,d} (4)

3. Selecting {d}

R = {b,d}

}}6,5{},3{{},/{})6,5,3({},{ uuudbuuuPOS db =

Result: Subset of attributes＝ {b, d}

u3,u5,u6

u4

u7

U/{e}

u3,

u4

u7

U/{b,d}

u5,u6

2}),/{})6,5,3({(max_ },{ =dbuuuPOS size db


