Rough Sets
(Granular Computing)



Basic Concepts of Rough Sets

Indiscernibility

Set Approximation
Reducts and Core
Dependency of Attributes
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Information Systems/Tables

U Is a non-empty
finite set of objects.

A Is a non-empty finite
set of attributes such
that a:U —V, for
EVery ae A

V., is called the value
set of a.



Decision Systems/Tables
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d ¢ A Is the decision
attribute (instead of one
we can consider more
decision attributes).

The elements of A are
called the condition
attributes.



The equivalence relation

A binary relation Rc X xX which is
reflexive (xRx for any object x) ,

symmetric (if xRy then yRx), and
transitive (iIf xRy and yRz then xRz).
The equivalence class [x]; of an element

x e X consists of all objects y « X such that
XRY.



Let IS = (U, A) be an information system, then
with any B — A there Is an associated equivalence

relation:

IND . (B) ={(x,x') eU?|VaeB,a(x)=a(x")}
where IND . (B) is called the B-indiscernibility
relation.

If (x,x") € IND,;(B), then objects x and x’ are
Indiscernible from each other by attributes from B.

The equivalence classes of the B-indiscernibility
relation are denoted by [x];.



An Example of Indiscernibility
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are {g}, LMS and
{Age, LEMS}.
IND({Age}) = {{x1,x2,x6},
{x3,x4}, {x5,x7}}
IND({LEMS}) = {{x1},
{x2}, {x3,x4}, {x5,x6,x7}}
IND({Age,LEMS}) =
{{x1}, {x2}, {x3,x4},
{x5,x7}, {x6}}.



LetT=(U,A)and let Bc Aand X cU.
We can approximate X using only the
Information contained in B by constructing
the B-lower and B-upper approximations of
X, denoted BX and BX respectively, where

BX ={x|[x]z = X},
BX ={x|[X]; " X # g}.



An Example of Set Approximation
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Walk
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AN :{X]-! XG};
AN ={x1, x3, x4, x6},
BN , (W) ={x3, x4},

U — AV ={x2, x5, x7}.

The decision class, Walk, Is
rough since the boundary
region is not empty.

IND({Age, LEMS}) = {{x1}, {x2}, {x3,x4}, {x5,x7}, {x6}}



An Example of

Set Approximation (2)

{{x2}, {x5x7}}
AN x3,x4

‘ yes
; | Ux1}ix61} yes/no

no




Lower & Upper Approximations

/R

R : subset of
attributes




Lower & Upper Approximations

RX =Y eU/R:Y N X =g}

Lower Approximation:

RX =UfY eU/R:Y c X}



Lower & Upper Approximations

Headache | Temp.

(3)

Yes High The indiscernibility classes defined by

U3 | Yes Very-high R = {Headache, Temp.} are
U4 |No Normal No {ul}, {u2}, {u3}, {u4}, {u5, u7}, {u6, us}.
U5 | No High No
U6 | No \ery-high | Yes
U7 |No High Yes
U8 [No \ery-high | No
X1 = {u | Flu(u) = yes} X2 = {u | Flu(u) = no}
={u2, u3, ub, u7} = {ul, u4, u5, us}
RX1 ={u2, u3}

RX2 ={ul, u4}

RXL = {u2, u3, us, u7, us, us} Rx2 ={ul, u4, u5, u8, u7, uc}



Lower & Upper Approximations
(4)

X1 ={u | Flu(u) = yes} = {u2,u3,u6,u7}
X2 = {u | Flu(u) = no} = {ul,u4,u5,u8}

RX2 ={ul, ud}
RX2 = {ul, u4, u5, us, u7, ué}




Issues In the Decision Table

represented several times.

Some of the attributes may be superfluous
(redundant).

That 1s, their removal cannot worsen the
classification.



Keep only those attributes that preserve the
Indiscernibility relation and, consequently,
set approximation.

There are usually several such subsets of
attributes and those which are minimal are

called reducts.



The set of attributes R < C Is called a reduct

of C,If T’ = (U, R, D) Is independent and

POS, (D) = POS. (D).

The set of all the condition attributes

Indispensable in T is denoted by CORE(C).
CORE(C) =nRED(C)

where RED(C) Is the set of all reducts of C.



An Example of Reducts & Core

Muscle
pain

U  Headache Muscle Temp. Flu U1,U4 | Yes Normal | No
. _pan |:> U2 Yes High Yes
Ul |Yes Yes Normal | No U3,U6 | Yes Very-high | Yes
U2 | Yes Yes High Yes U5 No High No
U3 | Yes Yes Very-high | Yes
U4 |No Yes Normal | No Reduct2 = {Headache, Temp.}
U5 | No No High No
U6 [No Yes Very-high | Yes E> - Heanache || Temp. Sl
(UL | Yes Norlmal | No
U2 [Yes High Yes
U3 | Yes \ery-high | Yes
CORE = {Headache, Temp} U4 |No Normal | No
{MusclePain, Temp} = {Temp} US INo High __1No
U6 |[No \ery-high | Yes




Let T = (U, C, D) be a decision table, with
U ={u,u,,..,u }

By a discernibility matrix of T, denoted M(T),
we will mean nx n matrix defined as:

- {{CECZ c(u;)=c(u;)} if 3deD[d(u;)=d(u;)]
M = A if vdeD[d(u;)=d(u;)]

fori, j=1,2,...,nsuch thatu;or u, belongs to
the C-positive region of D.

m; Is the set of all the condition attributes that
classify objects ul and uj into different classes.



For any u. eU,
f-(u.)= /_\{vmij ) =1, ) e{l2,...,n}}

where (1) v M;; is the disjunction of all variables a
such that a € my;, if m; # @.

(2) v m; J_(false) it m;=¢.
(3) vm =t(true), if m;, =A.

Each logical product in the minimal disjunctive normal
form (DNF) defines a reduct of instance u..



Example of Discernibility Matrix

Noa b c d classes of the decision attribute d,
ul a0 bl cl vy to preserve conditions described
u2 al bl cO n by the discernibility matrix for
u3 a0 b2 cl n this table
ud al bl cl vy

ul u2 u3

SZEZ’}'O’C} h u2 | ac

(avc)abaca(avhb) us| b A
:b/\C U4 ﬂ, C a,b
Reduct = {b, c}




a b ¢ d

1

1 ul u2 u3 u4 us uoé
1 u2 | A

3 43 [bed b

2

u4 |b bd c,d

1b1 1d 1b1 ,b, ,d
Core = {b) Q us |ab,cdabc A4 abc

u6 |abcdabc A abcd A
uz7 | A A abcd ab c¢d cd

Reductl = {b,c}
Reduct2 = {b,d}

F(a,b,c,d)=(b+c+d)b(a+b+c+d)(b+c)(b+d)(a+b+c)(c+d)(a+b)=
b(c+d)=bc+bd Reducts: {b,c}, {b,d}




Finding an optimal subset of attributes in a
database according to some criterion, so that
a classifier with the highest possible
accuracy can be induced by learning
algorithm using information about data
avallable only from the subset of attributes.



Selecting the attributes that cause the number
of consistent instances to increase faster

To obtain the subset of attributes as small as
possible

Selecting an attribute that has smaller number
of different values

To guarantee that the number of instances covered
by rules is as large as possible.



An Example of

Attribute Selection

NG Sl ==] O

DO — | OO N[ DoAY

—Oolo~ o o~ i)

=N IDNIO DN ==

b: Vb ={0, 1, 2}
c.:Vc={0, 1,2}
d: vd ={0, 1}

Decision Attribute:
e:\Ve={0, 1, 2}



Searching for CORE

Removing attribute a

Removing attribute a does
not cause inconsistency.

Hence, a IS not used as
CORE.

DN O
DN — | O[O | DD )
== ==Y O
HIDN DN O N[ |




Searching for CORE (2)

Removing attribute b

c d e Removing attribute b

11211 cause inconsistency.

1 201

100 2

112110

21002

211101 2 Hence, b is used as CORE.
21211




Searching for CORE (3)

Removing attribute ¢

0! 0 1 Removing attribute c
210 2 does not cause inconsistency.
2110 Hence, ¢ 1S not used
1 02 aCORE
0| 2
1 |1




Searching for CORE (4)

Removing attribute d
U a

-
-
-
—

e

Removing attribute d

does not cause inconsistency.

WIS =l=] O

Hence, d IS not used
as CORE.

I

N\

D | — | OO N[ Do Y
RN O|IN H|(H

DO




Searching for CORE (5)

CORE(C)={b}

Initial subset R = {b}



‘cbo—o e

The Instances containing b0 will not be considered.



Selecting the attributes that cause the number
of consistent instances to increase faster

To obtain the subset of attributes as small as
possible

Selecting the attribute that has smaller number
of different values

To guarantee that the number of instances covered
by a rule is as large as possible.



Selecting Attribute from {a,c,d}

a b e

1| 2| 2 ‘» alb2 — e2
1 1210 |lalb2 —>e0
2 11 2|

5 ] 5 ! azbl —> e2
9 1 1 azbl — el

U POS{a,b}(X) — ¢

X eU /{e}




Selecting Attribute from {a,c,d} (2)

o b,c, — €,

__bc, —> e,

—bc, —> e

o

OSy, o (X) ={u3,u4,us,ub,ur};



Selecting Attribute from {a,c,d} (3)

} 0,d, — &,

e Dldl — €

= = DD ey
=IO O || O e
DN | DN O Dy

| JPOS 4y (X) ={u3,u4,u5,u6,u7};

X U /{e}



Selecting Attribute from {a,c,d} (4)

POS, 4, ({u3,u5,u6}) /{b, d}={{u3},{us,u6}}
max_ size (POS,, ., ({u3,us,u6}) /{b,d}) =2

Result: Subset of attributes = {b, d}




