
RegularExpressions

September 4, 2025

0.0.1 Metacharacters for regular expressions

+ means one or more repetitions of the symbol or group before it.

Let 𝐿 = {𝑠𝑜, 𝑠𝑜𝑜, 𝑠𝑜𝑜𝑜, ...} be the language of all strings that start with symbol ‘s’ and continue
with one ore more ‘o’ symbols.

A regular expression that describes (generates) this languages is so+.

[37]: import re

p = re.compile('so+')

m = p.match('sooo good!')
print(m)

<re.Match object; span=(0, 4), match='sooo'>

[38]: m.span()

[38]: (0, 4)

[39]: m.group()

[39]: 'sooo'

[40]: m.start()

[40]: 0

[41]: m.end()

[41]: 4

[42]: m.span()[0]

[42]: 0

[43]: m.span()[1]

[43]: 4

1

[44]: simple = re.compile('so')
s = simple.match('sooo good.')
print(s)

<re.Match object; span=(0, 2), match='so'>

[45]: s = simple.match('this is so, sooo good.')
print(s)

None

[46]: s = simple.search('this is so, sooo good.')
print(s)

<re.Match object; span=(8, 10), match='so'>

[47]: all = simple.findall('this is so, sooo good.')
print(all)

['so', 'so']

[48]: p = re.compile('so+')
all = p.findall('this is so, sooo good.')
print(all)

['so', 'sooo']

[49]: # RE matching is greedy.
p = re.compile('so+')
m = p.search('this is so, sooo good.')
keep searching for a match until there is no match.
while m:

print(m.span(), m.group())
m = p.search('this is so, sooo good.', pos = m.end())

(8, 10) so
(12, 16) sooo

* means zero or more repetitions of the symbol or group before it.

? means optional (zero or one occurences of the symbol or group before it)

[50]: p = re.compile('hello!?')
all = p.findall('he said "hello!" to me, and just "hello" to her.')
print(all)

['hello!', 'hello']

[51]: p = re.compile('hello!*')
all = p.findall('he said "hello" to him, "hello!" to me, and "hello!!!!!" to␣

↪her.')
print(all)

2

['hello', 'hello!', 'hello!!!!!']

[52]: p = re.compile('hello!*')
all = p.findall('"Hello", he said to him, "hello!" to me, and "hello!!!!!" to␣

↪her.')
print(all)

['hello!', 'hello!!!!!']

0.0.2 Brackets are RE metacharacters

[<symbols>] matches any symbol from the list of <symbols>

Let 𝐿 = {ℎ𝑒𝑙𝑙𝑜, ℎ𝑒𝑙𝑙𝑜!, ℎ𝑒𝑙𝑙𝑜!!, ..., 𝐻𝑒𝑙𝑙𝑜, 𝐻𝑒𝑙𝑙𝑜!, 𝐻𝑒𝑙𝑙𝑜!!, ...}
A regular expression that generates 𝐿 is [hH]ello!*

[53]: p = re.compile('[Hh]ello!*')
all = p.findall('"Hello", he said to him, "hello!" to me, and "hello!!!!!" to␣

↪her.')
print(all)

['Hello', 'hello!', 'hello!!!!!']

[^<symbols>] matches any symbols that is NOT in the list <symbols>

For example, [^abcde] matches any symbols that is not a, b, c, d, or e.

[54]: p = re.compile('[^Hh]!ello*')
all = p.findall('"Yello", he said to him, "hello!" to me, and "shmello!!!!!" to␣

↪her.')
print(all)

[]

[55]: p = re.compile('the')
all = p.findall('He caught the dog that chased the white cat.')
print(all)

['the', 'the']

[56]: p = re.compile('the')
all = p.findall('He caught the dog that bit them.') # => the RE generates /␣

↪covers too many strings.
print(all)

['the', 'the']

3

0.0.3 Parantheses are metacharacters too

[57]: p = re.compile(' the ')
all = p.findall('He caught the dog that bit them.') # => the RE generates /␣

↪covers too many strings.
print(all)

[' the ']

[58]: p = re.compile(' (the) ')
all = p.findall('He caught the dog that bit them.')
print(all)

['the']

[59]: p = re.compile(' ([Tt]he) ')
all = p.findall('The man caught the dog that bit them.')
print(all)

['the']

0.0.4 The pipe symbol | is a metacharacter

It is used as a disjuntion (logical or) between items in a group.

When ^ is used outside brackets, it indicates the beginning of the string.

[60]: p = re.compile('[Ww]oodchuck|[Gg]roundhog')
matches = p.findall('The woodchuck appears at the beginning in the movie␣

↪Groundhog Day')
matches

[60]: ['woodchuck', 'Groundhog']

[61]: p = re.compile('^The')
all = p.findall('The man caught the dog that bit them.')
print(all)

['The']

The dot . is a metacharacter that maches anything.

[62]: # The language of all strings that start with two a's and end with 2 b's.
p = re.compile('aa.*bb')

[63]: p = re.compile('gr[aeiou]+vy')
all = p.findall('So groovy, greavy, grouvy, greenvy, greeeeeouioiuoavy!')
print(all)

['groovy', 'greavy', 'grouvy', 'greeeeeouioiuoavy']

4

[64]: # All capital letters
p = re.compile('[ABCDEFGHIJKLMNOPQRSTUVWXYZ]')
q = re.compile('[A-Z]')

Any digit would be [0-9]

Any digit between 2 and 8 would be [2-8]

[65]: p = re.compile('[1-5b-f]+')
all = p.findall("Let's try it with beeb, beed1-dde4, and b66ed.")
print(all)

['e', 'beeb', 'beed1', 'dde4', 'd', 'b', 'ed']

[66]: p = re.compile('[1-56-8]')
all = p.findall("Numbers 56 and 1 and 2 and 34")
print(all)

['5', '6', '1', '2', '3', '4']

[67]: p = re.compile('[gG]ro+vy')
app = p.findall("So groovy, baby, but she is definitely groooooovy!")
print(app)

['groovy', 'groooooovy']

[70]: import re

p = re.compile('[A-Za-z-]+')
p.findall("this is a long-string with a few numbers, such as 12, 12.4 and 5")

[70]: ['this',
'is',
'a',
'long-string',
'with',
'a',
'few',
'numbers',
'such',
'as',
'and']

0.1 Non-capturing groups
Use (?: <pattern>) to avoid capturing behavior.

[73]: # Compare this re behavior:
p = re.compile('baob(ab)+')
matches = p.findall('I saw a baobab next to a baobabab')

5

print(matches)

with this re behavior:
p = re.compile('baob(?:ab)+')
matches = p.findall('I saw a baobab next to a baobabab')
print(matches)

['ab', 'ab']
['baobab', 'baobabab']

0.2 More examples

[74]: p = re.compile('colour')
p.sub('color', 'I like bright colours, and I am partial to dark colours.')

[74]: 'I like bright colors, and I am partial to dark colors.'

[75]: p = re.compile('wa+y')
p.sub('way', 'He is on his way, but he is still waaaay to far, and waaaaaaay to␣

↪unprepared.')

[75]: 'He is on his way, but he is still way to far, and way to unprepared.'

[76]: p = re.compile('([0-9]+)', re.VERBOSE)
p.sub(r'<\1> extra', '10 whiseky bottles and 35 boxes of gold')

[76]: '<10> extra whiseky bottles and <35> extra boxes of gold'

0.3 Pattern substitutions and group references

[77]: p = re.compile(r'the (.*)er they (.*), the \1er we \2')
m = p.match('the faster they ran, the faster we ran')
m

[77]: <re.Match object; span=(0, 38), match='the faster they ran, the faster we ran'>

[78]: p = re.compile(r'the (.*)er they (.*), the \1er we \2')
m = p.match('the faster they ran, the faster we jumped')
print(m)

None

0.4 More examples from Sep 4, 2025

[79]: import re

Match alphanumeric strings that have no uppercase letters, that start and end␣
↪with 'z'

6

pos1 = "z123abcz"
neg2 = "za&abz"
neg3 = "zdskfh"

First try, it will have false positives (wrongly matches neg2).
p = re.compile('z.*z')
m1 = p.match(pos1)
m2 = p.match(neg2)
m3 = p.match(neg3)
print(m1, m2, m3, sep = '\n')

<re.Match object; span=(0, 8), match='z123abcz'>
<re.Match object; span=(0, 6), match='za&abz'>
None

[81]: m1.span(), m1.group(), m1.start(), m1.end()

[81]: ((0, 8), 'z123abcz', 0, 8)

[82]: # Second try, correct pattern, no false positives.
p = re.compile('z[a-zA-Z0-9]*z')
print(pos1, neg2, neg3, end = '\n')
m1 = p.match(pos1)
m2 = p.match(neg2)
m3 = p.match(neg3)
print(m1, m2, m3, sep = '\n')

z123abcz za&abz zdskfh
<re.Match object; span=(0, 8), match='z123abcz'>
None
None

[83]: # Equivalent pattern using '\w' to match alphanumeric characters.
p = re.compile(r'z\w*z')
print(pos1, neg2, neg3, end = '\n')
m1 = p.match(pos1)
m2 = p.match(neg2)
m3 = p.match(neg3)
print(m1, m2, m3, sep = '\n')

z123abcz za&abz zdskfh
<re.Match object; span=(0, 8), match='z123abcz'>
None
None

[84]: # Match any lowercase letteer other than 'q'.
p = re.compile('[a-pr-z]')

Match lowercase alphanumeric strings that start and end with the same symbol.

7

p = re.compile(r'([a-pr-z]) [a-pr-z]* \1', re.VERBOSE)
m = p.match('zbcdz')
print(m)
print(m.group())

<re.Match object; span=(0, 5), match='zbcdz'>
zbcdz

[85]: m = p.match('zbcd')
print(m)

None

[]:

8

MoreRegularExpressions

September 10, 2024

1 More regular Expressions examples

[]: import re

p = re.compile('[Pp]umas?|[Cc]ougars?')
p.findall('I saw a puma chasing two cougars.')

[]: text = 'I saw a puma puma puma puma in the jungle.'
p = re.compile('(puma)+')
m = p.search(text)
print(m)

[]: p = re.compile('[Ww]oodchuck')
m = p.match('Woodchucks ran after a woodchuck.')

[]: m

[]: m.span()

[]: m.group()

[]: len('Woodchuck'), 'Woodchuck ran ...'[8]

[]: m.span(), m.start()

[]: m = p.match('Three Woodchucks ran after a woodchuck.')
print(m)

[]: m = p.search('Three Woodchucks ran after a woodchuck.')
m.group(), m.span(), 'Three Woodchucks'.find('Woodchuck')

[]: matches = p.findall('Three Woodchucks ran after a woodchuck.')
matches

[]: matches = p.finditer('Three Woodchucks ran after a woodchuck.')
for m in matches:

print(m.span())

1

[]: p = re.compile('[Ww]oodchuck|[Gg]roundhog')
matches = p.findall('The woodchuck appears at the beginning in the movie␣

↪Groundhog Day')
matches

[]: pd = re.compile(r'\d+')
matches = pd.findall("His GPA is 3.85. His age is 23, and he can swim 4000␣

↪yards without stopping")
print(matches)

pd = re.compile(r'[0-9]+')
matches = pd.findall("His GPA is 3.85. His age is 23, and he can swim 4000␣

↪yards without stopping")
print(matches)

pd = re.compile(r'[\d.]+')
matches = pd.findall("His GPA is 3.85. His age is 23, and he can swim 4000␣

↪yards without stopping")
print(matches)

pd = re.compile(r'[\d]+ [.]? \d+', re.VERBOSE)
matches = pd.findall("His GPA is 3.85. His age is 23, and he " \

"can swim 4000 yards without stopping." \
"How about 3.85.4?")

print(matches)

[]: import re
p = re.compile('[Ww]oodchuck | [Gg]roundhog')
matches = p.findall('The woodchucks appears at the beginning in the movie␣

↪Groundhog Day')
matches

[]: p = re.compile('[Ww]oodchuck | [Gg]roundhog', re.VERBOSE)
matches = p.findall('The woodchucks appears at the beginning in the movie␣

↪Groundhog Day')
matches

[]: p = re.compile(r'[Ww]oodchuck\ | [Gg]roundhog', re.VERBOSE)
matches = p.findall('The woodchuck appears at the beginning in the movie␣

↪Groundhog Day')
matches

[]: p = re.compile('[Ww]oodchucks?|[Gg]roundhogs?')
p.findall('Woodchucks, by any other name, such as groundhog, '

'would woodchuck the same.')

2

[]: p = re.compile('^[Hh]ow')
p.findall('How do you do? I do how I always do.')

[]: p = re.compile('[Hh]ow')
p.findall('How do you do? I do how I always do.')

[]: #p = re.compile('[^a-zA-Z][tT]he[^a-zA-Z]')
p = re.compile('[tT]he')
p.findall('The cat ran after the dog, but the other dog intervened.')

[]: p = re.compile('[tT]he')
matches = p.finditer('The cat ran after the dog, '

'but the other dog intervened.')
for m in matches:

print(m)

print()

matches = p.finditer('The cat ran after the dog, '
'but the other dog intervened.')

for m in matches:
print(m.group(), m.start(), m.end())

[]: p = re.compile('[^a-zA-Z][tT]he[^a-zA-Z]')
#p = re.compile('[tT]he')
p.findall('The cat ran after the dog, '

'but the other dog intervened.')

[]: s = 'The cat ran after the dog, but the other dog intervened.'

p1 = re.compile('[^a-zA-Z] ([tT]he) [^a-zA-Z]', re.VERBOSE)
r1 = p1.findall(s)
print(r1)

p2 = re.compile('^([tT]he) [^a-zA-Z]', re.VERBOSE)
r2 = p2.findall(s)
print(r2)

Instead of trying to combine the two patterns (but try it as a homework␣
↪exercise).

r3 = p1.findall(' ' + s)
print(r3)

[]: p = re.compile('a+b+')
p.findall('aabb aaabbb abcba aba aaaabb')

3

[]: import re

p = re.compile(r'[pP]ythons?')
matches = p.findall('Python is a fun programming language. '

'There are many pythons in the jungle. '
'I like PYTHON!')

print(matches)

[]: p = re.compile(r'\s(cats?|dogs?)\W')
matches = p.findall('It is raining cats and dogs. '

'Her cat likes catfish.')
print(matches)

[]: p = re.compile('colou?r')
p.sub('<color>', 'I would like to drive a blue coloured car.')

1.1 Character classes \d, \D, …

[]: import re

text = 'I woke up at 8am this morning.'
p = re.compile('\D+')
p.findall(text)

[]: p = re.compile('[^0-9]+')
p.findall(text)

Regular expression for recognizing time expressions, e.g. 8am, 12:05pm, …

[]: import re

p = re.compile('[0-9]+(:[0-9]+)?[ap]m')
text = 'I woke up at 8am and had lunch at 12:35pm, then went for a walk.'
m1 = p.search(text)
print(m1)
print(m1.group()) # this prints the matched string
print(m1.start()) # this prints the starting position
print(m1.end()) # this prints the end position
print(m1.span()) # this prints the (start, end) tuple

[]: m2 = p.search(text[m1.end():])
print(m2)

[]: import re

p = re.compile('[0-9]+(:[0-9]+)?[ap]m')
text = 'I woke up at 8am and had lunch at 12:35pm, then went for a walk.'

4

Find and print all matches.
m = p.search(text)
while m:

print(m.group())
text = text[m.end():]
m = p.search(text)

Pattern.search() has a keyword argument pos to specify where to start the search, by default 0.

[]: text = 'I woke up at 8am and had lunch at 12:35pm, then went for a walk.'
p.search(text, pos = 16)

[]: import re

p = re.compile('[0-9]+(:[0-9]+)?[ap]m')
text = 'I woke up at 8am and had lunch at 12:35pm, then went for a walk.'
Find and print all matches.
m = p.search(text)
while m:

print(m.group())
m = p.search(text, pos = m.end())

Use re.VERBOSE to indicate that spaces in the regular expression string are to be ignored.

[]: import re

p = re.compile('[0-9]+ (:[0-9]+)? [ap]m', re.VERBOSE)
text = 'I woke up at 8am and had lunch at 12:15pm, then went for a walk.'
m = p.search(text)
while m:

print(m.group())
m = p.search(text, pos = m.end())

Let’s make the regular expression more precise.

[]: p = re.compile(r'(?<=\D) (0?[0-9] | 1[012]) (:[0-5][0-9])? [ap]m', re.VERBOSE)
text = 'I woke up at 8am and had lunch at 12:15pm, then went for a walk. 34:

↪49am is not a valid time expression.'
m = p.search(text)
while m:

print(m.group())
m = p.search(text, pos = m.end())

1.2 Use parantheses for capturing behavior

[]: p = re.compile('[^a-zA-Z] [Tt]he [^a-zA-Z]', re.VERBOSE)
m = p.findall('Yes. The cat chases the dogs that bathe.')
print(m)

5

[]: p = re.compile('[^a-zA-Z] ([Tt]he) [^a-zA-Z]', re.VERBOSE)
m = p.findall('Yes. The cat chases the dogs that bathe.')
print(m)

[]: p = re.compile('([0-9]+)', re.VERBOSE)
p.sub(r'<\1> extra', 'the 35 boxes')

[]: p = re.compile('([0-9]+)', re.VERBOSE)
p.sub(r'<\1> extra', '10 whiseky bottles and 35 boxes of gold')

1.3 Use (?!) to indicate non-matching behavior.

[]: p = re.compile(r'Isaac (?!Asimov)')
matches = p.finditer('I like reading Isaac Asimov '

'and listening to Isaac Perlman '
'and playing chess with Isaac .')

for m in matches:
print(m.span(), m.group())

[]: p = re.compile(r'Isaac (?!Asimov|Perlman)')
matches = p.finditer('I like reading Isaac Asimov '

'and listening to Isaac Perlman '
'and playing chess with Isaac .')

for m in matches:
print(m.span(), m.group())

1.4 Use (?:) to indicate parantheses are used for grouping, but not cap-
turing behavior

[]: import re

p = re.compile('[0-9]+ (?: :[0-9]+)? [ap]m', re.VERBOSE)
text = 'I woke up at 8am and had lunch at 12:35pm, then went for a walk.'
m = p.findall(text)
print(m)

1.5 Find-replace using regular expressions and p.sub()

[]: import re

p = re.compile('\d+')
text = 'She ran for 3 miles, than she ate 2 apples and drank a 12 ounce can of␣

↪Coke.'
p.sub('<num>', text)

Capture groups using parantheses and numbered registers.

6

[]: import re

p = re.compile('(\d+)')
text = 'I ran for 3 miles, than I ate 2 apples and drank a 12 ounce can of Coke.

↪'
p.sub(r'\1 extra', text)

[]: import re

p = re.compile(".*I am (depressed|sad).*")
text = "My cat is sick, I am sad, I don't know what to do!"
p.sub(r'I am sorry to hear you are \1.', text)

[]:

7

	RegularExpressions
	Metacharacters for regular expressions
	Brackets are RE metacharacters
	Parantheses are metacharacters too
	The pipe symbol | is a metacharacter
	Non-capturing groups
	More examples
	Pattern substitutions and group references
	More examples from Sep 4, 2025

	MoreRegularExpressions
	More regular Expressions examples
	Character classes \d, \D, …
	Use parantheses for capturing behavior
	Use (?!) to indicate non-matching behavior.
	Use (?:) to indicate parantheses are used for grouping, but not capturing behavior
	Find-replace using regular expressions and p.sub()

