
PythonExamples

January 22, 2026

[]: a = 1

[]: a

[]: 1

[]: print(a)

1

[]: print("Hello world")

Hello world

[]: # Factorial function: iterative
def fact(n):

result = 1
while n > 1:
result = result * n
n = n - 1

return result

[]: fact(100)

[]: 93326215443944152681699238856266700490715968264381621468592963895217599993229915
608941463976156518286253697920827223758251185210916864000000000000000000000000

[]: # Factorial function: iterative
def fact(n):

if n == 0:
return 1

return n * fact(n - 1)

return result

[]: fact(100)

1

[]: 93326215443944152681699238856266700490715968264381621468592963895217599993229915
608941463976156518286253697920827223758251185210916864000000000000000000000000

[]: type(fact)

[]: function

[]: a = 0.1
type(a)

[]: float

[]: a = 0.1
sum = 0
for _ in range(10):

sum = sum + a
print(sum)

0.9999999999999999

[]: type(a)

[]: float

[]: print(a)

0.1

[]: # Formatted string
f"a is really {a : .20f}"

[]: 'a is really 0.10000000000000000555'

[]: list(range(10))

[]: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

[]: list(range(1, 10))

[]: [1, 2, 3, 4, 5, 6, 7, 8, 9]

[]: list(range(1, 10, 2))

[]: [1, 3, 5, 7, 9]

[]: l = [1, 2, 3, 4, 5]
type(l)

[]: list

2

[]: l = list(range(20))

[]: l

[]: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]

[]: l = l[2:11]
print(l)

[2, 3, 4, 5, 6, 7, 8, 9, 10]

[]: l = l[2:11:2]
print(l)

[4, 6, 8, 10]

[]: l[1:len(l)]

[]: [6, 8, 10]

[]: l[1:]

[]: [6, 8, 10]

[]: l

[]: [4, 6, 8, 10]

[]: l[:3]

[]: [4, 6, 8]

[]: l[:]

[]: [4, 6, 8, 10]

[]: lnew = l[::-1]
print(lnew)

[10, 8, 6, 4]

[]: lnew[1] = 10
print(lnew)

[10, 10, 6, 4]

[]: print(l)

[4, 6, 8, 10]

3

[]: l[3] = 8.5
print(l)

[4, 6, 8, 8.5]

[]: l[0] = 'charlotte'
print(l)

['charlotte', 6, 8, 8.5]

[]: t = (1, 3, 5, 5)
type(t)

[]: tuple

[]: # Python tuples are immutable
t[0] = 0

TypeError Traceback (most recent call last)
<ipython-input-57-51595a4035f3> in <cell line: 1>()
----> 1 t[0] = 0

TypeError: 'tuple' object does not support item assignment

[]: a = 1, 2, 3
print(a)

(1, 2, 3)

[]: # This does tuple assignment (a, b) = (1, 2)
a, b = 1, 2

[]: print (a, b)

1 2

[]: temp = a
a = b
b = temp
print(a, b)

2 1

[]: a, b = b, a
print(a, b)

1 2

4

[]: math.pi

[]: 3.141592653589793

[]: spi = str(math.pi)
spi

[]: '3.141592653589793'

[]: float(spi)

[]: 3.141592653589793

[]: int("2351")

[]: 2351

[]: s = 'UNC Charlotte'
s.find('har')

[]: 5

[]: s.find('hare')

[]: -1

[]: None

[]: s = "UNC Charlotte's campus is full of hares."
s.rfind('har')

[]: 34

[]: s.split()

[]: ['UNC', "Charlotte's", 'campus', 'is', 'full', 'of', 'hares.']

[]: s = 'UNC Charlotte's campus is full of hares.'

File "<ipython-input-29-abab82ca6718>", line 1
s = 'UNC Charlotte's campus is full of hares.'

^
SyntaxError: unterminated string literal (detected at line 1)

[]: s

[]: "UNC Charlotte's campus is full of hares."

5

[]: s = 'charlotte'
s[0:5], s[:5]

[]: ('charl', 'charl')

[]: s[0:5:2]

[]: 'cal'

[]: s[-1], s[-2], s[-2:]

[]: ('e', 't', 'te')

[]: s[::-1]

[]: 'ettolrahc'

[]: s

[]: 'charlotte'

[]: # Python strings are immutable
s[0] = 's'

TypeError Traceback (most recent call last)
<ipython-input-37-910e3094fc67> in <cell line: 1>()
----> 1 s[0] = 's'

TypeError: 'str' object does not support item assignment

[]: s, s * 2

[]: ('charlotte', 'charlottecharlotte')

[]: s + s

[]: 'charlottecharlotte'

[]: x = list(range(1, 11))

[]: x

[]: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

[]: x[::2], x[1::2]

[]: ([1, 3, 5, 7, 9], [2, 4, 6, 8, 10])

6

[]: x[2] += 2
x[5] += 3
x

[]: [1, 2, 5, 4, 5, 9, 7, 8, 9, 10]

[]: [j * 10 for j in x if j % 2 == 0]

[]: [20, 40, 80, 100]

[]: [j for j in x if j % 2 == 0]

[]: [2, 4, 8, 10]

[]: x

[]: [1, 2, 5, 4, 5, 9, 7, 8, 9, 10]

[]: y = tuple(x)
y

[]: (1, 2, 5, 4, 5, 9, 7, 8, 9, 10)

[]: y[0] = 0

TypeError Traceback (most recent call last)
<ipython-input-50-b8cef91e0169> in <cell line: 1>()
----> 1 y[0] = 0

TypeError: 'tuple' object does not support item assignment

[]: def prod_sum(a, b):
return a + b, a * b

y = prod_sum(2, 3)
type(y)

[]: tuple

[]: y

[]: (5, 6)

[]: (5,)

[]: (5,)

7

[]: a

[]: 2

[11]: # Dictionaries
d = {'john': 23, 'alex': 25, 'bill': 99}
print(type(d))
print(d)

<class 'dict'>
{'john': 23, 'alex': 25, 'bill': 99}

[13]: 'alex' in d

[13]: True

[14]: 'mary' in d

[14]: False

[15]: d['mary'] = 30
d

[15]: {'john': 23, 'alex': 25, 'bill': 99, 'mary': 30}

[16]: d['john'] = 35
d

[16]: {'john': 35, 'alex': 25, 'bill': 99, 'mary': 30}

[17]: d['harry']

KeyError Traceback (most recent call last)
<ipython-input-17-62aaa5814145> in <cell line: 1>()
----> 1 d['harry']

KeyError: 'harry'

[20]: # Two solutions for initializing value (if key non-existent) or updating value␣
↪(if key exists in dictionary).

key = 'harry'
Solution 1
if key in d:

d[key] += 10
else:

8

d[key] = 10

key = 'barry'
#Solution 2
d[key] = d.get(key, 0) + 10

print(d)

{'john': 35, 'alex': 25, 'bill': 99, 'mary': 30, 'harry': 10, 'barry': 10}

[19]: del d['harry']
del d['barry']

[]:

[]: # Note right-branching effect of if-else, and one way of including quotes in a␣
↪Python string.

a = 5
if a == 0:

print('nada')
else:

if a == 1:
print('uno')

else:
if a == 2:

print('dos')
else:

if a == 3:
print('tres')

else:
print("I'm tired")

I'm tired

[]: # elif statements eliminate right-branching.
a = 5
if a == 0:

print('nada')
elif a == 1:

print('uno')
elif a == 2:

print('dos')
elif a == 3:

print('tres')
else:

print("I'm tired")

I'm tired

9

[]: # If x belongs to a, return True (else with for).
def search(a, x):

for e in a:
if e == x:

return True
else:

return False

[]: search([1, 2, 3, 5], 4)

[]: False

[]: l1 = [1, 2, 3]
l1.append(4)
print(l1)

[1, 2, 3, 4]

[1]: # Fibonnacci numbers 1, 1, 2, 3, 5, 8, 13, 21, ...
Function that generates a list with the first n Fibonnacci numbers.
def fibo1(n):

if n == 1:
return [1]

if n == 2:
return [1, 1]

a, b = 1, 1
result = [a, b]
for _ in range(n-2):
a, b = b, a + b
result.append(b)

return result

print(fibo1(30))

[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584,
4181, 6765, 10946, 17711, 28657, 46368, 75025, 121393, 196418, 317811, 514229,
832040]

[]: # Fibonnacci numbers 1, 1, 2, 3, 5, 8, 13, 21, ...
Function that generates the nth Fibonnacci numbers.
def fibo1(n):

a, b = 0, 1
for _ in range(n):
a, b = b, a + b

10

return a

fibo1(100)

[]: 354224848179261915075

[]: # Fibonnacci numbers 1, 1, 2, 3, 5, 8, 13, 21, ...
Function that generates the nth Fibonnaci number
def fibo2(n):

if n == 1:
return 1

if n == 2:
return 1

return fibo2(n-1) + fibo2(n-2)

fibo2(100)

[3]: def fibo():
a, b, = 1, 1
while True:

yield a
a, b = b, a + b

[4]: gen = fibo()

[5]: next(gen)

[5]: 1

[6]: next(gen)

[6]: 1

[7]: next(gen)

[7]: 2

[8]: next(gen)

[8]: 3

[9]: for _ in range(20):
print(next(gen), end = ' ')

5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 6765 10946 17711 28657
46368

11

[]:

[]: # Use `cmath` if you need to generate complex numbers.
import math

def quad_sol(a, b, c):
"""

This function calculates the solutions of a quadratic equation ...
"""
term = math.sqrt(b * b - 4 * a * c)
sol1 = (-b + term) / (2 * a)
sol2 = (-b - term) / (2 * a)

return sol1, sol2

[]: quad_sol(1, -4, 3)

[]: ((3+0j), (1+0j))

[]: quad_sol(1, 1, 1)

[]: ((-0.5+0.8660254037844386j), (-0.5-0.8660254037844386j))

[]: def seq1():
a = [1, 2, 4, 7, 11, 16, 22, 29, 37, 46, 56, 67, 79, 94]
while True:

for e in a:
yield e

[]: gen1 = seq1()
for i in range(30):

print(next(gen1), end = ' ')

1 2 4 7 11 16 22 29 37 46 56 67 79 94 1 2 4 7 11 16 22 29 37 46 56 67 79 94 1 2

[]: def seq2():
a, d = 1, 1
while True:

yield a
a, d = a + d, d + 1

[]: gen2 = seq2()
for i in range(30):

print(next(gen2), end = ' ')

1 2 4 7 11 16 22 29 37 46 56 67 79 92 106 121 137 154 172 191 211 232 254 277
301 326 352 379 407 436

12

Write a function find_sublist(a, b) that returns True if and only if the list b appears some-
where in a. For example: * find_sublist([-10, 2, 5, -2, 3], [2, 5]) should return True. *
find_sublist([-10, 2, 5, -2, 3], [2, 7]) should return False.

[]: def find_sublist(a, b):
for i in range(len(a)):

Try to see if b appears starting at position i in a.
found = True
for j in range(len(b)):

if b[j] != a[i + j]:
found = False
break

if found:
return True

return False

[]: a = [-10, 2, 5, -2, 3]
b1 = [2, 5]
b2 = [2, 5, -2]
b3 = [2, 7]

find_sublist(a, b1)

[]: True

[]: find_sublist(a, b2)

[]: True

[]: find_sublist(a, b3)

[]: False

The for loop in Python can have an else clause which gets executed if the loop ends normally.

[]: def find_sublist(a, b):
for i in range(len(a)):

for j in range(len(b)):
if b[j] != a[i + j]:

break
else:

return True
return False

[]: find_sublist(a, b1), find_sublist(a, b2), find_sublist(a, b3)

[]: (True, True, False)

13

1 Practice problems
• Write a function remove_duplicates(a) that takes as input a sorted list and return a list

where all duplicates are removed. For example, remove_duplicates([1, 2, 2, 4, 6, 6,
6, 9, 10, 11, 11, 11, 11, 13, 14, 14]) should return [1, 2, 4, 6, 9, 10, 11, 13,
14].

• Write a function remove_duplicates(a) that removes duplicates from a list that is not nec-
essarily sorted. For example, remove_duplicates([-3, 4, 2, 4, -3, 2]) should return
[-3, 4, 2].

• Write a function to find the longest common prefix string amongst an array of strings. For
example, longest-prefix(["flower","flow","flight"]) should return 'fl'.

• Generate a list of all permutations of the elements in a list. For example, perm([1, 2,
3]) should output [[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 1, 3], [3, 1, 2], [3,
2, 1]].

• Consider a pre-order tree representation using lists, where a tree T with the value R in the
root node and subtrees T1, T2, …, Tn is represented as a list [R, T1 T2, ..., Tn]. For
example, this tree would be represented as [2, [7, [2], [10], [6, [5], [11]]], [5,
[9, [4]]]]. Write the functions:

– count_nodes(t) that count the nodes of a tree. For the tree above it should return 10.
– count_leaves(t) that counts the leaves of a tree. For the tree above it should return

5.
– height(t) that calculates the height of a tree. The the tree above it should return 3.
– find(t, x) that returns Treu if and only if t contains the number x.

[]:

14

https://webpages.charlotte.edu/rbunescu/courses/itcs5356/tree.svg

	Practice problems

