PythonExamples

January 22, 2026

print(a)

1

print("Hello world")
Hello world

Factorial function: iterative
def fact(n):
result = 1
while n > 1:
result = result * n
n=n-1

return result
fact (100)

93326215443944152681699238856266700490715968264381621468592963895217599993229915
608941463976156518286253697920827223758251185210916864000000000000000000000000

Factorial function: iterative
def fact(n):
if n ==
return 1
return n * fact(n - 1)

return result

fact (100)

93326215443944152681699238856266700490715968264381621468592963895217599993229915
608941463976156518286253697920827223758251185210916864000000000000000000000000

type (fact)
function

a=20.1
type(a)

float

a=20.1

sum = O

for _ in range(10):
sum = sum + a

print (sum)

0.9999999999999999

type(a)
float
print(a)

0.1

Formatted string
f"a is really {a : .20f1}"

'a is really 0.10000000000000000555"
list(range(10))

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
list(range(1, 10))

(1, 2, 3, 4, 5, 6, 7, 8, 9]
list(range(1, 10, 2))

(1, 3, 5, 7, 9]

1=1[1, 2, 3, 4, 5]
type (1)

list

'_l
1]

list(range(20))

1

1

(o, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]

1[2:11]
print (1)

(2, 3, 4, 5, 6, 7, 8, 9, 10]

11 =1[2:11:2]
print (1)

[4, 6, 8, 10]

: 1[1:1en(1)]
[6, 8, 10]
:{1[1:]

(6, 8, 10]

1

[4, 6, 8, 10]
:11[:3]

(4, 6, 8]

0 1[:]

(4, 6, 8, 10]

: lnew = 1[::-1]
print (lnew)

(10, 8, 6, 4]

: lnew[1] = 10
print (lnew)

(10, 10, 6, 4]
: print(1)

(4, 6, 8, 10]

[]1:

[]1:

[]1:

[]1:

[1:

[]:

[]:

[]1:

[]:

[]:

1[3] = 8.5
print (1)

(4, 6, 8, 8.5]

1[0] = 'charlotte'
print (1)

['charlotte', 6, 8, 8.5]

t = (1, 3: 5: 5)
type(t)

tuple

Python tuples are immutable
t[0] =0

TypeError
<ipython-input-57-51595a4035£3> in
~—==> 1 t[0] =

Traceback (most recent call last)

O

TypeError: 'tuple' object does not support item assignment

a=1, 2, 3
print(a)

(1, 2, 3

This does tuple assignment (a, b) = (1, 2)

a, b=1, 2
print (a, b)

12

temp = a
a=>o

b = temp
print(a, b)

21

a, b =>0, a
print(a, b)

12

[1: math.pi
[J: 3.141592653589793

[1: spi = str(math.pi)
spi

[1: '3.141592653589793"'
[1: float(spi)
[1: 3.141592653589793

[1: int("2351")

[1: 2351

[]: s = 'UNC Charlotte'
s.find('har')

[1:5

[1: s.find('hare')
[1: -1
[1: None

[1: s = "UNC Charlotte's campus is full of hares."
s.rfind('har')

[1: 34
[1: s.split()
[1: ['UNC', "Charlotte's", 'campus', 'is', 'full', 'of', 'hares. ']

[J: s = 'UNC Charlotte's campus is full of hares.'

"<ipython-input-29-abab82ca6718>" 1
s = 'UNC Charlotte's campus is full of hares.'

SyntaxError: unterminated string literal (detected at line 1)

[1: s

[1: "UNC Charlotte's campus is full of hares."

]: s = 'charlotte'
s[0:5], s[:5]

1: ('charl', 'charl')
1:|s[0:5:2]

1: 'cal!

1:|s[-1], s[-21, s[-2:]
1: (te', 't', 'te")

1: s[::-1]

]: 'ettolrahc'

]: 'charlotte'

1: # Python strings are immutable

s[0] = 's'
TypeError Traceback (most recent call last)
<ipython-input-37-910e3094fc67> in O

-—-=> 1 s[0] = 's'

TypeError: 'str' object does not support item assignment

]J: s, 8 % 2

]: ('charlotte', 'charlottecharlotte')
l: s +s

]: 'charlottecharlotte'

1:|x = list(range(1, 11))

1: x

1: [1, 2, 3, 4, 5,6, 7, 8, 9, 10]
1:/x[::2], x[1::2]

1. ([1, 3, 5, 7, 91, [2, 4, 6, 8, 10])

x[2] += 2

x[5] += 3

X

(1, 2, 5, 4, 5, 9, 7, 8, 9, 10]
[j * 10 for j in x if j % 2 == 0]
[20, 40, 80, 100]

[j for j in x if j % 2 == 0]

[2, 4, 8, 10]

X

[1: 2, 5’ 4—', 53 93 7, 8’ 9, 10]

y = tuple(x)
y

(1, 2, 5, 4,5,9,7,8,9, 10

ylol =0

TypeError Traceback (most recent call last)
<ipython-input-50-b8cef91e0169> in O

-——=> 1 yl[0] =

TypeError: 'tuple' object does not support item assignment

def prod_sum(a, b):
return a + b, a * b

y = prod_sum(2, 3)
type(y)

tuple
y

(6, 6)
(5,)

(5,)

[1: a

[1:2

[11]: | # Dictionaries
d = {'john‘: 23, 'alex': 25, 'bill': 99}
print (type(d))
print(d)

<class 'dict'>
{'john': 23, 'alex': 25, 'bill': 99}

[13]: 'alex' in d
[13]: True
[14]: 'mary' in d
[14]: False

[15]: d['mary'] = 30
d

[15]: {'john': 23, 'alex': 25, 'bill': 99, 'mary': 30}

[16]: d['john'] = 35
d

[16]: {'john': 35, 'alex': 25, 'bill': 99, 'mary': 30}

[17]: d['harry']

KeyError Traceback (most recent call last)
<ipython-input-17-62aaab814145> in O
---=> 1 d['harry']

KeyError: 'harry'

[20]: # Two solutions for initializing value (if key non-existent) or updating value,
o (if key exzists in dictionary).

key = 'harry'
Solution 1
if key in d:

d[key] += 10
else:

dlkey] = 10

key = 'barry'
#Solution 2
d[key] = d.get(key, 0) + 10

print(d)
{'john': 35, 'alex': 25, 'bill': 99, 'mary': 30, 'harry': 10, 'barry': 10}

[19]: del d['harry']
del d['barry']

[]:

[1: # Note right-branching effect of if-else, and one way of including quotes in ay
»Python string.

a=>5
if a ==
print('nada')
else:
if a ==
print('uno')
else:
if a ==
print('dos')
else:
if a ==
print('tres')
else:
print("I'm tired")
I'm tired

[1: # elif statements eliminate right-branching.

a=>5

if a ==
print('nada')

elif a ==
print('uno')

elif a ==
print('dos')

elif a ==
print('tres')

else:
print("I'm tired")

I'm tired

[]1:

[]:
[1:

[]1:

[1]:

[]1:

If = belongs to a, return True (else with for).

def search(a, x):
for e in a:
if e == x:
return True
else:
return False

search([1, 2, 3, 5], 4)
False

11 = [1, 2, 3]
11.append(4)
print(11)

[1’ 2’ 3’ 4]

Fibonnacct numbers 1,

1,

2, 3, 5, 8, 13, 21,

Function that generates a list with the first n Fibonnaccti numbers.

def fibol(n):
if n ==
return [1]

if n ==
return [1, 1]

a, b=1, 1

result = [a, b]

for _ in range(n-2):
a, b=>b, a+b
result.append(b)

return result

print (fibo1(30))

(1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584,
4181, 6765, 10946, 17711, 28657, 46368, 75025,

832040]

Fibonnacct numbers 1,

1,

2, 3, 5, 8, 13, 21,

121393,

Function that generates the nth Fibonnacci numbers.

def fibol(m):

a, b =0, 1
for _ in range(n):
a, b=>b, a+b

10

196418, 317811, 514229,

return a
fibo1(100)
[]: 354224848179261915075
[1: # Fivonnacci numbers 1, 1, 2, 3, 5, 8, 13, 21,
Function that generates the nth Fibonnacti number
def fibo2(n):
if n ==

return 1

if n ==
return 1

return fibo2(n-1) + fibo2(n-2)
£ibo2(100)
[3]: def fibo():
a, b, =1, 1
while True:
yield a
a, b=>b, a+b
[4]: gen = fibo()
[5]: next(gen)
[5]: 1
[6]: next(gen)
[61: 1
[7]: next(gen)
[71: 2
[8]: next(gen)

[8]: 3

[9]:|for _ in range(20):
print(next(gen), end = ' ')

5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 6765 10946 17711 28657
46368

11

[]1:

[1:|# Use “cmath” <if you need to generate complex numbers.
import math

def quad_sol(a, b, c):

nnn

Thts function calculates the solutions of a quadratic equation ...

term = math.sqrt(b * b - 4 * a * ¢)
soll = (-b + term) / (2 * a)
sol2 = (-b - term) / (2 * a)

return soll, sol2
[1: quad_sol(1l, -4, 3)
[1: ((3+0j), (1+03))
[1: quad_sol(l, 1, 1)
[1: ((-0.5+0.8660254037844386j), (-0.5-0.8660254037844386j))

[1: def seql():
a=1[1, 2, 4, 7, 11, 16, 22, 29, 37, 46, 56, 67, 79, 94]
while True:
for e in a:
yield e

[1: genl = seql1()
for i in range(30):
print (next(genl), end = ' ')

1247 11 16 22 29 37 46 56 67 79 94 1 2 4 7 11 16 22 29 37 46 56 67 79 94 1 2

[]: def seq2():
a,d=1, 1
while True:
yield a
a, d=a+d, d+ 1

[1: gen2 = seq2()
for i in range(30):
print (next(gen2), end = ' ')

1247 11 16 22 29 37 46 56 67 79 92 106 121 137 154 172 191 211 232 254 277
301 326 352 379 407 436

12

Write a function find_sublist(a, b) that returns True if and only if the list b appears some-
where in a. For example: * find_sublist([-10, 2, 5, -2, 31, [2, 51) should return True. *
find_sublist([-10, 2, 5, -2, 3], [2, 7]) should return False.

[1: def find_sublist(a, b):
for i in range(len(a)):
Try to see if b appears starting at position 7 in a.
found = True
for j in range(len(b)):
if b[j] !'= ali + jl:
found = False
break
if found:
return True
return False

[]: a=[-10, 2, 5, -2, 3]

bl = [2, 5]
b2 = [2, 5, -2]
b3 = [2, 7]

find_sublist(a, bl)
[1: True
[1: find_sublist(a, b2)
[1: True
[]: find_sublist(a, b3)
[]: False

The for loop in Python can have an else clause which gets executed if the loop ends normally.

[1: def find_sublist(a, b):
for i in range(len(a)):
for j in range(len(b)):
if b[j] !'= ali + j):
break
else:
return True
return False

[]: find_sublist(a, bl), find sublist(a, b2), find _sublist(a, b3)

[1: (True, True, False)

13

[1:

1 Practice problems

Write a function remove_duplicates(a) that takes as input a sorted list and return a list
where all duplicates are removed. For example, remove_duplicates([1, 2, 2, 4, 6, 6,
6, 9, 10, 11, 11, 11, 11, 13, 14, 14]) should return [1, 2, 4, 6, 9, 10, 11, 13,
14].

Write a function remove_duplicates(a) that removes duplicates from a list that is not nec-
essarily sorted. For example, remove_duplicates([-3, 4, 2, 4, -3, 2]) should return
[-3, 4, 2].

Write a function to find the longest common prefix string amongst an array of strings. For
example, longest-prefix(["flower","flow","flight"]) should return 'f1'.

Generate a list of all permutations of the elements in a list. For example, perm([1, 2,
3]1) should output [[1, 2, 3], [1, 3, 21, [2, 1, 31, [2, 1, 3], [3, 1, 2], [3,
2, 111.

Consider a pre-order tree representation using lists, where a tree T with the value R in the
root node and subtrees T1, T2, .., Tn is represented as a list [R, T1 T2, ..., Tn]. For
example, this tree would be represented as [2, [7, [2], [10], [6, [5], [1111]1, [5,
[9, [4]111]. Write the functions:

— count_nodes (t) that count the nodes of a tree. For the tree above it should return 10.

— count_leaves(t) that counts the leaves of a tree. For the tree above it should return
5.

— height (t) that calculates the height of a tree. The the tree above it should return 3.

— find(t, x) that returns Treu if and only if t contains the number x.

14

https://webpages.charlotte.edu/rbunescu/courses/itcs5356/tree.svg

	Practice problems

