
Distributions

August 28, 2024

1 Distributions of Words & Sentences
This assignment is comprised of three required tasks an additional task for bonus points:

1. The first task is to compute the frequency vs. rank distribution of the words in Moby Dick.
For this, you will need to tokenize the document and create a vocabulary mapping word types
to their document frequency.

2. The second task is to segment the document into sentences and compute the sentence length
distribution. Here you will experiment with spaCy’s default sentence segmenter as well as
the simple rule-based Sentencizer.

3. The third task is the same as the first except that we use subword tokenization.
4. [Bonus] Use spacy’s NE recognizer to find all named entities in the first 2,500 paragraphs.

Count how many times they appear in the document and consolidate them based on their
most frequent type.

1.1 Write Your Name Here:

2 Submission Instructions
1. Click the Save button at the top of the Jupyter Notebook.
2. Please make sure to have entered your name above.
3. Select Cell -> All Output -> Clear. This will clear all the outputs from all cells (but will

keep the content of ll cells).
4. Select Cell -> Run All. This will run all the cells in order, and will take several minutes.
5. Once you’ve rerun everything, select File -> Download as -> PDF via LaTeX and download

a PDF version showing the code and the output of all cells, and save it in the same folder
that contains the notebook file.

6. Look at the PDF file and make sure all your solutions are there, displayed correctly. The
PDF is the only thing we will see when grading!

7. Submit both your PDF and notebook on Canvas.
8. Make sure your your Canvas submission contains the correct files by downloading it after

posting it on Canvas.

2.1 Word distributions using the SpaCy tokenizer (40 + 10 points)
First, create the spaCy tokenizer.

[ ]: from spacy.lang.en import English
nlp = English()

1



tokenizer = nlp.tokenizer

Create a vocab dictionary. This dictionary will map tokens to their counts in the input text file.

[ ]: vocab = {}

Read the input file line by line.

1. Tokenize each line.
2. For each token in the line that contains only letters, convert it to lower case and increment

the corresponding count in the dictionary.
• If the token does not exist in the dictionary yet, insert it with a count of 1. For example,

the first time the token ‘water’ is encountered, the code should evaluate vocab[‘water’]
= 1.

At the end of this code segment, vocab should map each word type to the number of times it
appeared in the entire document. There should be 16830 word types and 214287 words in Moby
Dick.

[ ]: with open('../data/melville-moby_dick.txt', 'r') as f:
for line in f:

# YOUR CODE GOES HERE

print('There are', len(vocab), 'word types in Moby Dick.')
print('There are', sum(vocab.values()), 'words in Moby Dick.')

Create a list ranked of tuples (word, freq) that contains all the words in the vocabulary vocab sorted
by frequency. For example, if vocab = {‘duck’:2, ‘goose’:5, ‘turkey’:3}, then ranked = [(‘goose’, 5),
(‘turkey’, 3), (‘duck’, 2)].

[ ]: ranked = [] # YOUR CODE GOES HERE

Print the top 10 words in the sorted list.

[ ]: print('Size of vocabulary:', len(ranked))
for word, freq in ranked[:10]:

print(word, freq)

Plot the frequency vs. rank of the top ranked words in Moby Dick.

[ ]: import matplotlib.pyplot as plt
ranks = range(1, 50 + 1)
freqs = [t[1] for t in ranked[:50]]
plt.scatter(ranks, freqs, c='#1f77b4', alpha=0.5)
plt.show()

[ ]: import math
ranks = [1 + math.log(r) for r in range(1, len(ranked) + 1)]
freqs = [math.log(t[1]) for t in ranked]
plt.scatter(ranks, freqs, c='#1f77b4', alpha=0.5)

2



plt.show()

2.2 Sentence distributions (40 + 10 points)
First, try to create the spaCy nlp object from the entire text of Moby Dick. This will likely not
work, it is not a good idea to read all the text.

[ ]: import spacy

nlp = spacy.load("en_core_web_sm")
text = open('../data/melville-moby_dick.txt', 'r').read()
doc = nlp(text)

Instead, read the document paragraph by paragraph, i.e. in chunks of text separated by empty
lines. Before using spaCy to segment a paragraph into sentences, replace each end of line character
with a whitespace, to allow a sentence to span multiple lines. After sentence segmentation, for
each sentence in the paragraph append its length (in tokens) to lengths. Use the default nlp class
to process each paragraph and split it into sentences. Stop after processing 1000 paragraphs. This
will be slow, so be patient.

[ ]: import spacy

nlp = spacy.load("en_core_web_sm")

# the number of paragraphs read so far.
count = 0
# stores the length of each sentence processed so far.
lengths = []
# make sure the file is read and processed line by line.
with open('../data/melville-moby_dick.txt', 'r') as f:

# YOUR CODE GOES HERE

len150 = [l for l in lengths if l <= 150]
plt.hist(len150, bins = 20)
plt.show()

Next, do the same processing as above, but use the more robust Sentencizer to split paragraphs
into sentences. Note the speedup.

[ ]: from spacy.lang.en import English

nlp = English()

3



nlp.add_pipe("sentencizer")

# the number of paragraphs read so far.
count = 0
# stores the length of each sentence processed so far.
lengths = []
with open('../data/melville-moby_dick.txt', 'r') as f:

# YOUR CODE GOES HERE

len150 = [l for l in lengths if l <= 150]
plt.hist(len150, bins = 20)
plt.show()

Note the difference between the two histograms. Identify at least 5 examples of sentences in Moby
Dick that are segmented differently by the two approaches. Copy them below and explain the
differences. Which method seems to be more accurate?

2.3 Word distribution using OpenAI’s subword tokenization (30 points)
In this part, we will compute the frequency vs. rank based on the the BPE subword tokenization
created by the tiktoken module from OpenAI.

Read the input file line by line.

1. Tokenize each line using tiktoken encoder and decoder for GPT-3.5.
2. For each token in the line that contains only letters, convert it to lower case and increment

the corresponding count in the dictionary.
• If the token does not exist in the dictionary yet, insert it with a count of 1. For example,

the first time the token ‘water’ is encountered, the code should evaluate vocab[‘water’]
= 1.

At the end of this code segment, vocab should map each word type to the number of times it
appeared in the entire document. There should be 12659 unique types and 248615 total tokens in
Moby Dick.

[ ]: import tiktoken

# To get the tokeniser corresponding to a specific model in the OpenAI API:
enc = tiktoken.encoding_for_model("gpt-3.5-turbo")

vocab = {}
with open('../data/melville-moby_dick.txt', 'r') as f:

for line in f:
# YOUR CODE HERE

4

https://github.com/openai/tiktoken


print('There are', len(vocab), 'unique tokens in Moby Dick.')
print('There are', sum(vocab.values()), 'tokens in Moby Dick.')

Rank the tokens based on their frequency, then plot frequency vs. rank.

[ ]: ranked = [] # YOUR CODE GOES HERE

print('Size of vocabulary:', len(ranked))
for word, freq in ranked[:10]:

print(word, freq)

[ ]: import matplotlib.pyplot as plt
ranks = range(1, 50 + 1)
freqs = [t[1] for t in ranked[:50]]
plt.scatter(ranks, freqs, c='#1f77b4', alpha=0.5)
plt.show()

2.4 [Bonus] Named Entities (10 + 10 + 10 + 10 + 10 points)
Useful documentation is at: - https://spacy.io/usage/linguistic-features#named-entities -
https://spacy.io/api/entityrecognizer

[1]: import spacy

nlp = spacy.load("en_core_web_sm")

# These are all the entity types covered by spaCy's NE recognizer.
nlp.pipe_labels['ner']

[1]: ['CARDINAL',
'DATE',
'EVENT',
'FAC',
'GPE',
'LANGUAGE',
'LAW',
'LOC',
'MONEY',

5



'NORP',
'ORDINAL',
'ORG',
'PERCENT',
'PERSON',
'PRODUCT',
'QUANTITY',
'TIME',
'WORK_OF_ART']

Read the first 2,500 paragraphs in Moby Dick and extract all named entities into a dictionary
ne_counts that maps each named entity to its frequency. By named entity we mean a tuple (name,
type) where name is the entity name as a string, and type is its entity type. For example, if the
name ‘Ahab’ appears with the NE type ‘PERSON’ 50 times, then the dictionary should map the
key (‘Ahab’, ‘PERSON’) to the value 50.

[ ]: # The number of paragraphs read so far.
count = 0
# Stores the dictionary of named entites and their counts.
ne_counts = {}

# Make sure the file is read line by line.
with open('../data/melville-moby_dick.txt', 'r') as f:

# YOUR CODE GOES HERE

Create a list ranked_ne containing all the items in the ne_counts dictionary that is sorted in
descending order by their frequency.

[ ]: ranked_ne = [] # YOUR CODE GOES HERE

# This should display 2974 unique named entities, with the top two being
# ('Ahab', 'PERSON') 347 and ('one', 'CARDINAL') 335
print('Unique named entities:', len(ranked_ne))
for ne, count in ranked_ne[:50]:

print(ne, count)

2.4.1 Consolidate named entities

Some names appear with more than one type, most often due to errors in named entity recognition.
One way to fix such errors is to use the fact that typically a name occurs with just one meaning
in a document, as such it has just one type. In this part of the assignment, we will consolidate the
extracted names such that the counts for the same name appearing with multiple types are added
together, and by associating the name with the type that it appears with most often.

Create a dictionary ne_types that maps each name to a dictionary that contains all the types the
name appears with, where each type is mapped to the corresponding count. Use information from
the dictionary ne_counts above.

6



[ ]: ne_types = {}

# YOUR CODE HERE

print(ne_types['Queequeg']) # this should print {'GPE': 109, 'NORP': 98,␣
↪'PERSON': 4, 'LANGUAGE': 8}

print(ne_types['Gabriel']) # this should print {'PERSON': 18, 'ORG': 1}

Create the consolidated dictionary ne_cons that maps each name to a tuple that contains its most
frequent type and the total count over all types. Use information from the dictionary ne_types
above.

[ ]: ne_cons = {}

# YOUR CODE HERE

print(ne_cons['Queequeg']) # this should print ('GPE', 219)

print(ne_cons['Gabriel']) # this should print ('PERSON', 19)

Create a list ranked_nec that contains only the consolidated entries from ne_cons whose type is
among the types listed in the list types below, sorted in descending order based on their total
counts.

[ ]: types = ['PERSON', 'GPE', 'ORG', 'LOC', 'FAC']

# YOUR CODE HERE

ranked_nec =

# This should display 1632 consolidated named entities, with the top two␣
↪entries being

# Ahab ('PERSON', 347) and Queequeg ('GPE', 219)
print('Consolidated named entities:', len(ranked_nec))
for ne, count in ranked_nec[:30]:

print(ne, count)

[Extra Bonus points 1] (5 points) Select one name from the dictionary ne_counts that appears
frequently with 2 types and explain why you think spaCy’s named entity recognizer associated the
name with those 2 types.

7



[Extra Bonus points 2] (10 points) Find all the syntactic dependency paths connecting the
subject Ahab with a direct object, e.g. ‘Ahab’ —> nsubj —> <verb> —> dobj —> <object>.
Rank all the object words based on how frequently they appear connected to ‘Ahab’ through this
syntactic pattern, and for the top 10 objects display the list of verbs that are used with each object.

Useful documentation is at: - https://spacy.io/usage/linguistic-features#dependency-parse

[4]: # YOUR CODE HERE

2.5 Bonus points
Anything extra goes here. For example:

• Write code Li (1992) showing that just random typing of letters including a space will gen-
erate “words” with a Zipfian distribution. Generate at least 1 million characters before your
compute word frequencies.

– Show mathematically that random typing results in a Zipf’s distribution by computing
probabilities for all words that contain just 1 letter, 2 letters, …

• Implement the BPE algorithm, where you break ties by selecting to merge in lexicographic
order. Train the BPE algorithm on a large corpus and then use it to do subword tokenization
on the Mobby Dick corpus. What are the top 10 most frequenct tokens and how does it
compare with what you got from tiktokenizer.

[ ]:

8


	Distributions of Words & Sentences
	Write Your Name Here:

	 Submission Instructions
	Word distributions using the SpaCy tokenizer (40 + 10 points)
	Sentence distributions (40 + 10 points)
	Word distribution using OpenAI's subword tokenization (30 points)
	[Bonus] Named Entities (10 + 10 + 10 + 10 + 10 points)
	Consolidate named entities

	Bonus points


