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Language Modeling (LM)

• Causal Language Modeling:

– Predict the next word in a sequence:

• AI systems use machine _____

   eat?

           learning?

           frogs?

   …

• The LM estimates P(word | word-1, word-2, ...)

– we want P(learning | machine, use) >> P(about | machine, eat).

– Decoder neural architectures are widely used to train LMs:

• GPT, Gemini, Llama, Mixtral, Claude, …
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Language Modeling (LM)

• Masked Language Modeling:

– Predict the most likely word in a context:

• AI systems use machine _____ models for language understanding .

   eat?

           learning?

           frogs?

   …

• The LM estimates P(word | word-1, word-2, ...; word1, word2, ...)

– we want P(learning | machine, use; models, for )  

   >> P(frogs | machine, use; models, for).

– Encoder neural architectures are used to train masked LMs.

• BERT, RoBERTa, …
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N-gram Language Models are Shallow Learners

• N-gram LMs exhibit extremely little “understanding” of 

language due to their weak generalization.

• N-gram LMs do not generalize to:

– Unseen words:

• spinach and kale are considered completely different words.

• sim(spinach, kale) = sim(spinach, laptop) = 0.

– Unseen combinations of known words.

– Longer context.
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Neural LMs

https://www.sciencefocus.com/planet-earth/asteroid-impact-change-earths-orbit
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students opened theirthe

Neural Network
RNN, LSTM,

Transformer, 

SSMs, Mamba, …

?      

Logistic

Regression

P(aardvark) = .02

…

P(books) = .24

…

P(semester) = .09

…

P(vacation) = .07

…

P(the) = .0001

…

word embeddings

contextual word embedding



What can be learned from predicting missing 

words?

Asheville is a city located in the state of _____.
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What can be learned from predicting missing 

words?

I took ___ dog out for a walk .
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What can be learned from predicting missing 

words?

Upon exiting the restaurant, the man realized ___ left ___ 

phone at the table .
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What can be learned from predicting missing 

words?

I stopped by the grocery store to buy bread, blueberry pie, 

milk, and ____ .
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What can be learned from predicting missing 

words?

Overall , the value I got from the two hours watching it was 

the sum total of the popcorn and the drink .

The movie was _____ .
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What can be learned from predicting missing 

words?

Andrei was eating in the kitchen .

Roxby joined him for breakfast . 

After a while , Andrei went to the living room to watch TV . 

Once she was done with breakfast , Roxby left the _____ .
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What can be learned from predicting missing 

words?

Dan and Tom go to a restaurant for dinner . Dan leaves his 

coat on the chair , then goes to the bathroom . While Dan was 

gone , Tom hangs Dan ’s coat on the coat rack . When Dan 

comes back , he thinks his coat is on the ___ .  

28



What can be learned from predicting missing 

words?

I have been thinking of the sequence that goes 1, 2, 4, 7, 11, 

16, 22, _____
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What can be learned from predicting missing 

words?

Theorem: √2 is an irrational number . 

Proof: _____

Theorem: √2 is an irrational number . 

Proof: Suppose that √2 were a _____

Theorem: √2 is an irrational number . 

Proof: Suppose that √2 were a rational number , so by definition 

√2 = a _____
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Word Embeddings

• Neural LMs use as input word embeddings:

– Vectors that are short, e.g. 256, 512, 768, or 1024, and dense, e.g. 

most if not all entries are non-zero.

• Very unlike one-hot encodings, which are long and sparse.

• We want word embeddings to represent word meanings:

– What do we mean by “word meaning”?

– How do we train word embeddings to represent word meaning?

• How do we determine their quality?
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What do words mean?

• Classical approach uses a dictionary and the context.

• Depending on the context, a word is used to refer to a 

particular concept, i.e. sense, i.e. word meaning:

– The word “pepper” has multiple meanings, as listed in the 

dictionary:

• sense 1: spice from pepper plant

• sense 2: the pepper plant itself

• sense 3: another similar plant (Jamaican pepper)

• sense 4: another plant with peppercorns (California pepper)

• sense 5: capsicum (i.e. chili, paprika, bell pepper, etc)
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Aristotle: What is a concept?

• Classical theory of concepts:

– The meaning of a word is a concept that is defined by necessary 

and sufficient conditions.

• The following necessary conditions, jointly, are sufficient for 

an object x to be a square:

– x has (exactly) four sides

– each of x's sides is straight

– x is a closed figure

– x lies in a plane

– each of x's sides is equal in length to each of the others

– each of x's interior angles is equal to the others (right 

angles)

– the sides of x are joined at their ends
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Wittgenstein to Aristotle:

But what is a game?

• Philosophical Investigations (1945, # 66): 

Don’t say “there must be something common, or they would not be called 

`games’”—but look and see whether there is anything common to all”

– Is it amusing? Is there competition? Is there long-term strategy? 

– Is skill required? Must luck play a role? 

– Are there cards? Is there a ball?

– …

• Family Resemblance theory (Rosch and Mervis):

– Each item has at least one, and probably several, elements in common 

with one or more items, but no, or few, elements are common to all 

items.
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Game 1 Game 2 Game 3 Game 4

ABC BCD ACD ABD



Distributional Semantics Idea

• Wittgenstein (1945):

 The meaning of a word is its use in the language.

• Harris (1954):

Words that occur in the same contexts tend to have 

similar meanings.

• Firth (1935, 1957):

 The complete meaning of a word is always contextual, and no study 

of meaning apart from a complete context can be taken seriously.

 You shall know a word by the company it keeps.
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Distributional Semantics

• The meaning of a word is determined by the words that 

appear nearby, i.e. its context.

– Words that appear in the same contexts tend to have similar 

meanings.

– One of the most successful ideas of modern statistical NLP!
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What does recent English borrowing ongchoi 

mean?

• Suppose you see these sentences:
– Ong choi is delicious sautéed with garlic

– Ong choi is superb over rice

– Ong choi leaves with salty sauces

• And you've also seen these:
– …spinach sautéed with garlic over rice

– Chard stems and leaves are delicious

– Collard greens and other salty leafy greens

• Conclusion:

– Ongchoi is a leafy green like spinach, chard, or collard greens



Ongchoi: Ipomoea aquatica "Water Spinach"

Yamaguchi, Wikimedia Commons, public domain

空心菜
kangkong

rau muống

…



Distributional Semantics and Neural LMs

• Learn word embeddings by training a neural network to 

predict a missing word given words in the context.

– This is a special type of reconstructing the input idea used in other 

modalities, such as computer vision (see autoencoders).

• Causal LMs trained using the distributional hypothesis:

– Context: words so far.

– Missing word: next word.

• Masked LMs trained using the distributional hypothesis:

– Context: words to the left and to the right of the center word.

– Missign word: word in the center.
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Neural Language Modeling: Decoders
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Neural Language Modeling: Decoders
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Neural Language Modeling: Decoders
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Neural Language Modeling: Encoders
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Neural Language Modeling: Encoders
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Start: Interlude on Neural Networks

• Required reading:

– Chapter 7 on Neural Networks from the J&M textbook.

• Sections on Training are optional.
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Logistic Neuron = Logistic Regression
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Σ f

1x0

x1

x2

x3

activation / output

function
w0

w1

w2

w3

• Algebraic interpretation:

– The output of the neuron is a linear combination of  inputs from other neurons, 

rescaled by the synaptic weights.

• weights wi correspond to the synaptic weights (activating or inhibiting).

• summation corresponds to combination of signals in the soma.

– It is often transformed through a monotonic activation function.

=
1

1+ exp(-wTx)
ො𝑦

z = 𝐰𝑇𝐱
𝑓 z = 𝜎 𝑧 =

1

1 + exp(−𝑧)



Neural Network Model

• Put together many neurons in layers, such that the output of a neuron 

on layer l can be the input of another neuron on layer l + 1:
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input layer output layerhidden layer

σ

σ

σ



Feed-Forward Neural Networks
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10 10 5 1

1. For each neuron in hidden layer 1, we need 10 + 1 = 11 params. For the 10 neurons 

on hidden layer 1, we need in total 10 * 11 = 110 params.

2. For the 5 neurons on hidden layer 2, we need 5 * 11 = 55 params.

3. For the output neurons, we need 5 + 1 = 6 params.



Neural Network Model

• Put together many neurons in layers, such that the output 

of a neuron can be the input of another:
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input layer output layerhidden layer

σ

σ

σ
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o nl =3 is the number of layers.

▪ L1 is the input layer, L3 is the output layer

o (W, b) = (W(1), b(1), W(2), b(2)) are the parameters:

▪ W(l)
ij is the weight of the connection between unit j in layer l and 

unit i in layer l + 1.

▪ b(l)
i is the bias associated unit unit i in layer l + 1.

o a(l)
i is the activation of unit i in layer l, e.g. a(1)

i = xi and a(3)
1 = hW,b(x).

f

f

f

f

b3
(1)

W32
(1)



Inference: Forward Propagation

• The activations in the hidden layer are:

• The activations in the output layer are:

• Compressed notation:

   where
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Forward Propagation

• Forward propagation (unrolled):

• Forward propagation (compressed):
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• Element-wise application:

     f(z) = [f(z1), f(z2), f(z3)]



Forward Propagation

• Forward propagation (compressed):

• Composed of two forward propagation steps:
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Multiple Hidden Units, Multiple Outputs

• Write down the forward propagation steps for:
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ReLU and Generalizations

• It has become more common to use piecewise linear 

activation functions for hidden units instead of σ:

– ReLU: the rectifier activation g(z) = max{0, z}.

– Absolute value ReLU: g(z) = |z|.

– Maxout: g(a1, ..., ak) = max{a1, ..., ak}.

• needs k weight vectors instead of 1.

– Leaky ReLU: g(a) = max{0, a}+ α min(0, a).

  the network computes a piecewise linear function (up to 

the output activation function).
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ReLU vs. Sigmoid and Tanh

• Sigmoid and Tanh saturate for values not close to 0:

– “kill” gradients, bad behavior for gradient-based learning.

• ReLU does not saturate for values > 0:

– greatly accelerates learning, fast implementation.

– fragile during training and can “die”, due to 0 gradient:

• initialize all b’s to a small, positive value, e.g. 0.1.
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ReLU vs. Softplus

• Softplus g(z) = ln(1+ez) is a smooth version of the rectifier.

– Saturates less than ReLU, yet ReLU still does better [Glorot, 2011].

57



End: Interlude on Neural Networks

• Required reading:

– Chapter 7 on Neural Networks from the J&M textbook.

• Sections on Training are optional.
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https://web.stanford.edu/~jurafsky/slp3/7.pdf
















Start Supplemental Material: Training RNNs
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End Supplemental Material: Training RNNs
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Required Readings

124

• Chapter 7 on Neural Networks from the J&M textbook.

– Sections on Training are optional.

• Chapter 8 on RNNs and LSTMs from the J&M textbook.

– Sections on Training are optional.

https://web.stanford.edu/~jurafsky/slp3/7.pdf
https://web.stanford.edu/~jurafsky/slp3/8.pdf
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