ITCS 4101: Introduction to Natural Language
Processing

N-gram Language Models
Neural Language Models

Recurrent Neural Networks (RNNS)

Razvan C. Bunescu
Comptuer Science @ CCI
University of North Carolina at Charlotte
https://webpages.charlotte.edu/rbunescu

razvan.bunescu@charlotte.edu

https://webpages.charlotte.edu/rbunescu

Language Modeling (LM)

« Causal Language Modeling:

— Predict the next word in a sequence:
« Al systemsuse machine
eat?
learning?
frogs?

« The LM estimates P(word | word_;, word._,, ...)
— we want P(learning | machine, use) >> P(about | machine, eat).

— Decoder neural architectures are widely used to train LMs:
« GPT, Gemini, Llama, Mixtral, Claude, ...

Language Modeling (LM)

» Masked Language Modeling:

Predict the most likely word in a context:

« Al systemsuse machine _ models for language understanding .
eat?
learning?
frogs?

« The LM estimates P(word | word_;, word_,, ...; word,, word,, ...)

— we want P(learning | machine, use; models, for)
>> P(frogs | machine, use; models, for).

Encoder neural architectures are used to train masked LMSs.
« BERT, RoBERTa, ...

: white slides selected from
Language MOdEImg cs224n @ Stanford

Language Modeling is the task of predicting what word comes

next. books
/ laptops
the students opened their /
\\ exams
minds
More formally: given a sequence of words (), 2(?) ... «®

compute the probability distribution of the next word z*t1) :
t+1 i 1
Pt g® M)
where ") can be any word in the vocabulary V' = {wy, ..., wy |}

A system that does this is called a Language Model.

—

Language Modeling

* You can also think of a Language Model as a system that
assigns probability to a piece of text.

* For example, if we have some text (1), ... z(T), then the
probability of this text (according to the Language Model) is:

PxW, . . 20) = PaW) x P(2@| M) x ... x P(aD] 71 . W)

r
— [P@®| 2, ...z

t=1

\u J
Y

This is what our LM provides

You use Language Models every day!

6 I'll meet you at the © >

airport

You use Language Models every day!

Google

what is the | L

what is the weather

what is the meaning of life
what is the dark web

what is the xfl

what is the doomsday clock
what is the weather today
what is the keto diet

what is the american dream
what is the speed of light
what is the bill of rights

Google Search I'm Feeling Lucky

n-gram Language Models

the students opened their

* Question: How to learn a Language Model?

 Answer (pre- Deep Learning): learn a n-gram Language Model!

o Definition: A n-gram is a chunk of n consecutive words.

* unigrams: “the”, “students”, “opened”, "their”

* bigrams: “the students”, “students opened”, “opened their”
« trigrams: “the students opened”, “students opened their”

* 4-grams: “the students opened their”

e ldea: Collect statistics about how frequent different n-grams
are, and use these to predict next word.

——

n-gram Language Models

 First we make a simplifying assumption: 2(**1) depends only on the

preceding n-1 words.
n-1 words
A

r \
Pzt |g® 2y = pgt+D|g®) glt-n+2) (assumption)

prob of a n-gram \P(m(t—H)’ w(t)’ o ,w(t—n+2))

. (definition of

ol P(x(t), ..., at—"1+2)) conditional prob)

prob of a (n-1)-gram

* Question: How do we get these n-gram and (n-1)-gram probabilities?

 Answer: By counting them in some large corpus of text!

N count(a:(t“), B o 733(t_n+2)) (statistical
- count(x(®),. .., glt—n+2)) approximation)

—

n-gram Language Models: Example

Suppose we are learning a 4-gram Language Model.

R RS S S P s s SSC Sk S S students opened thelr

discard

condltlon on this

count(students opened their w)

P(w|students opened their) =
(w] y) count(students opened their)

For example, suppose that in the corpus:

“students opened their” occurred 1000 times

“students opened their books” occurred 400 times

« = P(books | students opened their) = 0.4 Should we have
> discarded the

“proctor” context?

“students opened their exams” occurred 100 times

« = P(exams | students opened their) =

Sparsity Problems with n-gram Language Models

Sparsity Problem 1

Problem: What if “students
opened their w” never
occurred in data? Then w
has probability O!

(Partial) Solution: Add small 6
to the count forevery w € V.
This is called smoothing.

4

count(students opened their w)
count(students opened their)

P(w|students opened their) =

Sparsity Problem 2

Problem: What if “students
opened their” never occurred in
data? Then we can’t calculate
probability for any w!

(Partial) Solution: Just condition
on “opened their” instead.
This is called backoff.

v

Note: Increasing n makes sparsity problems worse.
Typically we can’t have n bigger than 5.

10

——

Storage Problems with n-gram Language Models

Storage: Need to store count for
all n-grams you saw in the corpus.

count(students opened their w)|

P(w/|students opened their) =
(w] ¥) count(students opened their)

Increasing n or increasing corpus
increases model size!

11

n-gram Language Models in practice

* You can build a simple trigram Language Model over a
1.7 million word corpus (Reuters) in a few seconds on your laptop*

g

Business and financial news

today the
get probability
distribution
company ©.153| | ___ Sparsity problem:
bank ©.153 not much granularity
price 0.977 in the probability
italian 0.039 distribution
emirate 0.039

Otherwise, seems reasonable! * Try for yourself: https://nlpforhackers.io/language-models/

12

Generating text with a n-gram Language Model

* You can also use a Language Model to generate text.

today the
\ J

Y
condition on this

get probability

distribution
company 9.153
bank ©.153
price 0.077 Jsample
italian 0.039
emirate 0.039

13

Generating text with a n-gram Language Model

* You can also use a Language Model to generate text.

today the price
\ J

Y
condition on this

get probability
distribution

v

“of 0.308 Ismnpm

for 0.050
it 0.046
to 0.046

is g.a31

14

Generating text with a n-gram Language Model

* You can also use a Language Model to generate text.

today the price of
e

condition on this

get probability
distribution

15

Generating text with a n-gram Language Model

* You can also use a Language Model to generate text.

today the price of gold

16

Generating text with a n-gram Language Model

* You can also use a Language Model to generate text.

17

today the price of gold per ton, while production of shoe
lasts and shoe industry , the bank intervened just after it
considered and rejected an imf demand to rebuild depleted
european stocks , sept 30 end primary 76 cts a share .

Surprisingly grammatical!

...but incoherent. We need to consider more than
three words at a time if we want to model language well.

But increasing n worsens sparsity problem,
and increases model size...

N-gram Language Models are Shallow Learners

e N-gram LMs exhibit extremely little “understanding” of
language due to their weak generalization.

* N-gram LMs do not generalize to: |
— Unseen words: |

« spinach and kale are considered completely different words. |
 sim(spinach, kale) = sim(spinach, laptop) = 0.

— Unseen combinations of known words. |

— Longer context. |

/

https://www.sciencefocus.com/planet-earth/asteroid-i mpact-change-earths-orbii

P(aardvark) = .02

P(semester) = .09

Logistic
Regression

7 N

P(books) = .24

contextual word embedding \m

4 N P(vacation) = .07
Neural Network
RNN, LSTM, P(the) = .0001
Transformer,
SSMs, Mamba, ...
L J
E E E E/ word embeddings
the students opened theirie . 7ol

21:
e

What can be learned from predicting missing
words?

Asheville is a city located in the state of

 —

What can be learned from predicting missing
words?

| took dog out for awalk .

What can be learned from predicting missing
words?

Upon exiting the restaurant, the man realized left

phone at the table .

What can be learned from predicting missing
words?

| stopped by the grocery store to buy bread, blueberry pie,

milk, and

What can be learned from predicting missing
words?

Overall , the value | got from the two hours watching it was

the sum total of the popcorn and the drink .

The movie was

What can be learned from predicting missing
words?

Andrel was eating in the kitchen .
Roxby joined him for breakfast .

After a while , Andrel went to the living room to watch TV . |

Once she was done with breakfast , Roxby left the

What can be learned from predicting missing
words?

Dan and Tom go to a restaurant for dinner . Dan leaves his
coat on the chair , then goes to the bathroom . While Dan was
gone , Tom hangs Dan ’s coat on the coat rack . When Dan

comes back , he thinks his coat isonthe .

What can be learned from predicting missing
words?

| have been thinking of the sequence that goes 1, 2, 4, 7, 11,
16, 22,

What can be learned from predicting missing \
words? *

Theorem: V2 is an irrational number .

Proof:

Theorem: V2 is an irrational number .

Proof: Suppose that V2 were a

Theorem: V2 is an irrational number . |

Proof: Suppose that V2 were a rational number , so by definition

Nl o |

30 |

Word Embeddings

* Neural LMs use as input word embeddings:

— Vectors that are short, e.g. 256, 512, 768, or 1024, and dense, e.qg.
most if not all entries are non-zero.

 Very unlike one-hot encodings, which are long and sparse.

« We want word embeddings to represent word meanings:
— What do we mean by “word meaning”?
— How do we train word embeddings to represent word meaning?
« How do we determine their quality?

What do words mean?

 Classical approach uses a dictionary and the context.

» Depending on the context, a word Is used to refer to a
particular concept, I.e. sense, i.e. word meaning:
— The word “pepper’” has multiple meanings, as listed in the
dictionary:

* sense 1: spice from pepper plant
* sense 2: the pepper plant itself
* sense 3: another similar plant (Jamaican pepper)
* sense 4: another plant with peppercorns (California pepper)
 sense 5: capsicum (i.e. chili, paprika, bell pepper, etc)

Avristotle: What Is a concept?

» Classical theory of concepts:

— The meaning of a word Is a concept that is defined by necessary
and sufficient conditions.

 The following necessary conditions, jointly, are sufficient for
an object x to be a square:
— X has (exactly) four sides
— each of x's sides is straight
— x is a closed figure
— x lies in a plane
— each of x's sides is equal in length to each of the others
— each of x's interior angles is equal to the others (right
angles)
— the sides of x are joined at their ends

Wittgenstein to Aristotle:
But what Is a game?

 Philosophical Investigations (1945, # 66):

Don’t say “there must be something common, or they would not be called
"games’”—Dbut look and see whether there is anything common to all”

— Is it amusing? Is there competition? Is there long-term strategy?
— Is skill required? Must luck play a role?
— Are there cards? Is there a ball?

« Family Resemblance theory (Rosch and Mervis):

— Each item has at least one, and probably several, elements in common
with one or more items, but no, or few, elements are common to all

items.
Game 1l Game 2 Game 3 Game 4

ABC BCD ACD ABD

34
T

Distributional Semantics lIdea

« Wittgenstein (1945):
The meaning of a word is its use in the language.

Harris (1954):

Words that occur In the same contexts tend to have
similar meanings.

Firth (1935, 1957):

The complete meaning of a word is always contextual, and no study
of meaning apart from a complete context can be taken seriously.

You shall know a word by the company it keeps.

Distributional Semantics

The meaning of a word is determined by the words that
appear nearby, i.e. its context.

— Words that appear in the same contexts tend to have similar
meanings.

— One of the most successful ideas of modern statistical NLP!

36 |

What does recent English borrowing ongchoi
mean?

- Suppose YOU Se€ these sentences:
— Ong choi is delicious sauteed with garlic
— Ong choi is superb over rice
— Ong choi leaves with salty sauces

» And you've also seen these:
— ...spinach sautéed with garlic over rice
— Chard stems and leaves are delicious
— Collard greens and other salty leafy greens

 Conclusion:
— Ongchoi is a leafy green like spinach, chard, or collard greens

Ongchol: Ipomoea aquatica "Water Spinach

kangkong

rau muong

Yamaguchi, Wikimedia Commons, public domain

Distributional Semantics and Neural LMs

» Learn word embeddings by training a neural network to
predict a missing word given words in the context.

— This is a special type of reconstructing the input idea used in other
modalities, such as computer vision (see autoencoders).

« Causal LMs trained using the distributional hypothesis:

— Context: words so far.
— Missing word: next word.

« Masked LMs trained using the distributional hypothesis:
— Context: words to the left and to the right of the center word.

— Missign word: word in the center.

39.
e R

Neural Language Modeling: Decoders

books
M:‘\L
a

W

[Neural Network]

the students opened their books

40
e

Neural Language Modeling: Decoders

[Neural Network]

| &4l "5 LA

the students opened their books and

41
i

Neural Language Modeling: Decoders

[Neural Network]

| &4l "5 LSAE

[s e

the students opened their books and read

42
T

Neural Language Modeling: Encoders

opened packed

A 200

r N

[Neural Network

e, e 28

the students <mask> their books

43

Neural Language Modeling: Encoders

opened acked read

skimmed

Neural Network

EPRE eV ST T B

the students <mask> their books and <mask> through

44

Start: Interlude on Neural Networks

* Required reading:
— Chapter 7 on Neural Networks from the J&M textbook.

« Sections on Training are optional.

https://web.stanford.edu/~jurafsky/slp3/7.pdf

Logistic Neuron = Logistic Regression

Xo(1 . activation / output
0 ;
function 1
Xq Wy 5; B e i
W, Z > 'I: ;’ eXp(—w X)
@, z=wlx 1
f(2) =o0(2) =

1+ exp(—2z

4 p(—2z)

 Algebraic interpretation:

— The output of the neuron is a linear combination of inputs from other neurons,
rescaled by the synaptic weights.

« weights w; correspond to the synaptic weights (activating or inhibiting).
« summation corresponds to combination of signals in the soma.
— It is often transformed through a monotonic activation function.

Neural Network Model

« Put together many neurons in layers, such that the output of a neuron
on layer | can be the input of another neuron on layer | + 1.

|
1
|
|
\
\
Layer L, Layer L,
Input layer |

|

|

Feed-Forward Neural Networks

input layer
hidden layer 1 hidden layer 2

10 10 5 1

1. For each neuron in hidden layer 1, we need 10 + 1 = 11 params. For the 10 neurons
on hidden layer 1, we need in total 10 * 11 = 110 params.

2. For the 5 neurons on hidden layer 2, we need 5 * 11 = 55 params.

3. For the output neurons, we need 5 + 1 = 6 params.

48
e

Neural Network Model

 Put together many neurons in layers, such that the output
of a neuron can be the input of another:

Input layer

Input features x

bias units

Layer L, Layer L,

o Ny =3 is the number of layers.
= L, isthe input layer, L5 is the output layer
o (W, b)=(WWO, b®, W@ b@) are the parameters:

= WU, is the weight of the connection between unit j in layer | and
unitiin layer | + 1.

= b is the bias associated unit unit i in layer | + 1.
o al; is the activation of unit i in layer |, e.g. a); = x; and a®); = hy,,(x).

50
e

Inference: Forward Propagation

« The activations in the hidden layer are:
al? = f(W, “}3:1 + Wz + Wz + BY)
f?} f(W“}.’lfg + W“}i? + bﬂ})
”} f(W. “}3:1 + WD zo + Wz +)

 The activations in the output layer are:
hw(x) —ﬂf}_ (w’f f?} + W. ‘?}af}+wf?} (2) _I_brz}ﬁ

« Compressed notation:
a;) = f(z") where = =7 Wiz, + b

Forward Propagation

» Forward propagation (unrolled):
a? = fW Pz + Wz + WSl zs + 81")
‘-’” f(Wéi 21+ Wi'ws + W zs + 5))
‘52 = W 21 + Wiy zy + Wi 23 + b5
ha(e) =) = SOV + WD + WDl + 6

» Forward propagation (compressed):

2) — Wl g 4 p0) : NLE
« Element-wise application:
a2 — f(E{EII)

D _ W @@ 4 @ f(z) = [f(z1), £(z2), f(z3)]

h—w.h(fﬂ) —a® = f (Em)

Forward Propagation

» Forward propagation (compressed):

22— Wy pd)

a2 — f(E{EII)
A3 — @@ 4 @)

hwp(z) = a® = f (Em)
« Composed of two forward propagation steps:

LU+ g0 g0 4 g0
[1{£+1]| _ f(z{£+1]|)

Multiple Hidden Units, Multiple Outputs

 \Write down the forward propagation steps for:

RelLU and Generalizations

* It has become more common to use piecewise linear
activation functions for hidden units instead of o:

— ReL.U: the rectifier activation g(z) = max{0, z}.
— Absolute value ReLLU: g(z) = |z].
— Maxout: g(ay, ..., a,) = max{ay, ..., a}.
* needs k weight vectors instead of 1.
— Leaky ReLU: g(a) = max{0, a}+ a min(0, a).

— the network computes a piecewise linear function (up to
the output activation function).

RelLU vs. Sigmoid and Tanh

 Sigmoid and Tanh saturate for values not close to O:
— “kill” gradients, bad behavior for gradient-based learning.

» ReLU does not saturate for values > O: |
— greatly accelerates learning, fast implementation. |
— fragile during training and can “die”, due to 0 gradient:
« initialize all b’s to a small, positive value, ¢.g. 0.1.

1.0F e

nar /

06 H

56 |

RelLU vs. Softplus

 Softplus g(z) = In(1+e€?) is a smooth version of the rectifier.
— Saturates less than ReLLU, yet ReL U still does better [Glorot, 2011]

Monlinearities

| |
—— Softplus
— Rectifier

4 —

End: Interlude on Neural Networks

* Required reading:
— Chapter 7 on Neural Networks from the J&M textbook.

« Sections on Training are optional.

https://web.stanford.edu/~jurafsky/slp3/7.pdf

——

How to build a neural Language Model?

e Recall the Language Modeling task:
* Input: sequence of words =V, z(? ... «®
» Output: prob dist of the next word P(z** V| ® . . &)

e How about a window-based neural model?

* We can apply this to Named Entity Recognition:

LOCATION

U

000000000000
w
[@QOQ 0000 OO00O0 0000 0000

f | f [j

museums in Paris are amazing

18

A fixed-window neural Language Model

s——the—mrsetsr—sigricg—tr——xcc= the students opened their
N J

Y
fixed window

discard
19

A fixed-window neural Language Model

books

laptops

output distribution

4 = softmax(Uh + by) € RV

5 A ZC;O

U

hidden layer
000000000000

h=f(We+ b;) x

w
concatenated word embeddings

(1). .(2). .(3). .(4) 0000 0000 0000 0000

e=le'";e";e\V;e'”] T W 1 [
words / one-hot vectors the students opened their

2D 22 2B L@ 2 2(2) 2(3) 2@

20

A fixed-window neural Language Model

Improvements over n-gram LM: books

* No sparsity problem
* Don’t need to store all observed
n-grams

laptops

Remaining problems:
* Fixed window is too small
* Enlarging window enlarges W

* Window can never be large 000000000000
enough! A
e W and () are multiplied by W

completely different weights in W',

No symmetry in how theinputsare (0@ Q00® ©000 0000 0000

processed.
We need a neural W I I ,[
architecture that can the students opened their
process any length input A z(2) S (1)

21

Core idea: Apply th
Recurrent Neural Networks (RNN) —
A family of neural architectures repeatedly

Slides from the CS224N at Stanford

outputs 5 A % A
P { ey g(? §(3) e

(optional)
» h) h(2) h(?i h@)I

hidden states <

input sequence
(any length) {

22

A RNN Language Model

output distribution

) = softmax (Uh(t) + b2) e RIVI

hidden states
h® = 5 (Whh<t—1> +W.e® + bl)

h(9) is the initial hidden state

word embeddings
et — gpp®

words / one-hot vectors
z®) ¢ RIVI

Q(4)

P () |the students opened their)

‘ laptops

books

U
h0)__ h(L) h(2) h(3) h4)
@) O . @) O
(W, || W, || Wr |@| Wr |@®
@) @) @ | @ | @
@) ©) @) @) O
/ 7/} A N
W, W, W, W,
o O @ O
e : e(2) : e(3) : o) :
O @) O @)
e J& g o
the students opened their
(D) 2(2) x(3) ()

23

Note: this input sequence could be much
longer, but this slide doesn’t have space!

/’

RNN Advantages:

RNN Disadvantages:

Can process any length
input

Computation for step t
can (in theory) use
information from many
steps back

Model size doesn’t
increase for longer input
Same weights applied on
every timestep, so there is
symmetry in how inputs
are processed.

Recurrent computation is
slow

In practice, difficult to
access information from

,,many steps back

\

A RNN Language Model

A

books

74 = P(x®) |the students opened their)

U
h(0) h) h(2) h(3) h)
0 0 0 0 0
oW, |0 W, (@| W, |@| Wr |@®
O 1@ | @ | @ 1@
O ©) @) @) O
N N § A
W, W, W, W,
| .of3] cofg] of8
(1) (2) 3) © (4)
cle| “le| “le| ¢ |@®
o @) © @)
More on TE ﬁlrlll‘ T;D TE
these later .
o v the students opened their
(D) 2(2) x(3) (1)
course

Start Supplemental Material: Training RNNs

Training a RNN Language Model

25

Get a big corpus of text which is a sequence of words (), ... (T
Feed into RNN-LM; compute output distribution Q(t) for every step t.

* i.e. predict probability dist of every word, given words so far

Loss function on step t is cross-entropy between predicted probability
distribution §(*), and the true next word y® (one-hot for z(*+1):

JO) =CByY, ") ==) _ v loggy) = —loggy),,
weV

Average this to get overall loss for entire training set:

1 — 1 —
1) =72, 700 =73 ~logt,
=1

t=1

Training a RNN Language Model

= negative log prob

of “students”

exams

Loss —— | J()(6) J2) () J3) () J#(6)
T N N T
Predicted ?)(1) Q(z) :l:l(3) Q(4)
prob dists A A
TU U U U
R(0) R e) B
O O O O @)
O\ Wr (0| W, @) Wh |@| Wr |@®| W,
O | ® l® l® @ ’
O O @) @) @)
4
w., w. w.
| .ofg] .of8] .of8
(1) (2) 3) © (4)]
ol “ ol “|lo| @
O O @) O
Corpus — the students opened their
55 (1) 7 (2) 2 (3) (1)

Training a RNN Language Model

= negative log prob

exams

of “opened”
Loss —— J1)(§) J2) () J3) () J#(6)
T
Predicted ?)(1) Q(z) :l:l(3) Q(4)
prob dists A
TU U U U
h(0) R h(2) h(3) h4)
@) O @) @) @)
(W, |0 Wi |@| Wh |@| Wh |@]| Wi
O | ® l® l® l® ’
O O @) O O
4
we wo Two w
| of8] .of8] .S
(1) (2) (3) © (4)]
leol “le| “ el e
O O O O
Corpus — the students opened their
57 (1) 7 (2) 2 (3) (1)

Training a RNN Language Model

= negative log prob

exams

of “their”
Loss —— J1)(§) J2) () J3)(0) J#(6)
T
Predicted ?)(1) Q(z) :l:l(3) Q(4)
prob dists A
TU U U U
h(0) R h(2) h(3) h4)
@) O @) @) @)
| W, ([0 W, |@|Wr |@| Wr |@®| Wi _
O | ® l® l® l® ’
O O @) O O
4
we wo Two w
| of8] .of8] .S
(1) (2) (3) © (4)]
leol “le| “ el e
O O O O
Corpus — the students opened their
58 (1) 7 (2) 2 (3) (1)

Training a RNN Language Model

= negative log prob

exams

of “exams”
Loss —— J1)(§) J2)(9) J3)(9) J&)(6)
T N N »‘«
Predicted ?)(1) Q(z) :l:l(3) Q(4)
prob dists A A
TU U U U
h(0) R h(2) h(3) h4)
@) O @) @) @)
O\ Wr (0| W, @) Wh |@| Wr |@®| W,
O | ® l® l® l® ’
O O @) O O
4
w., w. w.
| of8] .of8] .S
(1) (2) (3) © (4)]
leol “le| “ el e
O O O O
Corpus — the students opened their
59 (1) 7 (2) 2 (3) (1)

Training a RNN Language Model

T A A T T
Predicted e 5 5® G
prob dists A A
TU U U U
R(0) R e) B
@) O O O @)
| W, ([0 W, |@|Wr |@| Wr |@®| Wi _
0 | ® l® l® l® ’
O O @) @) @)
4
w., w. w.
| .ofg] .of8] .of8
(1) (2) (3) © (4)|
ol “ ol “|lo| @
O O @) O
Corpus — the students opened their exams
55 (1) 7 (2) 2 (3) (1)

Training a RNN Language Model

31

However: Computing loss and gradients across entire corpus

z(), ..., 2T js too expensive!
| T
— 2 (t)
JO) == J90)
t=1
In practice, consider zV,...,z(™) as a sentence (or a document)

Recall: Stochastic Gradient Descent allows us to compute loss

and gradients for small chunk of data, and update.

Compute loss J(#) for a sentence (actually a batch of
sentences), compute gradients and update weights. Repeat.

Backpropagation for RNNs

J(t)(g)
h(0) h(t—3) h(t—2) ht—1) h(t)i\
O ® L O O
el W, WL |@| Wy |@| Wh |1®| Wa : e W,
o 1@ 1@ 1@ O 5
e ® @ o O

Question: What’s the derivative of J)(§) w.r.t. the repeated weight matrix W}, ?

“The gradient w.r.t. a repeated weight
is the sum of the gradient
w.r.t. each time it appears”

0J® <~ 0JW
oWy = OW,

7

Answer:

(4)

Why?

32

Multivariable Chain Rule

« Given a multivariable function f(z,y), and two single variable functions
z(t) and y(t), here's what the multivariable chain rule says:

d _ Of dz Of dy

E. 2
Derivative of composition function

One final output f(xz(¢t), y(t))

AN

e e) y(t)

One input

Source:
https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/differentiating-vector-valued-functions/a/multivariable-chain-rule-simple-version

33

Backpropagation for RNNs: Proof sketch

« Given a multivariable function f(z,y), and two single variable functions
m(t) and y(t) here's what the multivariable chain rule says:

d 0f de Of dy

Derivative of composition function

In our example: Apply the multivariable chain rule:

=1

JD(6)

0J® Z 09I | | OWal,
W, = W, || OW,

=1
t. 8J®
Z oWy |,.
1=1 (2)
Source:
https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/differentiating-vector-valued-functions/a/multivariable-chain-rule-simple-version

34

Backpropagation for RNNs

h(0) h(t—2) ht—1)
o
° ‘ e Wi,
o g
® ® 0 @) 0

Answer: Backpropagate over
timesteps i=t,...,0, summing
gradients as you go.

This algorithm is called
“backpropagation through time”

o.J® t a1
W |2

Question: How do we
35 calculate this?

Generating text with a RNN Language Model

Just like a n-gram Language Model, you can use a RNN Language Model to
generate text by repeated sampling. Sampled output is next step’s input.

favorite season is spring

N N
Tsample Tsample sample sample

g(l) Q(Z) Q(3) g(4)
/A
T U U \ U A U
h(Oz_\ h) h(2) h(?:) h(4r)
@) O O O @)
oW, (6 W, |l@¢|Wr ([@| Wr [@| W, _
® 1@ 1@ 0 1@ -
0 @) @) @) O
N s A N
W, W, W, W,
(1) (2) (3) © (4)
e’le| “'|le|l ® le| € |e®
o ® @) O
& B

—>
eS|
N

99 my favorite season is spring

End Supplemental Material: Training RNNSs

—

Generating text with a RNN Language Model

e Let’s have some fun!
* You can train a RNN-LM on any kind of text, then generate text

in that style. - R B
e RNN-LM trained on Obama speeches: ‘ > |

The United States will step up to the cost of a new challenges of the American
people that will share the fact that we created the problem. They were attacked
and so that they have to say that all the task of the final days of war that I will not
be able to get this done.

Source: https://medium.com/@samim/obama-rnn-machine-generated-political-speeches-c8abd18a2eal

37

Generating text with a RNN Language Model

e Let’s have some fun!

* You can train a RNN-LM on any kind of text, then generate text
in that style.

e RNN-LM trained on Harry Potter:

“Sorry,” Harry shouted, panicking—*“I'll leave those brooms in London, are
they?”

“No idea,” said Nearly Headless Nick, casting low close by Cedric, carrying the
last bit of treacle Charms, from Harry’s shoulder, and to answer him the
common room perched upon it, four arms held a shining knob from when the

spider hadn’t felt it seemed. He reached the teams too.

Source: https://medium.com/deep-writing/harry-potter-written-by-artificial-intelligence-8a9431803da6

38

Generating text with a RNN Language Model

e Let’s have some fun!

* You can train a RNN-LM on any kind of text, then generate text
in that style.

e RNN-LM trained on recipes:

Title: CHOCOLATE RANCH BARBECUE
Categories: Game, Casseroles, Cookies, Cookies
Yield: 6 Servings

2 tb Parmesan cheese —— chopped
1 ¢ Coconut milk
3 Eggs, beaten

Place each pasta over layers of lumps. Shape mixture into the moderate oven and simmer
until firm. Serve hot in bodied fresh, mustard, orange and cheese.

Combine the cheese and salt together the dough in a large skillet; add the ingredients
and stir in the chocolate and pepper.

Source: https://gist.github.com/nylki/1efbaa36635956d35bcc

39

Generating text with a RNN Language Model

e Let’s have some fun!

* You can train a RNN-LM on any kind of text, then generate text

in that style.

e RNN-LM trained on paint color names:

" Ghasty Pink 231 137 165
- Power Gray 151 124 112
" Navel Tan 199 173 140
Bock Coe White 221 215 236
. Horble Gray 178 181 196
I Homestar Brown 133 104 85
B snader Brown 144 106 74
Golder Craam 237 217 177
Hurky White 232 223 215
Burf Pink 223 173 179
Rose Hork 230 215 198

" Sand Dan 201 172 143

I Grade Bat 48 94 83
| Light Of Blast 175 150 147
B Grass Bat 176 99 108

Sindis Poop 204 205 194
Dope 219 209 179
B Testing 156 101 106
" Stoner Blue 152 165 159
| Burble Simp 226 181 132
.~ Stanky Bean 197 162 171

© Turdly 190 164 116

This is an example of a character-level RNN-LM (predicts what character comes next)

40 Source: http://aiweirdness.com/post/160776374467/new-paint-colors-invented-by-neural-network

Evaluating Language Models

e The standard evaluation metric for Language Models is perplexity.

1 Py
perplexity = H ((a:(t+1)| 2 ,:1:(1))) ™~ Normalized by

number of words

\ 7
R

Inverse probability of corpus, according to Language Model

 This is equal to the exponential of the cross-entropy loss J(0):

T Vi
-1I (—) — exp (T S —log ygihl) = exp(J(6))

ywt+1 t=1

Lower perplexity is better!

41

RNNs have greatly improved perplexity

n-gram mode| —

Increasingly
complex RNNs

42

Model Perplexity

Interpolated Kneser-Ney 5-gram (Chelba et al., 2013) 67.6
RNN-1024 + MaxEnt 9-gram (Chelba et al., 2013) 51.3
RNN-2048 + BlackOut sampling (Ji et al., 2015) 68.3
Sparse Non-negative Matrix factorization (Shazeer et 52.9
al., 2015)

LSTM-2048 (Jozefowicz et al., 2016) 43.7
2-layer LSTM-8192 (Jozefowicz et al., 2016) 30
Ours small (LSTM-2048) 43.9
Ours large (2-layer LSTM-2048) 39.8

Perplexity improves
(lower is better)

Source: https://research.fb.com/building-an-efficient-neural-language-model-over-a-billion-words/

—

Why should we care about Language Modeling?

* Language Modeling is a benchmark task that helps us
measure our progress on understanding language

e Language Modeling is a subcomponent of many NLP tasks,
especially those involving generating text or
estimating the probability of text:

* Predictive typing
* Speech recognition
* Handwriting recognition
* Spelling/grammar correction
e Authorship identification
* Machine translation
* Summarization
* Dialogue
e etc.
43

——

Recap

44

Language Model: A system that predicts the next word

Recurrent Neural Network: A family of neural networks that:

* Take sequential input of any length

* Apply the same weights on each step

» Can optionally produce output on each step
Recurrent Neural Network # Language Model

We’'ve shown that RNNs are a great way to build a LM.

But RNNs are useful for much more!

RNNs can be used for tagging

e.g. part-of-speech tagging, named entity recognition

DT JJ NN VBN

O O O :

@) RK K J

O @ O e
O ©) O @)

the startled cat knocked

45

RNNSs can be used for sentence classification

e.g. sentiment classification

positive How to compute
sentence encoding?

Sentence encoding

0000 |—

——

O 6] 6] @ O ©) O
o (o] |of |o |o e |o®
O @) O @) © O @]
@ 6] @) @ @) ‘7.[’ @)
overall / enjoyed the movie a lot

46

RNNSs can be used for sentence classification

e.g. sentiment classification

positive How to compute
T sentence encoding?
Basic way:
Sentence encoding Use final hidden state
®
e‘7ua/$
6] 6] 6] e O ©) O
o |o jo| ol |e| e o)
O @) O @] © O @]
@) (6] @] O @) H.IF’ O
overall / enjoyed the movie a lot

47

RNNSs can be used for sentence classification

e.g. sentiment classification

Sentence encoding

positive How to compute
T sentence encoding?
Usually better:
Take element-wise max or
mean of all hidden states

O 6] O @ O ©) O
o |o [of (o o |eo 0
O @) O @) © O @]
@ 6] @) @ @) \:r @)
overall / enjoyed the movie a lot

48

RNNs can be used as an encoder module

e.g. question answering, machine translation, many other tasks!

Here the RNN acts as an

encoder for the Question (the
hidden states represent the
Question). The encoder is part
of a larger neural system.

Question: what

49

|

\ 4

— 0000

nationality

f

was

Answer: German

7 v
..'0 "“ /
N 4 .
O‘Q .o" 0/. ".' J\O
& @ B
NN N
6 o e(l\' : o @O .’.’GO
O o R
< - %
>
’ Context: Ludwig van
Beethoven was a
German composer
and pianist. A crucial
figure ...
@) @]
@) O
— o —>
@) ©]
O @)
Beethoven ?

RNN-LMs can be used to generate text

e.g. speech recognition, machine translation, summarization

Input (audio)

conditioning
...........................)

T

RNN-LM
F 5
\
what’s the weather

1

\ 4

%

<START>

This is an example of a conditional language model.

We’ll see Machine Translation in much more detail later.

50

4

1

T

what’s

$

the

A note on terminology

RNN described in this lecture = “vanilla RNN”

By the end of the course: You will understand phrases like

“stacked bidirectional LSTM with residual connections and self-attention”

—————————

51

e Problems with RNNs!

* Vanishing gradients

motivates

\
e Fancy RNN variants!

* LSTM
* GRU
* multi-layer

* bidirectional

52

Vanishing gradient intuition

Vanishing gradient intuition

Vanishing gradient intuition

0.J*) oh(® §J&
R ~— 2R " BR®

chain rule!

Vanishing gradient intuition

oh® 9JW
oh® R0

chain rule!

Vanishing gradient intuition

J4 ()

h(M h(h(3)
O O 0 0
e w ®) w e) w o)
rq = —>
0 O o o}
0 O o} 0
aJ® ah<2>x Oh(® LYRCOREPY (C)
oh — oM oh® > Oh® < Bh®

chain rule!

10

Vanishing gradient intuition

Vanishing gradient problem:
When these are small, the
gradient signal gets smaller

and smaller as it
backpropagates further

What happens if these are small?

Why is vanishing gradient a problem?
@)

Gradient signal from faraway is lost because it’s much
smaller than gradient signal from close-by.

So model weights are only updated only with respect to
near effects, not long-term effects.

—

Why is vanishing gradient a problem?

e Another explanation: Gradient can be viewed as a measure of
the effect of the past on the future

e If the gradient becomes vanishingly small over longer distances
(step t to step t+n), then we can’t tell whether:

1. There’s no dependency between step t and t+n in the data

2. We have wrong parameters to capture the true
dependency between t and t+n

15

Effect of vanishing gradient on RNN-LM

* LM task: When she tried to print her tickets, she found that the
printer was out of toner. She went to the stationery store to buy
more toner. It was very overpriced. After installing the toner into
the printer, she finally printed her

* To learn from this training example, the RNN-LM needs to
model the dependency between “tickets” on the 7t step and
the target word “tickets” at the end.

e Butif gradient is small, the model can’t learn this dependency

* So the model is unable to predict similar long-distance
dependencies at test time

16

Effect of vanishing gradient on RNN-LM

17

/ IS

LM task: Th i the book
e writer of the books —

Correct answer: The writer of the books is planning a sequel

> il ™

Syntactic recency: The writer of the books is (correct)
¥\
Seqguential recency: The writer of the books are (incorrect)

Due to vanishing gradient, RNN-LMs are better at learning from
sequential recency than syntactic recency, so they make this
type of error more often than we’d like [Linzen et al 2016]

“Assessing the Ability of LSTMs to Learn Syntax-Sensitive Dependencies”, Linzen et al, 2016. hitps://arxiv.org/pdf/1611.01368 pdf

How to fix vanishing gradient problem?

* The main problem is that it’s too difficult for the RNN to learn to
preserve information over many timesteps.

* In avanilla RNN, the hidden state is constantly being rewritten

KB — (Whh(t—l) +W,z® + b)

e How about a RNN with separate memory?

21

Long Short-Term Memory (LSTM)

A type of RNN proposed by Hochreiter and Schmidhuber in 1997 as a
solution to the vanishing gradients problem.

e Onstept, thereis a hidden state h® and a cell state ¢
* Both are vectors length n
* The cell stores long-term information
* The LSTM can erase, write and read information from the cell

* The selection of which information is erased/written/read is controlled by
three corresponding gates

* The gates are also vectors length n

* On each timestep, each element of the gates can be open (1), closed (0),
or somewhere in-between.

* The gates are dynamic: their value is computed based on the current
context

22 “Long short-term memory”, Hochreiter and Schmidhuber, 1997. https://www bioinf.jku.at/publications/older/2604 pdi

Long Short-Term Memory (LSTM)

We have a sequence of inputs :n(t), and we will compute a sequence of hidden states h(®
and cell states ¢(). On timestep t:

Sigmoid function: all gate

Forget gate: controls what is kept vs values are between 0 and 1
forgotten, from previous cell state \
(t) — R (t—1) (t)
Input gate: controls what parts of the F=lo Wf + Usx™ + bf -
new cell content are written to cell \) (t—1)) x
- (W R 4 U™ + b;) &
Output gate: controls what parts of .
cell are output to hidden state ~ oY) —|o (W h(t-1) + U, z® +b) =
©
New cell content: this is the new >~ g
content to be written to the cell s
2
Cell state: erase (“forget”) some =
] ~(t) — (t—1) (1) o
content from last cell state, and write ¢’ = tanh Wch’ T UciB = bC %
“input”) some new cell content . " =
{Iop0 3 e = £ 5 ot=1) 4 5) o 5(0) -
Hidden state: read (“output”) some | h(t) — O(t) o tanh c(t) I
content from the cell ad
\ Gates are applied using

23

element-wise product

Long Short-Term Memory (LSTM)

You can think of the LSTM equations visually like this:

1 1 1
(@ h 4 h 4 A
> ———1— >
A [b A
L(I)_] | 0 | |[tanh] [O |
_)_’ J >x)_’

1 O — > <]

Neural Network Pointwise Vector

Layer Operation Transfer Consatenate Copy

24 Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Long Short-Term Memory (LSTM)

You can think of the LSTM equations visually like this:

Write some new cell content

Forget some
cell content

Compute the

forget gate

Output some cell content
to the hidden state

Compute the
input gate

Compute the
new cell content

Compute the
output gate

L1 O

Neural Network Pointwise
Layer Operation

—_— > <]

Vector

TFanafar Concatenate Copy

25

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

How does LSTM solve vanishing gradients?

 The LSTM architecture makes it easier for the RNN to
preserve information over many timesteps

» e.g. if the forget gate is set to remember everything on every
timestep, then the info in the cell is preserved indefinitely

* By contrast, it’s harder for vanilla RNN to learn a recurrent
weight matrix W, that preserves info in hidden state

 LSTM doesn’t guarantee that there is no vanishing/exploding
gradient, but it does provide an easier way for the model to
learn long-distance dependencies

26

LSTMs: real-world success

e |n2013-2015, LSTMs started achieving state-of-the-art results

 Successful tasks include: handwriting recognition, speech
recognition, machine translation, parsing, image captioning

* LSTM became the dominant approach

e Now (2019), other approaches (e.g. Transformers) have become
more dominant for certain tasks.

* For example in WMT (a MT conference + competition):
* In WMT 2016, the summary report contains “"RNN” 44 times

* In WMT 2018, the report contains “RNN” 9 times and
“Transformer” 63 times

Source: "Findings of the 2016 Conference on Machine Translation (WMT16)", Bojar et al. 2016, http://www.statmt.org/wmtl6/pdf/W16-2201 pdf

55 Source: "Findings of the 2018 Conference on Machine Translation (WMT18)", Bojar et al. 2018, http://www . statmt.org/wmt12/pdf/ WMT028 pdf

Gated Recurrent Units (GRU)

* Proposed by Cho et al. in 2014 as a simpler alternative to the LSTM.
« On each timestep t we have input) and hidden state h®) (no cell state).

Update gate: controls what parts of
hidden state are updated vs preserved

Reset gate: controls what parts of
previous hidden state are used to
compute new content

\u(t) _ (Wu R L U 2® 4 bu)

el — (th(t-ﬂ +U2® + br)

New hidden state content: reset gate
selects useful parts of prev hidden
state. Use this and current input to
compute new hidden content.

| -h® = tanh (Wh (r® o D) L U,a® + bh)
h® = (1 — u®) 0 hE-D 4 4® o H®

Hidden state: update gate
simultaneously controls what is kept
from previous hidden state, and what
is updated to new hidden state content

How does this solve vanishing gradient?
Like LSTM, GRU makes it easier to retain info
long-term (e.g. by setting update gate to 0)

28 "Learning Phrase Representations using RNN Encoder—Decoder for Statistical Machine Translation", Cho et al. 2014, https://arxiv.org/pdf/1406.1078v3 pdf

LSTM vs GRU

* Researchers have proposed many gated RNN variants, but LSTM
and GRU are the most widely-used

* The biggest difference is that GRU is quicker to compute and has
fewer parameters

* There is no conclusive evidence that one consistently performs
better than the other

e LSTM is a good default choice (especially if your data has
particularly long dependencies, or you have lots of training data)

e Rule of thumb: start with LSTM, but switch to GRU if you want
something more efficient

29

Bidirectional RNNs: motivation

Task: Sentiment Classification

- We can regard this hidden state as a
positive representation of the word “terribly” in the
T context of this sentence. We call this a
contextual representation.
Sentence encoding These contextual
representations only
contain information

about the /eft context
(e.g. “the movie
was”).

What about right
context?

\ 4

In this example,
“exciting” is in the
right context and this
modifies the meaning
of “terribly” (from
negative to positive)

movie was terribly exciting

36

This contextual representation of “terribly”

BidirECtionaI RN NS has both left and right context!

Concatenated
hidden states

Backward RNN

““/{...n.u]
“”/4...”...)
NrYYY T]\
'.../ﬂ........]
””/(........]

BNy YY T /(........]

Forward RNN

i the movie was terribly exciting !

Bidirect

On timestep t:

ional RNNs

This is a general notation to mean “compute
one forward step of the RNN” — it could be a
vanilla, LSTM or GRU computation.

—> >
Forward RNN A (t) — RNNFW(h (t_l), m(t)) Generally, these
two RNNs have

Backward RNN %(t) = RNNBW(x(t'H), :c(t)) separate weights

Concatenated hidden states | B(t) |= [}),}(t); <h, (t)]

We regard this as “the hidden
state” of a bidirectional RNN.
This is what we pass on to the
next parts of the network.

38

Bidirectional RNNs: simplified diagram

O O ® : : (@)
@ L | @L E : ; : | @
O @] @] O @) O
O O (@) O @) @)
the movie was terribly exciting !

The two-way arrows indicate bidirectionality and
the depicted hidden states are assumed to be
the concatenated forwards+backwards states.

39

Bidirectional RNNs

40

Note: bidirectional RNNs are only applicable if you have access
to the entire input sequence.

* They are not applicable to Language Modeling, because in LM
you only have left context available.

If you do have entire input sequence (e.g. any kind of encoding),
bidirectionality is powerful (you should use it by default).

For example, BERT (Bidirectional Encoder Representations from
Transformers) is a powerful pretrained contextual
representation system built on bidirectionality.

* You will learn more about BERT later in the course!

—

Multi-layer RNNs

41

RNNs are already “deep” on one dimension (they unroll over
many timesteps)

We can also make them “deep” in another dimension by
applying multiple RNNs — this is a multi-layer RNN.

This allows the network to compute more complex
representations

* The lower RNNs should compute lower-level features and the
higher RNNs should compute higher-level features.

Multi-layer RNNs are also called stacked RNNs.

Multi-layer RNNS The hidden states from RNN layer i

are the inputs to RNN layer j+1

— je— S)
O O O : @) @)
RNN layer 3 ®)| @ ;| @ > ;| @)| @
¥) ® o) ®) 0 e
@) O @) O O O
N N N N N N
O O O @] @) O
O
RNN layer 2 :—>: >: > @ >: >:
O @) O @) O O
A N N N g N
©) O O O (@) @)
RNN layer 1 : >: >: >: >: >:
O @) O @) O O
the movie was terribly exciting !

42

Multi-layer RNNs in practice

e High-performing RNNs are often multi-layer (but aren’t as deep
as convolutional or feed-forward networks)

 For example: In a 2017 paper, Britz et al find that for Neural
Machine Translation, 2 to 4 layers is best for the encoder RNN,

and 4 layers is best for the decoder RNN

* However, skip-con nections/dense-connections are needed to train
deeper RNNs (e.g. & layers)

 Transformer-based networks (e.g. BERT) can be up to 24 layers

* You will learn about Transformers later; they have a lot of
skipping-like connections

43 “Massive Exploration of Neural Machine Translation Architecutres”, Britz et al, 2017. https://arxiv.org/pdf/1703.03906 pdf

In summary

Lots of new information today! What are the practical takeaways?

® ® ()
t t t
By f_ : |\=(
A el A
L et Syilhy
&) O & :
1. LSTMs are powerful but GRUs are faster 2. Clip your gradients
o o] (o] 0 o il i i i il
0 o |o . |e 0 L& T L
o o[jef e sl e e
T g g o
the movie was terribly exciting / “].‘ % % !f T %
3. Use bidirectionality when possible 4. Multi-layer RNNs are powerful, but you

4 might need skip/dense-connections if it’s deep

Required Readings

» Chapter 7 on Neural Networks from the J&M textbook.
— Sections on Training are optional.

» Chapter 8 on RNNs and LSTMs from the J&M textbook.
— Sections on Training are optional.

124

https://web.stanford.edu/~jurafsky/slp3/7.pdf
https://web.stanford.edu/~jurafsky/slp3/8.pdf

	Slide 1: ITCS 4101: Introduction to Natural Language Processing
	Slide 2: Language Modeling (LM)
	Slide 3: Language Modeling (LM)
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19: N-gram Language Models are Shallow Learners
	Slide 20
	Slide 21
	Slide 22: What can be learned from predicting missing words?
	Slide 23: What can be learned from predicting missing words?
	Slide 24: What can be learned from predicting missing words?
	Slide 25: What can be learned from predicting missing words?
	Slide 26: What can be learned from predicting missing words?
	Slide 27: What can be learned from predicting missing words?
	Slide 28: What can be learned from predicting missing words?
	Slide 29: What can be learned from predicting missing words?
	Slide 30: What can be learned from predicting missing words?
	Slide 31: Word Embeddings
	Slide 32: What do words mean?
	Slide 33: Aristotle: What is a concept?
	Slide 34: Wittgenstein to Aristotle: But what is a game?
	Slide 35: Distributional Semantics Idea
	Slide 36: Distributional Semantics
	Slide 37: What does recent English borrowing ongchoi mean?
	Slide 38: Ongchoi: Ipomoea aquatica "Water Spinach"
	Slide 39: Distributional Semantics and Neural LMs
	Slide 40: Neural Language Modeling: Decoders
	Slide 41: Neural Language Modeling: Decoders
	Slide 42: Neural Language Modeling: Decoders
	Slide 43: Neural Language Modeling: Encoders
	Slide 44: Neural Language Modeling: Encoders
	Slide 45: Start: Interlude on Neural Networks
	Slide 46: Logistic Neuron = Logistic Regression
	Slide 47: Neural Network Model
	Slide 48: Feed-Forward Neural Networks
	Slide 49: Neural Network Model
	Slide 50
	Slide 51: Inference: Forward Propagation
	Slide 52: Forward Propagation
	Slide 53: Forward Propagation
	Slide 54: Multiple Hidden Units, Multiple Outputs
	Slide 55: ReLU and Generalizations
	Slide 56: ReLU vs. Sigmoid and Tanh
	Slide 57: ReLU vs. Softplus
	Slide 58: End: Interlude on Neural Networks
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66: Start Supplemental Material: Training RNNs
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79: End Supplemental Material: Training RNNs
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124: Required Readings

