
ITCS 4101: Introduction to NLP

1

Justin Smith, with input from Erfan and Razvan

jsmit840@charlotte.edu

Department of Computer Science @ CCI

LangChain for Building LLM-powered Applications

mailto:jsmit840@charlotte.edu

Learning Objectives

• What is a multi-agent setting and when is it useful?

• What is the LangChain Library?

• What are LangChain components?

– How do you integrate them with each other?

• How does a LangChain agent work?

• For what cases does LangChain work?

• Under what circumstances does LangChain fail?

2

Agents

• An agent is a program that can independently interact with its

environment.

– “Independent” referring to not needing step-by-step instructions to complete

objectives.

• We can implement an agent via language model, at least to some

degree.

– All input and output of the language model is language.

3

Multi-Agent Environments

• Since agents are independent, these agents can interact with one

another.

– These agents can be trying to accomplish different goals.

• We call these environments multi-agent environments.

4

Single Agent

5

Chat

GPT

6

Data

scientist

Content

extractor
Nested

tool

Storyteller

Architect

/ Planner
Code

executor

Jupyter Notebook

• Jupyter Notebook – We can see an example of two agents interacting in a

comedy routine.

7

Motivation for Agents

• Sometimes a language model is not the best for a task.

– Most state-of-the-art language models still struggle with:

• Arithmetic

• Code execution

• Very long-context input

• We want to allow our language model agents to interact with other

agents or tools that are better suited for the task. For example:

– Calculators

– Compilers/Interpreters

– Retrieval systems (Vector stores, Graphs, …)

• Two ways to implement this are with LangChain or AutoGen.
8

What is LangChain?

• A library that is designed to ease the development of applications that

utilize both an LLM and external tools.

– More powerful applications than a single prompt: dialogue systems (next

homework), data science (query a database), multimodal input (send

preprocessed audio/image/video to the LLM).

• Central idea: “Chain” together the LLM and, optionally, additional

components.

– Similar to a linked list, the “chain” is sequential.

– Dissimilar to a linked list, the input to the next component is cumulative

9

LangChain Core Components

• LLMs: Large language models, e.g. GPT-3.5, GPT-4, Llama3, Gemini.

• Prompt templates: A template for building a chain of prompts

– The output of one prompt can be input into a different prompt.

• Memory: Keeps track of past messages and information from external tools.

• Agents: Abstraction of the chain of LLM prompts and tools.

– To the user, a chain of prompts is single system to interact with.

• Vector Stores: Databases that store the meaning of various text documents.

10

Common Components Beyond the LLM

• Vector Stores:

– A type of database that stores data as high-dimensional vectors

– This data can be text, images, video, and more.

• Why do we use Vector Stores?

– Find most similar:

• documents for a query.

• training examples for a test example.

• Tools:

– Web Search (this lecture).

– Calculators, Compilers, Interpreters, …

– Image Generation, File Access, …
11

https://python.langchain.com/docs/integrations/components

https://python.langchain.com/docs/integrations/components

The Chain in LangChain

LLM Internet Search

LLM
“Joe Biden is the current

president of the US.”

Search Result:

“Joseph Robinette Biden Jr. is an American

politician who is the 46th and current president of

the United States. A member of the Democratic

Party, he previously served as the 47th vice

president from 2009 to 2017 under President

Barack Obama and represented Delaware in the

United States Senate from 1973 to 2009

Who is the current

president of the US?”

The Chain in LangChain

• PromptTemplate class:

– Sets up a prompt with input variables, like a formatted string.

– Make an instance of the prompt with the method format(inputs).

• LLM class:

– Contains a method to call an LLM.

• LLMChain class:

– Takes in an LLM as an object, along with a prompt template.

– Has a method, invoke(inputs), that will get the LLM response.

• Agent class:

– Abstract an LLM, along with other components and a prompt, into a single object.

• AgentExecutor class:

– Method, invoke(inputs), will get the response of the entire chain.

13

The Chain in LangChain

14

The Chain in LangChain

15

AutoGen

• AutoGen has two major classes that control how it is used:

– The Chat class:

• This class controls the chat history.

– The ConversableAgent class:

• This class describes an agent that can be chatted with.

• There are two main ConversableAgents.

– UserProxyAgent:

• This is an agent that allows for user interaction with the agents.

– AssistantAgent:

• This is a wrapper around the typical way to interact with LLMs.
16

https://microsoft.github.io/autogen/docs/reference/agentchat/conversable_agent/

ReAct Prompting

• ReAct prompting is an approach for enhancing the decision making of LLMs,

for example, choosing which tools to use for a given situation.

• This utilizes a format that is simple to parse:

– Question: The input to the model.

– Thought: A place for the model to state intentions, which tends to increase performance.

– Action: The tool (if any) does the model wants to use.

– Action Input: The input to the tool.

– Observation: The output of the tool.

• The final answer is given in the format:

– Thought: “I believe I have the final answer.”

– Final Answer: The answer the model gives to the user.

17

https://arxiv.org/abs/2210.03629

ReAct Prompting

• The structure of the ReAct Loop:

– <question> (<thought> <action> <action input> <observation>)* <thought> <answer>

18

Question: Who is the current president of the US?

Thought: I should use a search engine to find relevant data.

Action: Open Google

Action Input: “Who is the current president of the US?”

Observation: The current president is Joe Biden.

Thought: I now know the final answer.

Answer: Joe Biden

Option 1: You do not

have enough information

to answer the question.

Option 2: You have enough information

to answer the question.

ReAct Prompting

• The structure of the ReAct Loop:

– <question> (<thought> <action> <action input> <observation>)* <thought> <answer>

19

Question: What is 2 + 2?

Thought: I now know the final answer.

Final Answer: 4
Option 2: You have enough information

to answer the question.

LangChain for ReAct Prompting

20

The Agent of LangChain

• ChatPromptTemplate class:

– Very similar to the OpenAI chat; however, it utilizes tuples instead of dictionaries.

• Agent class:

– Abstract an LLM, along with other components and a prompt, into a single object.

• AgentExecutor class:

– Method, invoke(inputs), will get the response of the entire chain.

21

LangChain for ReAct Prompting

22

The Chain in LangChain

• How do these LLMs and tools work together?

– input_variable is a parameter of the PromptTemplate class

– This allows linking the output to one component with the input of another.

• What format style should we use for exporting information from a tool?

– JSON is a great format to output in.

– Many LMs can comprehend and produce JSON consistently.

– Other times, just a string is sufficient.

23

LangChain Example

• Jupyter notebook.

24

Zero-Shot

• Zero-shot refers to giving the LLM no examples, only the instructions:

– This is sufficient for some tasks, but sometimes it is hard to clearly express the intended

output in English, e.g. output format.

OpenAI Playground example here: Zero-Shot Example with GPT-4-Turbo

25

https://platform.openai.com/playground/p/zUe1HnMC3uGjLcWpgTkP0qo4?model=gpt-4-turbo-preview&mode=chat

In-context Learning: Few-Shot Examples

• Sometimes it’s better to give a few examples to the LLM to explain the

problem.

– For example, 1-shot refers to one example, 2-shot to two examples, and so on.

– In-context examples tend to increase the efficiency of the model.

• In general, this is referred to as few-shot.

• Let’s try the same prompt as before, but with examples of what we want the

model to produce.

OpenAI Playground example here: Few-shot example with GPT-4-Turbo

26

Language Models are Few-Shot Learners

https://platform.openai.com/playground/p/u7DUFOhIeTFSFeaqGX6VKPfq?model=gpt-4-turbo-preview&mode=chat
https://arxiv.org/abs/2005.14165

Examples and Improved Output

27

Critique of LangChain

• LangChain is unnecessary when using solely the LLM.

– Instead, easier to just keep track of the conversation in the code.

• Tools are not always the simplest, most effective solution.

– It might be enough to provide examples to the LLM and have it accomplish the task.

• LangChain does not improve the base model.

• LangChain cannot improve the context length.

– No language model can keep an infinitely long conversation going.

– Sometimes a longer prompt outperforms a long list of function calls.

28

Learning Objectives

• What is a multi-agent setting and when is it useful?

• What is the LangChain Library?

• What are LangChain components?

– How do you integrate them with each other?

• How does a LangChain agent work?

• For what cases does LangChain work?

• Under what circumstances does LangChain fail?

29

Frameworks for deploying LLM-based Web Apps

• Streamlit:

– Pros: Python-based, more configurable than Chainlit (e.g. authentication), more UI

components than Chainlit and Gradio, and easy to deploy for free on a public URL

through share.streamlit.io (through a .edu account)

– Cons: Needs additional work to support token streaming and does not support visualizing

LangChain prompt chains.

• Chainlit:

– Pros: Python-based, easily visualizes prompt chains from LangChain (as of version 0.2.0),

and supports token streaming.

– Cons: Needs some work to deploy and does not offer free hosting that can be accessed

through a public URL. To host on a public URL students would need to use a cloud

provider like Heroku.

30

https://streamlit.io/
share.streamlit.io
https://chainlit.io/
https://www.heroku.com/

Frameworks for deploying LLM-based Web Apps

• Chat UI:

– Pros: Easily integratable with a a multitude of LLM hosting services and frameworks such

as Azure, HuggingFace Inference endpoints, and vLLM. Full UI and deployment

configurability. Chat-UI is a replica of HuggingChat.

– Cons: Needs JavaScript to customize, does not visualize LangChain prompt chains.

• Gradio:

– Pros: Python-based, more UI components than Chainlit, and easy to deploy to a public

URL through Huggingface spaces.

– Cons: Does not support visualizing LangChain prompt chains.

31

https://github.com/huggingface/chat-ui
https://www.gradio.app/

Recommended Readings

• https://learn.deeplearning.ai/langchain

• https://python.langchain.com/docs/get_started/introduction

• https://github.com/microsoft/autogen

– https://microsoft.github.io/autogen/docs/Use-Cases/agent_chat/

– https://microsoft.github.io/autogen/docs/Use-Cases/agent_chat/#diverse-applications-

implemented-with-autogen

32

https://learn.deeplearning.ai/langchain
https://python.langchain.com/docs/get_started/introduction
https://github.com/microsoft/autogen
https://microsoft.github.io/autogen/docs/Use-Cases/agent_chat/

	Slide 1: ITCS 4101: Introduction to NLP
	Slide 2: Learning Objectives
	Slide 3: Agents
	Slide 4: Multi-Agent Environments
	Slide 5: Single Agent
	Slide 6
	Slide 7: Jupyter Notebook
	Slide 8: Motivation for Agents
	Slide 9: What is LangChain?
	Slide 10: LangChain Core Components
	Slide 11: Common Components Beyond the LLM
	Slide 12: The Chain in LangChain
	Slide 13: The Chain in LangChain
	Slide 14: The Chain in LangChain
	Slide 15: The Chain in LangChain
	Slide 16: AutoGen
	Slide 17: ReAct Prompting
	Slide 18: ReAct Prompting
	Slide 19: ReAct Prompting
	Slide 20: LangChain for ReAct Prompting
	Slide 21: The Agent of LangChain
	Slide 22: LangChain for ReAct Prompting
	Slide 23: The Chain in LangChain
	Slide 24: LangChain Example
	Slide 25: Zero-Shot
	Slide 26: In-context Learning: Few-Shot Examples
	Slide 27: Examples and Improved Output
	Slide 28: Critique of LangChain
	Slide 29: Learning Objectives
	Slide 30: Frameworks for deploying LLM-based Web Apps
	Slide 31: Frameworks for deploying LLM-based Web Apps
	Slide 32: Recommended Readings

