
ITCS 4101: Introduction to NLP

Coding with Large Language Models using APIs:

GTP, Gemini, Llama, …

Razvan C. Bunescu

Department of Computer Science @ CCI

rbunescu@uncc.edu

mailto:rbunescu@uncc.edu

Large Language Models (LLMs)

2

Neural Network
RNN, LSTM,
Transformer,
Mamba, …

?

Logistic
Regression

word embeddings

contextual word
embedding

She studies natural language

P(aardvark) =
.02…

…
P(semester) = .09

…
P(vacation) = .07

…
P(the) = .0001
…

tokens
probability
distribution

temperature, top-p, top-k, top-nσ

sample

P(processing) = .24

We will discuss 3 main options for this class:
1. OpenAI’s GPT models.

• Use as a service, pay per token.

• Open-source versions gpt-oss.

2. Google’s Gemini models.

• Free tier, with lower rate limits.

• Paid tier, with higher rate limits.
• Need personal Gmail account.

3. Meta’s Llama models.

• Free, open-source Llama-3 model, installed on a College server.

3

Application Development Using LLM APIs

https://openai.com/index/introducing-gpt-oss/
https://openai.com/index/introducing-gpt-oss/
https://openai.com/index/introducing-gpt-oss/

1. Through the browser app:
– ChatGPT at https://chatgpt.com
– Gemini at https://gemini.google.com/app

2. As a service, through an API:
– Directly, in the code:

• GPT through the Response API.
• Gemini through the Developer API.

– Indirectly, in the browser:
• GPT Playground at https://platform.openai.com/chat
• Google AI Studio at https://aistudio.google.com/prompts/new_chat

4

Two Ways of Using GPT and Gemini Models

https://chatgpt.com/
https://gemini.google.com/app
https://platform.openai.com/docs/api-reference/introduction
https://ai.google.dev/gemini-api/docs
https://platform.openai.com/chat
https://aistudio.google.com/prompts/new_chat

5

OpenAI GPT

• GPT = Generative Pre-trained Transformer.

• Pre-trained to “understand” natural language and code:
– Using a language modeling (LM) objective.

• Fine-tuned to provide text outputs (answers) in response to
their inputs (questions or prompts).
– Instruction fine-tuning.
– Alignment with human preference (RLHF with PPO, DPO, …).

• “Programming” with GPT, Gemini, Llama, and other LLMs:
– Design a “prompt”, usually by providing instructions and/or some

examples of how to successfully complete a task:
• zero-shot, few-shot in-context learning, CoT explanations.

6

Using OpenAI GPT models

• Need to have an OpenAI account:
– Go to https://platform.openai.com, Log in / Signup.

• “Continue with Google”, use your UNCC email.
– $5 should be enough for the work in this class, see pricing.
– Go to billing overview, Set payment → input credit card, or Add to

credit balance, input $5.

• Create a secret API key and store it in a .env file:
– Go to API keys and “+ create new secret key”.
– Copy the key and store it in a text file named .env as follows

• OPENAI_API_KEY=…
– Make sure you save the key, it will not be shown again.

– Place or copy the .env file in the folder you edit and run the notebook.
– Do not put the secret key in your code!

7

GPT: Setting up the OpenAI API account

https://platform.openai.com/
https://platform.openai.com/docs/pricing
https://platform.openai.com/account/billing/overview
https://platform.openai.com/account/api-keys

• Install the openai module and python-dotenv module :
– pip install openai
– pip install python-dotenv

• Alternatively, use Google Colab instead of JupyterLab:
– Has modules already installed.
– But ensure to use Colab’s built-in “Secrets” feature to store the keys.

8

Required Python Modules

9

Setting up and reading secret keys in Colab

• Take a list of messages as input and return a model-generated
message as output.
– Designed to make multi-turn conversations easy, it’s just as useful for

single-turn tasks without any conversation.

10

Using the Response API

https://platform.openai.com/docs/guides/text

https://platform.openai.com/docs/guides/text

• 3 major roles in the input parameter:
– Developer: Optional message, that indicates the LLM persona.

• Also called a steering prompt, sets up the system behavior.
– User: Provides questions, requests, or comments to the assistant.
– Assistant: Previous responses from the LM assistant, or example of

desired LM response.
• Need to provide the conversation so far, every time we want to continue

with a new user questions.

• Roles interact in a chain of command, with authority levels:

11

Response API: openai.responses.create

https://model-spec.openai.com/2025-02-12.html

• Other useful parameters:
– model: gpt-5 or gpt-5-min or gpt-5-nano.
– max_output_tokens: maximum # of tokens to generate.
– reasoning: effort level and configuration for reasoning models, default is

‘medium’.
– tool_choice: Controls which (if any) tool is called by the model.
– temperature: defaults to 1, but set it to 0 for greedy decoding.

– Eliminated in GPT-5!
– top_p: defaults to 1, use 0.1 if you want the LLM to sample tokens only from

the top 10% of probability mass, i.e. nucleus sampling.
– presence_penalty, frequence_penalty, logit_bias: penalize or favor repetitions,

or certain tokens (later in this course).

12

Response API: openai.responses.create

https://platform.openai.com/docs/api-reference/responses

https://platform.openai.com/docs/api-reference/responses
https://platform.openai.com/docs/api-reference/responses
https://platform.openai.com/docs/api-reference/responses

• Shown in the Jupyter notebook.

13

Examples with Open AI GPT

14

Using the API interactively in GPT Playground

• The Playground facilitates quick stress testing
of prompts and parameters, before deploying
in code.

• Once the prompt and parameters are ready,
you can see the Python or node.js code for the
conversation. Copy & Paste into your code.

15

Using the API interactively in GPT Playground

16

Google Gemini

Gemini: Setting up the API account

• Need to have a personal Google account:
– UNCC account will not work (OIT still working on it …).
– Go to https://ai.google.dev/, Sign in.
– Continue with personal account.

• See pricing for available models and pricing and rate limits.

• Follow the Gemini API quickstart in Python (next slides).
17

https://ai.google.dev/
https://ai.google.dev/pricing
https://ai.google.dev/gemini-api/docs/rate-limits
https://ai.google.dev/gemini-api/docs/quickstart?lang=python

• First time API users get $300 free credit for Google Cloud:
– Including the Gemini API.
– To be used within 3 months.

18

Gemini: Setting up the API account

• Create and store a secret API key:
– Get an API key from Google AI Studio.

• Click Create API Key.
– Copy the key and store it in a text file named .env as follows

• GEMINI_API_KEY=…

• Place or copy the .env file in the folder you edit and run the
notebook.
– Other solutions exist, but this is what we will do in this course.
– Do not put the secret key in your code!

19

Gemini: One-time Setup of API Key

https://aistudio.google.com/app/apikey

Required Python Modules

• Install the google-genai module:
– pip install -U google-genai (use pip3)

• Make sure you have latest version of pip3 and setuptools:
– pip3 install --upgrade pip
– python3 -m pip install --upgrade setuptools

• Install the python-dotenv module, using one of:
– pip install python-dotenv

• Alternatively, use Colab instead of Jupyter:
– Has modules already installed.
– But ensure to use Colab’s built-in “Secrets” feature to store the keys.

20

https://colab.research.google.com/

21

Setting up and reading secret keys in Colab

• Create the Client object:

• Send a query, using default parameters:

22

Gemini Client Setup and Query

Gemini: Multiple Turn Conversations

23

• Use the google.genai.chats.Chat class to manage turns in the conversation:

Hard to find API documentation on how to engage in multi-
turn multimodal conversations …

When API Documentation Fails,
Turn to Google’s AI Overview

24

25

Turn to AI Mode

• Shown in the Jupyter notebook.

• More examples in the Gemini Developer API documentation:
• Text generation examples.
• Image generation examples.
• Image understanding example.

• Parameters such as temperature, max_output_tokens, … can be set using
google.genai.types.GenerateContentConfig().

• More documentation available at:
– Google Gen AI SDK.
– Vertex AI.

26

Examples with Google Gemini

https://ai.google.dev/gemini-api/docs
https://ai.google.dev/gemini-api/docs/text-generation
https://ai.google.dev/gemini-api/docs/text-generation
https://ai.google.dev/gemini-api/docs/image-generation
https://ai.google.dev/gemini-api/docs/image-generation
https://ai.google.dev/gemini-api/docs/image-understanding
https://ai.google.dev/gemini-api/docs/image-understanding
https://googleapis.github.io/python-genai/
https://googleapis.github.io/python-genai/
https://googleapis.github.io/python-genai/
https://cloud.google.com/vertex-ai/generative-ai/docs/
https://cloud.google.com/vertex-ai/generative-ai/docs/

27

Meta Llama

• OpenAI.base_url:
– An attribute of the OpenAI class.

• Model name:
– Specifies which version of Llama 3 is being utilized.
– You must be on eduroam to access the model directly. Off campus, you need connect

through the educational cluster using VPN.

– Send messages using the original chat completion API from OpenAI.
28

Using Llama 3.3-70B Quantized

• Initial API from OpenAI, still has backward support for it.

• Most LLMs support it, including Llama and Gemini.
– Take a list of messages as input and return a model-generated message as output.
– Designed to make multi-turn conversations easy, it’s just as useful for single-turn tasks

without any conversation.

29

Chat Completion API:
openai.chat.completions.create()

https://platform.openai.com/docs/api-reference/chat

model_name

https://platform.openai.com/docs/api-reference/chat
https://platform.openai.com/docs/api-reference/chat
https://platform.openai.com/docs/api-reference/chat

• 3 major roles in the messages parameter:
– System: Optional first message, that indicates the LM persona.

• Also called a steering promp, sets up the system behavior.
• Default is “You are a helpful assistant”.

– User: Provides questions, requests, or comments to the assistant.
– Assistant: Previous responses from the LM assistant, or example of

desired LM response.
• Need to provide the conversation so far every time we want to continue

with a new user questions.

• Typical input (RE) is system? user (assistant user)*

30

Chat Completion API:
openai.chat.completions.create()

• Other useful parameters:
– model: gpt-5 or gpt-5-min or gpt-5-nano or …
– temperature: defaults to 1, but set it to 0 for greedy decoding.

• We’ll see how it is implemented when covering Logistic Regression.
– top_p: defaults to 1, use 0.1 if you want the LM to sample tokens only

from the top 10% of probability mass, i.e. nucleus sampling.
– n : defaults to 1, indicates # completions (alternatives) to generate.
– max_tokens: defaults to ∞, maximum # of tokens to generate.
– presence_penalty, frequence_penalty, logit_bias: penalize or favor

repetitions, or certain tokens (later in this course).

31

Chat Completion API:
openai.chat.completions.create()

32

Using Llama through the ccAPI

33

Using Llama through the ccAPI

• Shown in the Jupyter notebook.

34

Examples with Llama3

• DeepLearning.AI short course on Building with Llama 4.

35

Supplemental Material

https://www.deeplearning.ai/
https://www.deeplearning.ai/
https://learn.deeplearning.ai/courses/building-with-llama-4

