ITCS 4101: Introduction to NLP

Coding with Large Language Models using APls:
GTP, Gemini, Llama, ...

Razvan C. Bunescu
Department of Computer Science (@ CCI

rbunescu@uncc.edu

mailto:rbunescu@uncc.edu

Large Language Models (LLMs)

contextual word
embedding

\

Neural Network

RNN, LSTM,
Transformer,
Mamba, ...

&

tokens E E

She studies natural language

£}

P(aardvark) =
sample
Logistic -
Regress1on P(semester) = .09

temperature top-p, top-k, top-no

P(processing) = .24

P(vacation) = .07

P(the) = .0001

SR

probability

distribution

word embeddings

e i ™y

?

Application Development Using LLM APIs

We will discuss 3 main options for this class:
1. OpenAl’s GPT models.
« Use as a service, pay per token.
« Open-source versions gpt-0ss.
2. Google’s Gemini models.
* Free tier, with lower rate limits.
e Paid tier, with higher rate limits.
* Need personal Gmail account.
3. Meta’s Llama models.

* Free, open-source Llama-3 model, installed on a College server.

https://openai.com/index/introducing-gpt-oss/
https://openai.com/index/introducing-gpt-oss/
https://openai.com/index/introducing-gpt-oss/

Two Ways of Using GPT and Gemini Models

1. Through the browser app:
— ChatGPT at https://chatgpt.com

— Gemini at https://gemini.google.com/app

2. As aservice, through an API:

— Directly, in the code:
e GPT through the Response API.
Gemini through the Developer API.

— Indirectly, in the browser:

 GPT Playground at https://platform.openai.com/chat

* Google AI Studio at https://aistudio.google.com/prompts/new_chat

https://chatgpt.com/
https://gemini.google.com/app
https://platform.openai.com/docs/api-reference/introduction
https://ai.google.dev/gemini-api/docs
https://platform.openai.com/chat
https://aistudio.google.com/prompts/new_chat

OpenAl GPT

Using OpenAl GPT models

GPT = Generative Pre-trained Transformer.

Pre-trained to “understand” natural language and code:
— Using a language modeling (LM) objective.

Fine-tuned to provide text outputs (answers) in response to
their inputs (questions or prompts).

— Instruction fine-tuning.
— Alignment with human preference (RLHF with PPO, DPO, ...).

“Programming” with GPT, Gemini, Llama, and other LLMs:

— Design a “prompt”, usually by providing instructions and/or some
examples of how to successfully complete a task:

» zero-shot, few-shot in-context learning, CoT explanations.

GPT: Setting up the OpenAl API account

* Need to have an OpenAl account:
— @Go to https://platform.openai.com, Log in / Signup.

e “Continue with Google”, use your UNCC email.
— $5 should be enough for the work in this class, see pricing.

— Go to billing overview, Set payment — input credit card, or Add to
credit balance, input $5.

« Create a secret API key and store 1t 1n a .env file:

— Go to API keys and “+ create new secret key”.

— Copy the key and store it in a text file named .env as follows
. OPENAI API KEY=...

— Make sure you save the key, it will not be shown again.
— Place or copy the .env file in the folder you edit and run the notebook.

— Do not put the secret key in your code!

7
R ———— e

https://platform.openai.com/
https://platform.openai.com/docs/pricing
https://platform.openai.com/account/billing/overview
https://platform.openai.com/account/api-keys

Required Python Modules

 Install the openai module and python-dotenv module :
— pip install openai

— pip 1install python-dotenv

import os
from openai import OpenAl

from dotenv import load_dotenv, find_dotenv

Read the local .env file, containing the Open AI secret key.
_ = load_dotenv(find_dotenv())

client = OpenAI(api_key = os.environ['OPENAI_API_KEY'])

« Alternatively, use Google Colab instead of JupyterLab:
— Has modules already installed.

— But ensure to use Colab’s built-in “Secrets” feature to store the keys. :

Setting up and reading secret keys in Colab

2. Accessing Colab Secrets (Recommended for sensitive data):

For sensitive information like API keys, it is recommended to use Colab's built-in
"Secrets"” feature.

* Set up the Secret:

o In your Colab notebook, click the "key" icon on the left sidebar to open the
Secrets manager.

o Add a new secret, providing a name (e.g., MY_API_KEY) and its
corresponding value.

o Ensure the "Notebook access" toggle is enabled for your current notebook.

* Read the Secret in your Notebook:

Python D

from google.colab import userdata
import os

Retrieve the secret value using its name
api_key = userdata.get('MY_API_KEY')

Optionally, set it as an environment variable for compatibility wit
os.environ['MY_API_KEY'] = api_key

print(f"API Key (first few chars): {api_key[:5]}...") # Print a parti

3. Reading froma .env file (if you've uploaded one):

If you've uploaded a .env file to your Colab environment, you can use the python-
dotenv library to load it:

Python]
!pip install python-dotenv

import dotenv
dotenv. load_dotenv('./.env"')

import os
value = os.environ.get('YOUR_VARIABLE_NAME_IN_DOTENV')
print(f"The value from .env is: {value}")

(

& ExamplesGPT.ipynb ¥ &

File Edit View Insert Runtime Tools Help
Q Commands + Code + Text D Runall ~
:= Secrets 0O X

<>

O

Configure your code by storing environment variables, file paths, or
keys. Values stored here are private, visible only to you and the
notebooks that you select.

Secret name cannot contain spaces.

Notebook
access

Name Value Actions

@ | orFenala H sk-projilv | & O @

+ Add new secret

Gemini APl keys ~

Access your secret keys in Python via:
1O

from google.colab import userdata
userdata.get('secretName')

&

Using the Response API

Take a list of messages as iput and return a model-generated
message as output.

— Designed to make multi-turn conversations easy, it’s just as useful for
single-turn tasks without any conversation.

responsel = client.responses.create(

model = "gpt-5-nano",
reasoning = {"effort": "low"},
input = [
{
"role": "developer",
"content": "You are a helpful music historian."
b
{
"role": "user",
"content": "Who composed The Four Seasons?"
}

)
print(responsel.output_text)

https://platform.openai.com/docs/guides/text

10

https://platform.openai.com/docs/guides/text

Response API: openai.responses.create

* 3 major roles in the input parameter:
— Developer: Optional message, that indicates the LLM persona.
» Also called a steering prompt, sets up the system behavior.
— User: Provides questions, requests, or comments to the assistant.

— Assistant: Previous responses from the LM assistant, or example of
desired LM response.

* Need to provide the conversation so far, every time we want to continue
with a new user questions.

e Roles interact in a chain of command, with authority levels:

Platform: Model Spec "platform" sections and system messages
Developer: Model Spec "developer” sections and developer messages
User: Model Spec "user" sections and user messages

. Guideline: Model Spec "guideline" sections

oo A WO N B

No Authority: assistant and tool messages; quoted/untrusted text and multimodal data in other

messages
J 11

https://model-spec.openai.com/2025-02-12.html

Response API: openai.responses.create

e Other useful parameters:

model: gpt-5 or gpt-5-min or gpt-5-nano.

max_output_tokens: maximum # of tokens to generate.

reasoning: effort level and configuration for reasoning models, default is
‘medium’.

tool choice: Controls which (if any) tool is called by the model.
temperature: defaults to 1, but set it to 0 for greedy decoding.

— Eliminated in GPT-5!

top p: defaults to 1, use 0.1 1f you want the LLM to sample tokens only from
the top 10% of probability mass, i.e. nucleus sampling.

presence penalty, frequence penalty, logit bias: penalize or favor repetitions,
or certain tokens (later in this course).

https://platform.openai.com/docs/api-reference/responses

12

https://platform.openai.com/docs/api-reference/responses
https://platform.openai.com/docs/api-reference/responses
https://platform.openai.com/docs/api-reference/responses

Examples with Open Al GPT

* Shown in the Jupyter notebook.

Using the API interactively in GPT Playground

< 4101 example1 ¢ vi-default < <« P Compare 47 Optimize (@ Evaluate [MUSREIS)
Model gpt-5-nano 2 © resp_68cc2fbc.. (P
text.format: text effort: medium verbosity: low store: true

User 0 o X
Variables + Add As a CS student, what are the top 10 skills | should learn in order to be able to secure a job in

a software engineering setting that requires using Al?
Tools + Add

Assistant o X
Developer message v Here are 10 essential skills to land a software engineering role that involves Al:

You are an expert software engineer who routinely uses Al to increase productivity. 1. Core CS and software engineering fundamentals

* Data structures, algorithms, complexity, clean code, testing, debugging, and version
control (Git).

2. Math for Al and ML basics

* Linear algebra, calculus, probability, statistics; ML concepts (supervised/unsupervised
learning, evaluation metrics, bias-variance).

3. Proficiency with ML frameworks and tooling

* Python + libraries (NumPy, pandas, scikit-learn) and deep learning frameworks (PyTorch
or TensorFlow); experience with experiment tracking (MLflow, Weights & Biases).

Prompt messages 4. End-to-end ML pipelines and MLOps

v X - ' Y o -
s * Data acquisition/labeling, preprocessina. teature enaineering, model training,

Enter task specifics. Use {{template variables}} for dynamic inputs evaluation, deployment, mor,) 22:9s 158t 42,394t reproducibility.

Chat with your prompt...

+ Add message 0 2 Auto-clear a

Using the API interactively in GPT Playground

POST /v1/responses python ¢ @

» The Playground facilitates quick stress testing

client = OpenAI()

of prompts and parameters, before deploying e

input=[
1 ¢
in code.
{

"type": "input_text",
"text": "You are an expert software engineer who routinely uses /
}
1
h
{
nojletEtuserl;
“content": [
{
* Once the prompt and parameters are ready, e it st | |
text": "As a CS student, what are the top 10 skills I should le:
B
ot 1
you can see the Python or node.js code for the)
"type": "reasoning",
"id": "rs_68cc2fbdc@f08197912a6f5c842d36340e0d485508b3601a",

conversation. Copy & Paste into your code.

"encrypted_content": "gAAAAABozC_SSCa008c0—_y2wTSGx058A%wxya0SwMgLL_L

}
{
"id": "msg_68cc2fcf13508197afd74d2f126b3e6a0e0d485508b3601a",
"role": "assistant",
"content": [
i{
"type": "output_text",
"text": "Here are 10 essential skills to land a software engineer
b
1
b
1,
text={
"format": {
Ztypel:Siitextt
},
"verbosity": "low"
h
reasoning={
"effort": "medium"
h
tools=[],
store=True,
include=[

"reasoning.encrypted_content",
"web_search_call.action.sources"
]
)

15
R

Google Gemini

Gemini: Setting up the API account

* Need to have a personal Google account:

— UNCC account will not work (OIT still working on it ...).
— Go to https://ai.google.dev/, Sign in.

— Continue with personal account.

 See pricing for available models and pricing and rate limits.

Free Tier Tier 1 Tier 2 Tier 3

Model RPM TPM RPD
Text-out models

Gemini 2.5 Pro 5 250,000 100
Gemini 2.5 Flash 10 250,000 250
Gemini 2.5 Flash-Lite 15 250,000 1,000
Gemini 2.0 Flash 15 1,000,000 200
Gemini 2.0 Flash-Lite 30 1,000,000 200

* Follow the Gemini API quickstart in Python (next slides).

17
e

https://ai.google.dev/
https://ai.google.dev/pricing
https://ai.google.dev/gemini-api/docs/rate-limits
https://ai.google.dev/gemini-api/docs/quickstart?lang=python

 First time API users get $300 free credit for Google Cloud:

Gemini: Setting up the API account

— Including the Gemini API.
— To be used within 3 months.

Beginning today, you have $300 USD in credit which you can use to:

C
©

Evaluate Google Cloud risk-free*

Explore a wide range of Google Cloud products and services — from

Compute Engine and BigQuery to industry-leading Al.

Easily check your credit usage by visiting the billing_section of your

Google Cloud console

18

Gemini: One-time Setup of API Key

 Create and store a secret API key:
— Get an API key from Google Al Studio. |
* Click Create API Key.

— Copy the key and store it in a text file named .env as follows
« GEMINI API KEY=...

» Place or copy the .env file in the folder you edit and run the
notebook.

— Other solutions exist, but this 1s what we will do in this course.
— Do not put the secret key in your code!

19

https://aistudio.google.com/app/apikey

Required Python Modules

 Install the google-genai module:
— pip install -U google-genai (use pip3)
* Make sure you have latest version of pip3 and setuptools:
— pip3 install --upgrade pip
— python3 -m pip install --upgrade setuptools

* Install the python-dotenv module, using one of:
— pip install python-dotenv

 Alternatively, use Colab instead of Jupyter:
— Has modules already installed.
— But ensure to use Colab’s built-in “Secrets” feature to store the keys.

20 |

https://colab.research.google.com/

Setting up and reading secret keys in Colab

2. Accessing Colab Secrets (Recommended for sensitive data):

For sensitive information like API keys, it is recommended to use Colab's built-in
"Secrets"” feature.

* Set up the Secret:

o In your Colab notebook, click the "key" icon on the left sidebar to open the
Secrets manager.

o Add a new secret, providing a name (e.g., MY_API_KEY) and its
corresponding value.

o Ensure the "Notebook access" toggle is enabled for your current notebook.

* Read the Secret in your Notebook:

Python D

from google.colab import userdata
import os

Retrieve the secret value using its name
api_key = userdata.get('MY_API_KEY')

Optionally, set it as an environment variable for compatibility wit
os.environ['MY_API_KEY'] = api_key

print(f"API Key (first few chars): {api_key[:5]}...") # Print a parti

3. Reading froma .env file (if you've uploaded one):

If you've uploaded a .env file to your Colab environment, you can use the python-
dotenv library to load it:

Python]
!pip install python-dotenv

import dotenv
dotenv. load_dotenv('./.env"')

import os
value = os.environ.get('YOUR_VARIABLE_NAME_IN_DOTENV')
print(f"The value from .env is: {value}")

(

& ExamplesGeminiipynb % &

File Edit View Insert Runtime Tools Help
Q Commands + Code + Text > Runall ~
i= Secrets 0O X

<>

O

Configure your code by storing environment variables, file paths, or
keys. Values stored here are private, visible only to you and the
notebooks that you select.

Secret name cannot contain spaces.

Notebook
access

Name Value Actions

‘ OPENAI_A H ’ © 0 m
‘ GEMINI_AI H ’ © 0 W

+ Add new secret

Gemini APl keys ~

Access your secret keys in Python via:
0

from google.colab import userdata
userdata.get('secretName"')

2

Gemini Client Setup and Query

 Create the Client object:

import os
from google import genai
from dotenv import load_dotenv, find_dotenv

Read the local .env file, containing the Gemini secret API key.
_ = load_dotenv(find_dotenv())

client = genai.Client(api_key = os.environ["GEMINI_API_KEY"])

* Send a query, using default parameters:

query = "Justin sits next to Razvan. One of them is happy and one of them is grumpy. " \
"The person sitting next to Justin is grumpy. Who is happy?"

response = client.models.generate_content(
model = "gemini-2.5-flash",
contents = query
)
print(response.text) -

Gemini: Multiple Turn Conversations

» Use the google.genai.chats.Chat class to manage turns in the conversation:

chat = client.chats.create(model = "gemini-2.5-flash")

response = chat.send_message("Who received the Nobel prize in medicine for cancer immunotherapy?")
print(response.text)

response = chat.send_message("Where did they do their research?")
print(response.text)

for message in chat.get_history():
print(f'role - {message.role}', end = ": ")
print(message.parts[0].text)

Y Note: Chat functionality is only implemented as part of the SDKs. Behind the scenes, it

still uses the generateContent API. For multi-turn conversations, the full conversation

history is sent to the model with each follow-up turn.

Hard to find API documentation on how to engage in multi-
turn multimodal conversations ...

23]
T

When API Documentation Fails,
Turn to Google’s Al Overview

gemini api generate_content with multiple content fields

AlMode All Videos Images Shortvideos Forums Shopping More ~ Tools

4 AlOverview

The Gemini API's generateContent method allows for the inclusion of multiple
content fields within a single request, particularly when dealing with multimodal inputs
or multi-turn conversations.

Multimodal Inputs:

Gemini models are designed to handle various modalities like text, images, and audio.
To include multiple content types in a single generateContent call, you structure
the contents field of your request to contain a list of Part objects, each
representing a different modality.

For example, to send both text and an image:

Code D
{
"contents": [
{
"role": "user",
"parts": [
{
"text": "Describe this image:"
Y,
{
"inlineData": {
"mimeType": "image/jpeg",
'"data": '"base64_encoded_image_data"
}
}
]
}

Multi-Turn Conversations (Chat):

When working with chat-like interactions, you can provide the conversation history by
including multiple Content objects within the contents list. Each Content object
represents a turn in the conversation, specifying the role (e.g., "user" or "model")
and the parts of that turn.

Code (]
{
"contents": [
{
"role": "user",
"parts": [
{
"text": "What is the capital of France?"
}
I
}I
{
"role": "model",
"parts": [
{
"text": "The capital of France is Paris."
}
|
1
{
"role": "user",
"parts": [
{
"text": "Tell me more about its history."
}
1
}

Turn to AI Mode

GO gle google gemini api how to set the content parts in Python X b @ Q

AlMode |JAIl Videos Shortvideos Images Forums Shopping More ~ Tools ~

gOOgle gemini apl hOWTO set Example: Multimodal chat conversation
the content parts in Python For multi-turn chats, the contents list contains a series of Content objects, with

alternating roles for "user" and "model". @

To set content parts for a multimodal prompt with the Google Gemini API in Python,
create a list of items. Pass this list to the contents parameter of the
generate_content method. This list can contain text strings, uploaded file objects, or import google.generativeai as genai
inline data objects. @

python

model = genai.GenerativeModel('"gemini-2.5-flash")

Supported content types # Create a chat session with initial history
chat_session = model.start_chat(history=[

The parts in the contents list can include various data types for different modalities: @ {

"role": "user",
o Text: Simple Python strings. "parts": ["What are the ingredients in this image?"]
« Inline data: Base64-encoded bytes with a MIME type. This is suitable for smaller files i'

(less than 20MB). "role": "model",

"parts": ["There is flour, eggs, and chocolate chips."]

* File data: Use the client.files.upload() method to upload files and then reference 3,

the returned file object in your prompt. This is recommended for larger files. 1)

* YouTube URLs: For video understanding, you can pass YouTube URLs directly. ¢ # Send a new message that includes a file

First, upload the image file

Al responses may include mistakes. Learn more A I'I'I) op myfile = genai.Client().files.upload(path="path/to/new_image.jpg")

Then, send a new message with multiple content parts
response = chat_session.send_message(
contents=[
myfile,
"Is there a different kind of flour in this picture?"

- Show me how to send inline data with a MIME type
% What are the MIME types Gemini APl supports?]

% Tell me more about the File API

print(response.text)

Examples with Google Gemini

Shown 1n the Jupyter notebook.

e More examples in the Gemini Developer API documentation:

» Text generation examples.

« Image generation examples.

e Image understanding example.

Parameters such as temperature, max output tokens, ... can be set using |
google.genai.types.GenerateContentConfig(). |
|
|
\

More documentation available at:
— Google Gen Al SDK.
— gV eTtex vl |

https://ai.google.dev/gemini-api/docs
https://ai.google.dev/gemini-api/docs/text-generation
https://ai.google.dev/gemini-api/docs/text-generation
https://ai.google.dev/gemini-api/docs/image-generation
https://ai.google.dev/gemini-api/docs/image-generation
https://ai.google.dev/gemini-api/docs/image-understanding
https://ai.google.dev/gemini-api/docs/image-understanding
https://googleapis.github.io/python-genai/
https://googleapis.github.io/python-genai/
https://googleapis.github.io/python-genai/
https://cloud.google.com/vertex-ai/generative-ai/docs/
https://cloud.google.com/vertex-ai/generative-ai/docs/

Meta Llama

Using Llama 3.3-70B Quantized

 OpenAl.base url:
— An attribute of the OpenAl class.

 Model name:
— Specifies which version of Llama 3 is being utilized.

— You must be on eduroam to access the model directly. Off campus, you need connect
through the educational cluster using VPN.

import httpx
from openai import OpenAIl

Set the Llama API base URL.
BASE_URL = "https://cci-1lm.charlotte.edu/api/v1"

Initialize client with SSL verification disabled

client = OpenAI(base_url = BASE_URL,
http_client = httpx.Client(verify = False),
api_key = '3jdhdidxkf-45")

model_name = "Llama-3.3-70B-Instruct"

— Send messages using the original chat completion API from OpenAl.
28

T

Chat Completion API:

openai.chat.completions.create()
%1

 Initial API from OpenAl, still has backward support for it.

from openai import OpenAl

\

|
client = OpenAI(api_key = os.environ['OPENAI_API_KEY'])

|

!

https://platform.openai.com/docs/api-reference/chat

e Most LLMs support it, including Llama and Geminu.

— Take a list of messages as input and return a model-generated message as output.

— Designed to make multi-turn conversations easy, it’s just as useful for single-turn tasks
without any conversation.

model name |

response = client.ch etions.create(
model = ’
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Who composed The Four Seasons?"},
{"role": "assistant", "content": "Antonio Vivaldi composed The Four Seasons."},
{"role": "user", "content": "For whom were most of his compositions written?"}
] |
) |
print(response.choices[0].message.content) 29

https://platform.openai.com/docs/api-reference/chat
https://platform.openai.com/docs/api-reference/chat
https://platform.openai.com/docs/api-reference/chat

Chat Completion API:
openai.chat.completions.create()

* 3 major roles in the messages parameter:

— System: Optional first message, that indicates the LM persona.
» Also called a steering promp, sets up the system behavior.
 Default is “You are a helpful assistant”.
— User: Provides questions, requests, or comments to the assistant.

— Assistant: Previous responses from the LM assistant, or example of
desired LM response.

* Need to provide the conversation so far every time we want to continue
with a new user questions.

« Typical input (RE) is system? user (assistant user)*

30 |

Chat Completion API:
openai.chat.completions.create()

 Other useful parameters:
— model: gpt-5 or gpt-5-min or gpt-5-nano or ...
— temperature: defaults to 1, but set it to 0 for greedy decoding.
« We’ll see how it is implemented when covering Logistic Regression.

— top_p: defaults to 1, use 0.1 if you want the LM to sample tokens only
from the top 10% of probability mass, 1.e. nucleus sampling.

— n : defaults to 1, indicates # completions (alternatives) to generate.
— max_tokens: defaults to co, maximum # of tokens to generate.

— presence penalty, frequence penalty, logit bias: penalize or favor
repetitions, or certain tokens (later in this course).

il

Using Llama through the ccAPI

Define the conversation
query = "Justin sits next to Razvan. One of them is happy and one of them is grumpy. " \
"The person sitting next to Justin is grumpy. Who is happy?"
conversation = |
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": query}

Send a chat completion request
response = client.chat.completions.create(
model = model_name,
messages = conversation,
max_tokens = 300,
temperature = 0

)

reply = response.choices[0].message.content
print(f"Text response: {reply}")

Using Llama through the ccAPI

Python & JSON Comprehension

question = 'Consider the following monologue from the movie Stalker by Andrei Tarkovsky: ' \
'"Let them be helpless like children, because weakness is a great thing, and strength is nothing. ' \
'When a man is just born, he is weak and flexible. When he dies, he is hard and insensitive. ' \
'When a tree is growing, it\'s tender and pliant. But when it\'s dry and hard, it dies. ' \
'Hardness and strength are death\'s companions. Pliancy and weakness are expressions of the ' \
'freshness of being. Because what has hardened will never win." ' \

'Where else was a similar idea expressed? Provide quotes. Format your answer as a Python dictionary '
'mapping the author or source name to the actual passage expressing a similar idea.'

conversation = [{"role": "system", "content": "You are a helpful librarian."},
{"role": "user",
"content": question}]

response = client.chat.completions.create(
model = model_name,
messages = conversation,
max_tokens = 700,
temperature = 0

)

print(response.choices[@].message.content)

Examples with Llama3

* Shown in the Jupyter notebook.

Supplemental Material

 Deepl.earning.Al short course on Building with [Llama 4.

https://www.deeplearning.ai/
https://www.deeplearning.ai/
https://learn.deeplearning.ai/courses/building-with-llama-4

