
ITCS 4101: Introduction to NLP

Model Context Protocol (MCP)

Razvan C. Bunescu

Department of Computer Science @ CCI

rbunescu@charlotte.edu

mailto:rbunescu@charlotte.edu


2

What does MCP solve?



3

What does MCP solve?



4

What does MCP solve?



5

What does MCP solve?

w/o MCP

w/ MCP



6

What does MCP solve?

https://google.github.io/adk-docs/mcp

https://google.github.io/adk-docs/mcp
https://google.github.io/adk-docs/mcp
https://google.github.io/adk-docs/mcp


Model Context Protocol (MCP) is an open-source 
standard for connecting AI applications to:
• Tools: Executable functions that AI 

applications can invoke to perform actions:
– File operations, API calls, database queries, …

• Resources: Data sources that provide 
contextual information to AI applications:
– File contents, database records, …

• Prompts: Reusable templates that help 
structure interactions with language models:

– System prompts, few-shot examples, …

7

What is MCP?
https://modelcontextprotocol.io

The MCP creates a standardized, two-way connection for AI applications, allowing LLMs to easily connect with various data 
sources and tools. MCP builds on existing concepts like tool use and function calling but standardizes them. This reduces the need 
for custom connections for each new AI model and external system. It enables LLMs to use current, real-world data, perform 
actions, and access specialized features not included in their original training.
https://cloud.google.com/discover/what-is-model-context-protocol

https://modelcontextprotocol.io/
https://cloud.google.com/discover/what-is-model-context-protocol
https://cloud.google.com/discover/what-is-model-context-protocol
https://cloud.google.com/discover/what-is-model-context-protocol
https://cloud.google.com/discover/what-is-model-context-protocol
https://cloud.google.com/discover/what-is-model-context-protocol
https://cloud.google.com/discover/what-is-model-context-protocol
https://cloud.google.com/discover/what-is-model-context-protocol
https://cloud.google.com/discover/what-is-model-context-protocol
https://cloud.google.com/discover/what-is-model-context-protocol


• Model Context Protocol (MCP):
– An open, JSON-RPC based protocol that allows large language models (LLMs) to connect to 

external tools and data sources, such as APIs and databases.

• Language Server Protocol (LSP):
– An open, JSON-RPC based protocol for use between source-code editors or integrated 

development environments (IDEs) and servers that provide "language intelligence tools": 
programming language-specific features like code completion, syntax highlighting and marking of 
warnings and errors, as well as refactoring routines.

• Hypertext Transfer Protocol (HTTP):
– An application-layer protocol that operates on a client-server model, allowing web browsers and 

other clients to request and receive resources from web servers.
• Open Authorization (OAuth):

– Open standard protocol for authorization. It allows a third-party application to access a user's data 
on another service without sharing the user's password.

8

Some Standard Protocols



• Model Context Protocol layers:
– Data layer implements a JSON-RPC 2.0 based exchange protocol that defines the message 

structure and semantics.
• Lifecycle management: connection initialization / termination, capability negotiation.
• Server features: Enables providing core functionality: tools, resources, and prompts.
• Client features: Enables servers to ask the client to sample from the host LLM, elicit input from the user, 

and log messages to the client.
• Utility features: Notifications for real-time updates and progress tracking for long-running operations

– Transport layer manages communication channels and authentication between clients and servers:
• Stdio: Uses standard input/output streams for direct process communication between local processes on 

the same machine, providing optimal performance with no network overhead.
• Streamable HTTP: Uses HTTP POST for client-to-server messages with optional Server-Sent Events for 

streaming capabilities. This transport enables remote server communication and supports standard HTTP 
authentication methods including bearer tokens, API keys, and custom headers.

– MCP recommends using OAuth to obtain authentication tokens.

9

MCP Data and Transport Layers

https://modelcontextprotocol.io/docs/learn/architecture

https://en.wikipedia.org/wiki/JSON-RPC
https://en.wikipedia.org/wiki/JSON-RPC
https://en.wikipedia.org/wiki/JSON-RPC
https://modelcontextprotocol.io/docs/learn/architecture


• MCP Host: The LLM is contained within the MCP host, such as an AI-powered IDE or conversational AI:
– This is typically the user's interaction point, where the MCP host uses the LLM to process requests that may require 

external data or tools.
• MCP Client: Located within the MCP host, it helps the LLM and MCP server communicate with each other.

– It translates the LLM's requests for the MCP and converts the MCP's replies for the LLM; also finds and uses MCP servers.
• MCP Server: The external service that provides context, data, or capabilities to the LLM:

– It helps LLMs by connecting to external systems like databases and web services, translating their responses into a format 
the LLM can understand which helps developers provide diverse functionalities.

10

MCP Architecture and Key Components

MCP Architecture: hosts, clients, servers Example MCP compliant client-server communication



• FastMCP is a Python framework for building MCP client-server applications.
1. Example from Anthropic:

• Build an MCP weather server that uses data from the National Weather Service API and 
exposes two tools: get_alerts() and get_forecast(). 

– Then connect the server to an MCP host, e.g., Claude for Desktop.
– https://modelcontextprotocol.io/docs/develop/build-server

• Build an MCP client that connect to the MCP weather server and lists available tools, starts an 
interactive chat session: Enter queries, See tool executions, Get responses from Claude LLM.

– https://modelcontextprotocol.io/docs/develop/build-client
2. Example from FastMCP:

• Build a simple MCP server that exposes toy tools, such as multiply() and greet().
– Running the server, specifying the protocol, authentication with OAuth.

• Build simple MCP clients that connect to one or multiple servers.
– Configuration, list tools, authentication with OAuth.

11

Python MCP Development with FastMCP

https://gofastmcp.com/getting-started/welcome
https://gofastmcp.com/getting-started/welcome
https://www.weather.gov/documentation/services-web-api
https://modelcontextprotocol.io/docs/develop/build-server
https://modelcontextprotocol.io/docs/develop/build-server
https://modelcontextprotocol.io/docs/develop/build-server
https://modelcontextprotocol.io/docs/develop/build-server
https://modelcontextprotocol.io/docs/develop/build-client
https://modelcontextprotocol.io/docs/develop/build-client
https://modelcontextprotocol.io/docs/develop/build-client
https://modelcontextprotocol.io/docs/develop/build-client
https://gofastmcp.com/servers/server
https://gofastmcp.com/clients/client


1. Python MCP server uses the Yelp business.json database:
– It will expose two tools:

2. Python MCP host defines an MCP client that tests the tools:
– A second client connect to a remote server.

3. Notebook MCP host create a Gemini client and defines an MCP client that acts as a bridge between 
Gemini and the MCP server.

12

My MCP Client Server Examples



• The llm-mcp/fast-mcp/ folder contains:
– My MCP server implementation in yelp_server.py
– The MCP host with two clients in yelp_host.py
– A weather server based on the NWS API in weather_server.py
– A notebook that uses an LLM + MCP client for the local server, in MCPClientLLM.ipyng

1. Install the fastmcp module:
 pip install fastmcp

2. Start the server in a terminal window:
 fastmcp run yelp_server.py:mcp --transport http --port 8000

3. Run the MCP host in another terminal window:
 python yelp_client.py

13

My MCP Client Server Examples



• More FastMCP examples.

• A collection of reference and third party MCP servers.
– Everything - Reference / test server with prompts, resources, and tools.
– Fetch - Web content fetching and conversion for efficient LLM usage.
– Filesystem - Secure file operations with configurable access controls.
– Git - Tools to read, search, and manipulate Git repositories.
– Memory - Knowledge graph-based persistent memory system.
– Sequential Thinking - Dynamic and reflective problem-solving through thought sequences.
– Time - Time and timezone conversion capabilities.
– and many more …

14

MCP Examples

https://github.com/modelcontextprotocol/python-sdk/tree/main/examples/fastmcp
https://github.com/modelcontextprotocol/servers
https://github.com/modelcontextprotocol/servers/blob/main/src/everything
https://github.com/modelcontextprotocol/servers/blob/main/src/everything
https://github.com/modelcontextprotocol/servers/blob/main/src/fetch
https://github.com/modelcontextprotocol/servers/blob/main/src/fetch
https://github.com/modelcontextprotocol/servers/blob/main/src/filesystem
https://github.com/modelcontextprotocol/servers/blob/main/src/filesystem
https://github.com/modelcontextprotocol/servers/blob/main/src/git
https://github.com/modelcontextprotocol/servers/blob/main/src/git
https://github.com/modelcontextprotocol/servers/blob/main/src/memory
https://github.com/modelcontextprotocol/servers/blob/main/src/memory
https://github.com/modelcontextprotocol/servers/blob/main/src/sequentialthinking
https://github.com/modelcontextprotocol/servers/blob/main/src/sequentialthinking
https://github.com/modelcontextprotocol/servers/blob/main/src/time
https://github.com/modelcontextprotocol/servers/blob/main/src/time
https://github.com/modelcontextprotocol/servers


• MCP: Build Rich-Context AI Apps with Anthropic:

– Short course taught by Elie Schoppik from Anthropic, distributed by deeplearning.ai.

• Google’s MCP Toolbox For Databases.

• Asynchronous programming in Python with asyncio:

– asyncio tutorial from the BBC R&D Cloudfit team:

• part 1, part 2, part 3, part 4, part 5, …

– A Conceptual Overview of asyncio.

15

Supplemental Materials

This one!

https://learn.deeplearning.ai/courses/mcp-build-rich-context-ai-apps-with-anthropic/
https://learn.deeplearning.ai/courses/mcp-build-rich-context-ai-apps-with-anthropic/
https://learn.deeplearning.ai/courses/mcp-build-rich-context-ai-apps-with-anthropic/
https://learn.deeplearning.ai/courses/mcp-build-rich-context-ai-apps-with-anthropic/
https://learn.deeplearning.ai/
https://github.com/googleapis/genai-toolbox
https://docs.python.org/3/library/asyncio.html
https://bbc.github.io/cloudfit-public-docs/
https://bbc.github.io/cloudfit-public-docs/
https://bbc.github.io/cloudfit-public-docs/
https://www.bbc.co.uk/rd/projects/cloud-fit-production
https://bbc.github.io/cloudfit-public-docs/asyncio/asyncio-part-1.html
https://bbc.github.io/cloudfit-public-docs/asyncio/asyncio-part-1.html
https://bbc.github.io/cloudfit-public-docs/asyncio/asyncio-part-2.html
https://bbc.github.io/cloudfit-public-docs/asyncio/asyncio-part-3.html
https://bbc.github.io/cloudfit-public-docs/asyncio/asyncio-part-4.html
https://bbc.github.io/cloudfit-public-docs/asyncio/asyncio-part-5.html
https://docs.python.org/3/howto/a-conceptual-overview-of-asyncio.html
https://docs.python.org/3/howto/a-conceptual-overview-of-asyncio.html
https://docs.python.org/3/howto/a-conceptual-overview-of-asyncio.html

