ITCS 4101:; Introduction to NLP

Neuro-Symbolic Al: LLMs and Tool Use

Razvan C. Bunescu

Department of Computer Science (@ CCI

rbunescu@charlotte.edu

mailto:rbunescu@charlotte.edu

ML and Generalization

» Types of generalization performance:
— Within distribution (WiD) generalization:
 Training and test examples come from the same underlying distribution.
— QOut of distribution (OoD) generalization:
» Test examples come from a different distribution than training examples:

— Need to satisfy invariant features that hold across the domain. WiD example

 dlalle

OoD example

Training examples

ML and Generalization

» Types of generalization performance:
— Systematic Generalization:
« Human-like, higher-level generalization:
— Generalize to unseen input lengths or sizes.
» Multiply 10-digit numbers, even though trained on only <5-digit numbers.
— Generalize to unseen combinations of seen skills.

» Turn right then pick object, when trained to turn right then walk one step and move to
table then pick object.

 Strong version of systematic generalization:

— Want to generalize with 100% accuracy on examples from the target domain.
* Some illustrative studies:

— Neural Networks and the Chomsky Hierarchy, ICLR 2023.

— Limits of transformer language models on learning to compose algorithms, NeurIPS 2024.

— Autoformalization of Mathematics and Code Correctness: Experiments with Elementary Proofs,
MathNLP 2022. 3
R

https://openreview.net/forum?id=WbxHAzkeQcn
https://openreview.net/forum?id=WbxHAzkeQcn
https://openreview.net/forum?id=WbxHAzkeQcn
https://dl.acm.org/doi/10.5555/3737916.3738161
https://dl.acm.org/doi/10.5555/3737916.3738161
https://aclanthology.org/2022.mathnlp-1.4/
https://aclanthology.org/2022.mathnlp-1.4/

Neuro vs. Symbolic: Shortest Paths

Neur.al Turi?lg Machines, 2014. Dijkstra’s Shortest Path Algorithm,1956.
Differentiable Neural Computers, Nature 2016.
accuracy of 100% on SPs of all lengths.

1.e., LSTMs with external memory and read/write heads.
“gave an average accuracy of 55.3% " on 4-step SPs.

Dijkstra’s algorithm |

a Random graph b London Underground ¢ Family tree

DIJKSTRA (G(V,E),w, s) /* s is the source */
1 InitializeSingleSource(G, s);

Mary Becky

Tom Charlotte Alison

Mat Liam Nina Alice Bob

"N 5 ' 2 S =0 /* Make S empty */

3 Q:=1V,; /* put all vertices into
Simon Freya Maternal great uncle Natalie a Priority Queue */
Traversal Shortest-path . .

4 while Q is not empty
Underground input: Traversal question: Shortest-path question: Family tree input: Inference question: . . .
(OxfordCircus, TottenhamCtRd, Central) (Bondt, _, Central), (Moorgate, PiccadillyCircus,) (Charlotts, Alan, Father) (Freya, _, MaternalGreatUncle) 5 u = Extract-Min (Q) ; / * get the vertex which is
(TottenhamCtRd, OxfordCircus, Central) (_, _, Circle), (_, _, Circle), (Simon, Steve, Father)
(BakerSt, Marylebone, Circle) (, _, Circle), (_, _, Circle), (Steve , Simon, Son1)
(BakerSt, Marylebone, Bakerloo) (_, _, Jubilee), (_, _, Jubilee), (Nina, Alison, Mother) C I OseSt to the sou I’CQ S ' a n d
(BakerSt, OxfordCircus, Bakerloo) (Lindsey, Fergus, Son1) r em OV e it fr Om th e q u eu e % /
(LeicesterSq, Chari:ngCross, Northern) Answer: Answer: (Bob, Jane,: Mother) i . .
(T CtRd, Lei q) (Bondst, NottingHillGate, Central) (Moorgate, Bank, Northern) (Natalie, Alice, Mother) Answer: 6 S :=SU U, / * Add u to S * /
(OxfordGircus, PiccadillyGircus, Bakerloo) (NottingHillGate, GloucesterRd, Circle) (Bank, Holborn, Central) (Mary, lan, Father) (Freya, Fergus, MaternalGreatUncle))
(OxfordCircus, NottingHillGate, Central) : (Holborn, LeicesterSg, Piccadilly) (Jane, Alice, Daughtert) 7 for each v € Adj [u] / * y pdate the ds to s * /
(OxfordCircus, Euston, Victoria) (Westminster, GreenPark, Jubilee) (LeicesterSq, PiccadillyCircus, Piccadilly) (Mat, Charlotte, Mother)

(GreenPark, BondSt, Jubil .

84 edges in total Emss = EEs) 54 edges in total 8 Relax (u' V' W' Q)'

InitializeSingleSource(G,s) { Relax(u, v, w) {

Figure 2 | Graph tasks. a, An example of a randomly generated graph used blue (from Freya to Fergus, her maternal great uncle) were tested, giving .

for training. b, Zone 1 interchange stations of the London Underground an average accuracy of 81.8%. The symbol sequences processed by the for each vertex v € V' do if d[’U] > d[u] + w(u; 'U) then
map, used as a generalization test for the traversal and shortest-path tasks. network during the test examples are shown beneath the graphs. The d [v] = o0 d =d

Random seven-step traversals (an example of which is shown on the left) input is an unordered list of (‘from node;, ‘to node; ‘edge’) triple vectors [v] = nil [U] - [’Ll,] + w(u’ U)

were tested, yielding an average accuracy of 98.8%. Testing on all possible that describes the graph. For each task, the question is a sequence of Tl =m 7.[.[,0] = u

four-step shortest paths (example shown on the right) gave an average triples with missing elements (denoted °_’) and the answer is a sequence of d[s] =0

accuracy of 55.3%. ¢, The family tree that was used as a generalization completed triples. }

test for the inference task; four-step relations such as the one shown in }

4
e

http://arxiv.org/abs/1410.5401
https://www.nature.com/articles/nature20101
https://www.nature.com/articles/nature20101
https://webpages.charlotte.edu/rbunescu/courses/ou/cs4040/lecture14.pdf

Neuro-Symbolic Al

and explainable Al systems.

1. The Neural Component (The "Neuro")

» What it does: Excels at pattern recognition, perception, and learning from vast amounts
of unstructured data. @

How it works: Uses neural networks (like deep learning models) to process raw, "messy"
data such as images, text, and sensor readings. This component is excellent for tasks like

image classification, natural language processing, and making statistical predictions. @

Weaknesses alone: Often acts as a "black box" (difficult to explain its decisions), struggles
with logical reasoning, and is susceptible to "hallucinations" or errors when encountering
data outside its training distribution. @

2. The Symbolic Component (The “Symbolic*)
« What it does: Excels at logical reasoning, planning, and representing explicit

knowledge in a structured way. @

How it works: Uses knowledge-based systems (like rules, logic programming, or
knowledge graphs) to apply rules and constraints to symbols, which represent entities and
relationships. This component is excellent for tasks requiring clear, step-by-step logic,

verifiability, and adherence to known facts. ¢ @

Weaknesses alone: Can be rigid, struggles to learn from raw, unstructured data, and

requires human experts to pre-define all the knowledge and rules. @

+~oevier - Neuro-symbolic Al is a field of artificial intelligence that integrates neural networks (the
"neuro' part) with symbolic reasoning systems (the "symbolic" part).

— It is a hybrid approach designed to combine the strengths of both traditional Al paradigms to create more robust, versatile,

The Integration

Neuro-symbolic Al combines these two so that they complement each other: @

The neural network can handle the perceptual task of extracting concepts or symbols from
data (e.g., recognizing a "dog" and a "ball" in an image). @

The symbolic system can then apply logical reasoning to these concepts (e.g., inferring
that "if the dog is next to the ball, the dog might be playing”).

Key Benefits

Explainability/Transparency: By incorporating explicit logic, the system's decisions can be
tracked and explained, moving away from the "black box" problem. @

Robustness and Accuracy: Logical constraints can prevent neural networks from making
statistically plausible but logically impossible or incorrect decisions (e.g., a medical Al can't

prescribe an antibiotic for a viral infection if a symbolic rule forbids it).

. Generalization: It can learn and reason with fewer examples by leveraging structured

knowledge, making it less data-hungry than purely neural approaches. @

. Complex Reasoning: It bridges the gap between low-level data processing and high-level

abstract reasoning, leading to more human-like cognitive abilities. @

LLMs with Tools are Neuro-Symbolic

=

« Sometimes a language model 1s not the best for a task.

— Most state-of-the-art language models still struggle with:
* Recent knowledge, beyond training time cutoff.
 Arithmetic.

» Code execution.

 We want to allow LLM to interact with other agents or tools suited for the task:
— Calculators.
— Compilers/Interpreters.

— Retrieval systems (Vector stores, Graphs, ...).

* Provide the LLM with one or more tools, where each tool comes with 1ts own:
— Interface, 1.e., function name and parameters.

— Description, including a description of the problem it solves, its parameters and return values.

Tool Scenario: Augment Knowledge

« Use tools to bring in knowledge that was not available at training time.

— Web Search tool for accessing data about recent events.

Who is the current
president of France?”

LLM.1

v
s
4

“Emmanuel Macron is the
current president of France.”

{ Internet Search }

A 4

A

Search Result:

Emmanuel Jean-Michel Frédéric Macron[b] (born 21 December
1977) is a French politician who has served as President of
France and Co-Prince of Andorra since 2017. He served
as Minister of the Economy, Industry, and Digital Affairs under
President Francois Hollande from 2014 to 2016. He has been a
member of Renaissance since founding the party in 2016.

Before 2025: The ReAct Loop

ReAct prompting 1s an approach for enhancing the decision making of LLMs, for

example, choosing which tools to use for a given situation.

— ReAct: Synergizing Reasoning and Acting in Language Models, ICLR 2023

— ReAct instructs or fine-tunes LLMs to use a structured loop containing:
* Question: The input to the model.
* Thought: A place for the model to state intentions, which tends to increase performance.
« Action: The tool (if any) does the model wants to use.
— Action Input: The input to the tool.
e Observation: The output of the tool.
— The final answer is given in the format:
* Thought: “I believe I have the final answer.”

* Final Answer: The answer the model gives to the user.

https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629
https://research.google/blog/react-synergizing-reasoning-and-acting-in-language-models/
https://research.google/blog/react-synergizing-reasoning-and-acting-in-language-models/
https://research.google/blog/react-synergizing-reasoning-and-acting-in-language-models/

Before 2025: The ReAct Loop

* The structure of the ReAct Loop:

— <question> (<thought> <action> <observation>)* <thought> <answer>

Question: Who is the current president of France?

Thought: I should use a search engine to find relevant data.

Action: Open Google

Action Input: “Who is the current president of France?”

Observation: The current French president Emmanuel Macron.

Thought: I now know the final answer.

: Emmanuel Macron.

Option 1: You do not
have enough information
to answer the question.

—

Option 2: You have enough information
to answer the question.

Before 2025: The ReAct Loop

* The structure of the ReAct Loop:

— <question> (<thought> <action> <observation>)* <thought> <answer>

Question: What is 2 + 2?

Thought: I now know the final answer.

Option 2: You have enough information
to answer the question.

Final Answer: 4

Before 2025: The ReAct Loop

=

* Two ways to implement a ReAct behavior with LLMs:

— Instructions + In-Context Learning (ICL) examples showing ReACT trajectories created

manually for a few example queries.
* See notebook for HotPotQA: https://github.com/ysymyth/ReAct/blob/master/hotpotqga.ipynb

» Solve a question answering task with interleaving Thought, Action, Observation steps.
Thought can reason about the current situation, and Action can be three types:

— (1) Searchfentity], which searches the exact entity on Wikipedia and returns the first
paragraph if it exists. If not, it will return some similar entities to search.

— (2) Lookup[keyword], which returns the next sentence containing keyword in the current
passage.

— (3) Finish[answer], which returns the answer and finishes the task.

Here are some examples:
<examples> ...

— Fine-tuning on 3,000 example ReAct example trajectories created semi-automatically.

11
R

https://github.com/ysymyth/ReAct/blob/master/hotpotqa.ipynb
https://github.com/ysymyth/ReAct/blob/master/hotpotqa.ipynb

ReAct Trajectories

« Sample trajectories for the HotPotQA task, taken from https://arxiv.org/abs/2210.03629

Question
Thought 1
Action 1
Observation 1
Thought 2

Action 2
Observation 2

Musician and satirist Allie Goertz wrote a song about the "The Simpsons"
character Milhouse, who Matt Groening named after who?

The question simplifies to "The Simpsons" character Milhouse is named after
who. I only need to search Milhouse and find who it is named after.
Search[Milhouse]

Milhouse Mussolini Van Houten is a recurring character in the Fox animated
television series The Simpsons voiced by Pamela Hayden and created by Matt
Groening.

The paragraph does not tell who Milhouse is named after, maybe I can look up
"named after".

Lookup [named after]

(Result 1 / 1) Milhouse was named after U.S. president Richard Nixon, whose
middle name was Milhous.

Question
Thought 1

Action 1
Observation 1

Thought 2
Action 2
Observation 2

Which documentary is about Finnish rock groups, Adam Clayton Powell or The
Saimaa Gesture?

I need to search Adam Clayton Powell and The Saimaa Gesture, and find which
documentary is about Finnish rock groups.

Search[Adam Clayton Powell]

Could not find [Adam Clayton Powell]. Similar: ["Adam Clayton Powell
III’, ’Seventh Avenue (Manhattan)’, ’Adam Clayton Powell Jr. State Office
Building’, ’Isabel Washington Powell’, ’‘Adam Powell’, ’Adam Clayton Powell
(film)’, ’Giancarlo Esposito’].

To find the documentary, I can search Adam Clayton Powell (film).
Search[Adam Clayton Powell (film)]

Adam Clayton Powell is a 1989 American documentary film directed by

Richard Kilberg. The film is about the rise and fall of influential
African-American politician Adam Clayton Powell Jr.[3][4] It was later aired
as part of the PBS series The American Experience.

Observation 1

Thought 2

Action 2
Observation 2

Thought 3

Action 3

Thought 3 Milhouse was named after U.S. president Richard Nixon, so the answer is
Richard Nixon.

Action 3 Finish[Richard Nixon]

Question What profession does Nicholas Ray and Elia Kazan have in common?

Thought 1 I need to search Nicholas Ray and Elia Kazan, find their professions, then
find the profession they have in common.

Action 1 Search[Nicholas Ray]

Nicholas Ray (born Raymond Nicholas Kienzle Jr., August 7, 1911 - June 16,
1979) was an American film director, screenwriter, and actor best known for
the 1955 film Rebel Without a Cause.

Professions of Nicholas Ray are director, screenwriter, and actor.
to search Elia Kazan next and find his professions.

Search[Elia Kazan]

Elia Kazan was an American film and theatre director, producer, screenwriter
and actor.

Professions of Elia Kazan are director, producer, screenwriter, and actor.
So profession Nicholas Ray and Elia Kazan have in common is director,
screenwriter, and actor.

Finish[director, screenwriter, actor]

I need

Thought 3 Adam Clayton Powell (film) is a documentary about an African-American
politician, not Finnish rock groups. So the documentary about Finnish rock
groups must instead be The Saimaa Gesture.

Action 3 Finish[The Saimaa Gesture]

Question Which magazine was started first Arthur’s Magazine or First for Women?

Thought 1 I need to search Arthur’s Magazine and First for Women, and find which was
started first.

Action 1 Search[Arthur’s Magazine]

Observation 1
Thought 2

Action 2
Observation 2

Thought 3

Action 3

Arthur’s Magazine (1844-1846) was an American literary periodical published
in Philadelphia in the 19th century.
Arthur’s Magazine was started in 1844.
next.

Search[First for Women]

First for Women is a woman’s magazine published by Bauer Media Group in the
USA.[1] The magazine was started in 1989.

First for Women was started in 1989. 1844 (Arthur’s Magazine) < 1989 (First
for Women), so Arthur’s Magazine was started first.

Finish[Arthur’s Magazine]

I need to search First for Women

https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629

After 2025: Tool Use 1s Integrated in LLM APIs

* Provide the LLM with one or more tools, where each tool comes with 1ts own:
— Interface, 1.e., function name and parameters.

— Description, including a description of the problem it solves, its parameters and return values.

Application 1) <4 Gemini

The ReAct Loop > prompt

Function definition

Decide what
to respond

1. Given a prompt and tools, the LLM determines if:
(a) it should respond directly.

(b) 1t l’leedS tO use a tOOl. [Function name, argument =—————:
Parse response,
If (a), LLM generates and Returns the answers. execute function {
B Prompt
. b . esult of function ca
If (b), LLM provides which tool to call and its arguments. L Imre e : N
to respond
User code calls the tool. Completion ———— (8 Final answer ———¢

User code provides the tool output back to the LLM.

Use another function

S

Repeat from Step 1.

Tool Use Example: Get Stock Price
0 How many shares of General Motors
can | buy with $500?
Yo J oy —MMmm™——————————» Model
I'd like to call the get_stock_price tool 9
with argument of ‘General Motors’
stock market
e API request StOC k
ﬁ
stock market e M a rket
APl response
e Here is the tool result:
{"symbol”: “GM", “price”: 43.09}
—
It looks like with a current share price of $43.09, e
you can buy around 11 shares with your $500
—
Image credit to Ali Khaledi

Tool Use with the Gemini API: Function Calling

Function calling lets you connect models to external tools and APIs.

Instead of generating text responses, the model:
— Determines when to call specific functions;

— Provides the necessary parameters to execute real-world actions.

This allows the model to act as a bridge between natural language and real-world
actions and data. Function calling has 3 primary use cases:

— Augment Knowledge: Access information from external sources like databases, APIs, and
knowledge bases.

— Extend Capabilities: Use external tools to perform computations and extend the limitations of
the model, such as using a calculator or creating charts.

— Take Actions: Interact with external systems using APIs, such as scheduling appointments,
creating invoices, sending emails, or controlling smart home devices.

https://a1.google.dev/gemini-api/docs/function-calling

15)
T

https://ai.google.dev/gemini-api/docs/function-calling
https://ai.google.dev/gemini-api/docs/function-calling
https://ai.google.dev/gemini-api/docs/function-calling
https://ai.google.dev/gemini-api/docs/function-calling
https://ai.google.dev/gemini-api/docs/function-calling
https://ai.google.dev/gemini-api/docs/function-calling

Tool Use with the Gemini API: Function Calling

Define Function Declaration:
— The function's name, parameters, and purpose.
Call LLM with function declarations:
— Send user prompt along with the function declaration(s) to the model.
— It analyzes the request and determines if a function call would be helpful.

 If so, it responds with a structured JSON object.

Execute Function Code:
— It's your application's responsibility to process the response and check for Function Call:
 If Yes: Extract the name and args of the function and execute the function in your application.
e If No: The model has provided a direct text response to the prompt.
Create User friendly response:
— If a function was executed, user sends result back to the model in a subsequent turn of the conversation.

« LLM will use the result to generate a response that incorporates the information from the function call.

16
e

Tool Use with the Gemini API: Function Calling

* The tool use process can be repeated over multiple turns in a ReAct loop, allowing for

complex interactions and workflows: |
1. Call LLM with function declarations (tools).
2. Check LLM output, do one of the following:
a) Execute function code, or
b) Return answer.

3. If function executed at (a), take return value, add instructions, repeat from 1.

e The model also supports:

— Parallel function calling: Calling multiple functions in a single turn.

— Compositional function calling: Calling multiple functions in sequence.

https://ai.google.dev/gemini-api/docs/function-calling
https://ai.google.dev/gemini-api/docs/function-calling
https://ai.google.dev/gemini-api/docs/function-calling
https://ai.google.dev/gemini-api/docs/function-calling
https://ai.google.dev/gemini-api/docs/function-calling
https://ai.google.dev/gemini-api/docs/function-calling
https://ai.google.dev/gemini-api/docs/function-calling
https://ai.google.dev/gemini-api/docs/function-calling

Notebook with Tool Use Examples

s

4.

37

6.

Simple tool use.

Coding an explicit ReAct loop.

ReAct loop: one iteration:

Get stock price, compute number of shares

ReAct loop: two iterations:

Compare stock prices, compute number of shares

An implicit ReAct loop with Automatic Function Calling:

Compare stock prices, compute number of shares.

Native tools — web search:

One web search call to find stock price, then compute number of shares.

Multiple web search calls to find stock prices, then compute number of shares.

Notebook with Tool Use Examples

7. Native tools — web search and code generation and execution:
— Web search calls to find historical stock prices for two companies.
— Code generation to fit linear predictor on historical data.
— Code use to predict next stock value for the two companies.
— Identify company most likely to appreciate in stock.

8. Sequencing of function calls.
9. Tool use API 1s a leaky abstraction!

— Gemini 2.5 Flash is inconsistent in its behavior when tools are irrelevant to query
« It confuses its “persona”.
— I am sorry, but I cannot answer this question. My capabilities are limited to ... <tools>
— Or 1t gives the right response, depending on the sample.
— Gemini 2.5 Pro is much better:
e It seems to always be able to answer regular queries (when irrelevant tools are given).

19
e

Examples with Gemini

e Shown 1n the Jupyter notebook.

Supplemental Material: Gemini

Gemini API reference:
https://a1.google.dev/api

https://a1.eoogle.dev/gemini-api/docs

Function Calling reference:
https://ai.google.dev/gemini-api/docs/function-calling

Grounding with Google Search:
https://a1.eoogle.dev/gemini-api/docs/google-search

Code Execution:
https://ai.google.dev/gemini-api/docs/code-execution

URL context:
https://a1.google.dev/gemini-ap1/docs/url-context

https://ai.google.dev/api
https://ai.google.dev/api
https://ai.google.dev/gemini-api/docs
https://ai.google.dev/gemini-api/docs
https://ai.google.dev/gemini-api/docs
https://ai.google.dev/gemini-api/docs
https://ai.google.dev/gemini-api/docs/function-calling
https://ai.google.dev/gemini-api/docs/function-calling
https://ai.google.dev/gemini-api/docs/function-calling
https://ai.google.dev/gemini-api/docs/function-calling
https://ai.google.dev/gemini-api/docs/function-calling
https://ai.google.dev/gemini-api/docs/function-calling
https://ai.google.dev/gemini-api/docs/function-calling
https://ai.google.dev/gemini-api/docs/google-search
https://ai.google.dev/gemini-api/docs/google-search
https://ai.google.dev/gemini-api/docs/google-search
https://ai.google.dev/gemini-api/docs/google-search
https://ai.google.dev/gemini-api/docs/google-search
https://ai.google.dev/gemini-api/docs/google-search
https://ai.google.dev/gemini-api/docs/code-execution
https://ai.google.dev/gemini-api/docs/code-execution
https://ai.google.dev/gemini-api/docs/code-execution
https://ai.google.dev/gemini-api/docs/code-execution
https://ai.google.dev/gemini-api/docs/code-execution
https://ai.google.dev/gemini-api/docs/code-execution
https://ai.google.dev/gemini-api/docs/url-context
https://ai.google.dev/gemini-api/docs/url-context
https://ai.google.dev/gemini-api/docs/url-context
https://ai.google.dev/gemini-api/docs/url-context
https://ai.google.dev/gemini-api/docs/url-context
https://ai.google.dev/gemini-api/docs/url-context

Supplemental Material: GPT

OpenAl developer platform:
https://platform.openai.com/docs/overview

Function Calling with OpenAl GPT:
https://platform.openai.com/docs/guides/function-calling

Web Search:
https://platform.openai.com/docs/guides/tools-web-search?api-mode=responses

Code interpreter:
https://platform.openai.com/docs/guides/tools-code-interpreter

File search and retrieval:
https://platform.openai.com/docs/guides/tools-file-search
https://platform.openai.com/docs/guides/retrieval

Computer use:
https://platform.openai.com/docs/guides/tools-computer-use

22

https://platform.openai.com/docs/overview
https://platform.openai.com/docs/overview
https://platform.openai.com/docs/overview
https://platform.openai.com/docs/guides/function-calling
https://platform.openai.com/docs/guides/function-calling
https://platform.openai.com/docs/guides/function-calling
https://platform.openai.com/docs/guides/function-calling
https://platform.openai.com/docs/guides/function-calling
https://platform.openai.com/docs/guides/tools-web-search?api-mode=responses
https://platform.openai.com/docs/guides/tools-web-search?api-mode=responses
https://platform.openai.com/docs/guides/tools-web-search?api-mode=responses
https://platform.openai.com/docs/guides/tools-web-search?api-mode=responses
https://platform.openai.com/docs/guides/tools-web-search?api-mode=responses
https://platform.openai.com/docs/guides/tools-web-search?api-mode=responses
https://platform.openai.com/docs/guides/tools-web-search?api-mode=responses
https://platform.openai.com/docs/guides/tools-web-search?api-mode=responses
https://platform.openai.com/docs/guides/tools-web-search?api-mode=responses
https://platform.openai.com/docs/guides/tools-code-interpreter
https://platform.openai.com/docs/guides/tools-code-interpreter
https://platform.openai.com/docs/guides/tools-code-interpreter
https://platform.openai.com/docs/guides/tools-code-interpreter
https://platform.openai.com/docs/guides/tools-code-interpreter
https://platform.openai.com/docs/guides/tools-code-interpreter
https://platform.openai.com/docs/guides/tools-code-interpreter
https://platform.openai.com/docs/guides/tools-file-search
https://platform.openai.com/docs/guides/tools-file-search
https://platform.openai.com/docs/guides/tools-file-search
https://platform.openai.com/docs/guides/tools-file-search
https://platform.openai.com/docs/guides/tools-file-search
https://platform.openai.com/docs/guides/tools-file-search
https://platform.openai.com/docs/guides/tools-file-search
https://platform.openai.com/docs/guides/retrieval
https://platform.openai.com/docs/guides/retrieval
https://platform.openai.com/docs/guides/retrieval
https://platform.openai.com/docs/guides/tools-computer-use
https://platform.openai.com/docs/guides/tools-computer-use
https://platform.openai.com/docs/guides/tools-computer-use
https://platform.openai.com/docs/guides/tools-computer-use
https://platform.openai.com/docs/guides/tools-computer-use
https://platform.openai.com/docs/guides/tools-computer-use
https://platform.openai.com/docs/guides/tools-computer-use

