
ITCS 4101: Introduction to NLP

Neuro-Symbolic AI: LLMs and Tool Use

Razvan C. Bunescu

Department of Computer Science @ CCI

rbunescu@charlotte.edu

mailto:rbunescu@charlotte.edu


• Types of generalization performance:
– Within distribution (WiD) generalization:

• Training and test examples come from the same underlying distribution.
– Out of distribution (OoD) generalization:

• Test examples come from a different distribution than training examples:
– Need to satisfy invariant features that hold across the domain.

2

ML and Generalization

Training examples

WiD example

OoD example



• Types of generalization performance:
– Systematic Generalization:

• Human-like, higher-level generalization:
– Generalize to unseen input lengths or sizes.

» Multiply 10-digit numbers, even though trained on only <5-digit numbers.
– Generalize to unseen combinations of seen skills.

» Turn right then pick object, when trained to turn right then walk one step and move to 
table then pick object.

• Strong version of systematic generalization:
– Want to generalize with 100% accuracy on examples from the target domain.

• Some illustrative studies:
– Neural Networks and the Chomsky Hierarchy, ICLR 2023.
– Limits of transformer language models on learning to compose algorithms, NeurIPS 2024.
– Autoformalization of Mathematics and Code Correctness: Experiments with Elementary Proofs, 

MathNLP 2022. 3

ML and Generalization

https://openreview.net/forum?id=WbxHAzkeQcn
https://openreview.net/forum?id=WbxHAzkeQcn
https://openreview.net/forum?id=WbxHAzkeQcn
https://dl.acm.org/doi/10.5555/3737916.3738161
https://dl.acm.org/doi/10.5555/3737916.3738161
https://aclanthology.org/2022.mathnlp-1.4/
https://aclanthology.org/2022.mathnlp-1.4/


4

Neuro vs. Symbolic: Shortest Paths

Neural Turing Machines, 2014.
    Differentiable Neural Computers, Nature 2016.
         i.e., LSTMs with external memory and read/write heads.
 “gave an average accuracy of 55.3%” on 4-step SPs.

Dijkstra’s Shortest Path Algorithm,1956.
accuracy of 100% on SPs of all lengths.

http://arxiv.org/abs/1410.5401
https://www.nature.com/articles/nature20101
https://www.nature.com/articles/nature20101
https://webpages.charlotte.edu/rbunescu/courses/ou/cs4040/lecture14.pdf


•               Neuro-symbolic AI is a field of artificial intelligence that integrates neural networks (the 
"neuro" part) with symbolic reasoning systems (the "symbolic" part).

– It is a hybrid approach designed to combine the strengths of both traditional AI paradigms to create more robust, versatile, 
and explainable AI systems.

5

Neuro-Symbolic AI



• Sometimes a language model is not the best for a task.
– Most state-of-the-art language models still struggle with:

• Recent knowledge, beyond training time cutoff.
• Arithmetic.
• Code execution.

• We want to allow LLM to interact with other agents or tools suited for the task:
– Calculators.
– Compilers/Interpreters.
– Retrieval systems (Vector stores, Graphs, …).

• Provide the LLM with one or more tools, where each tool comes with its own:
– Interface, i.e., function name and parameters.
– Description, including a description of the problem it solves, its parameters and return values.

6

LLMs with Tools are Neuro-Symbolic



• Use tools to bring in knowledge that was not available at training time.
– Web Search tool for accessing data about recent events.

7

Tool Scenario: Augment Knowledge 

LLM.1 Internet Search

LLM.2“Emmanuel Macron is the 
current president of France.”

Search Result:
Emmanuel Jean-Michel Frédéric Macron[b] (born 21 December 
1977) is a French politician who has served as President of 
France and Co-Prince of Andorra since 2017. He served 
as Minister of the Economy, Industry, and Digital Affairs under 
President François Hollande from 2014 to 2016. He has been a 
member of Renaissance since founding the party in 2016.

Who is the current 
president of France?”



• ReAct prompting is an approach for enhancing the decision making of LLMs, for 
example, choosing which tools to use for a given situation.
– ReAct: Synergizing Reasoning and Acting in Language Models, ICLR 2023

– ReAct instructs or fine-tunes LLMs to use a structured loop containing:
• Question: The input to the model.

• Thought: A place for the model to state intentions, which tends to increase performance.

• Action: The tool (if any) does the model wants to use.
– Action Input: The input to the tool.

• Observation: The output of the tool.

– The final answer is given in the format:

• Thought: “I believe I have the final answer.”
• Final Answer: The answer the model gives to the user.

8

Before 2025: The ReAct Loop

https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629
https://research.google/blog/react-synergizing-reasoning-and-acting-in-language-models/
https://research.google/blog/react-synergizing-reasoning-and-acting-in-language-models/
https://research.google/blog/react-synergizing-reasoning-and-acting-in-language-models/


• The structure of the ReAct Loop:
– <question> (<thought> <action> <observation>)* <thought> <answer>

9

Before 2025: The ReAct Loop

Question: Who is the current president of France?

Thought: I should use a search engine to find relevant data.

Action: Open Google

 Action Input: “Who is the current president of France?”

Observation: The current French president Emmanuel Macron.

Thought: I now know the final answer.

Answer: Emmanuel Macron. 

Option 1: You do not 
have enough information 
to answer the question.

Option 2: You have enough information 
to answer the question.



• The structure of the ReAct Loop:
– <question> (<thought> <action> <observation>)* <thought> <answer>

10

Before 2025: The ReAct Loop

Question: What is 2 + 2?

Thought: I now know the final answer.

Final Answer: 4

Option 2: You have enough information 
to answer the question.



• Two ways to implement a ReAct behavior with LLMs:
– Instructions + In-Context Learning (ICL) examples showing ReACT trajectories created 

manually for a few example queries.
• See notebook for HotPotQA: https://github.com/ysymyth/ReAct/blob/master/hotpotqa.ipynb
• Solve a question answering task with interleaving Thought, Action, Observation steps. 

Thought can reason about the current situation, and Action can be three types: 
– (1) Search[entity], which searches the exact entity on Wikipedia and returns the first 

paragraph if it exists. If not, it will return some similar entities to search.
– (2) Lookup[keyword], which returns the next sentence containing keyword in the current 

passage.
– (3) Finish[answer], which returns the answer and finishes the task.
Here are some examples:
<examples> …

– Fine-tuning on 3,000 example ReAct example trajectories created semi-automatically.
11

Before 2025: The ReAct Loop

https://github.com/ysymyth/ReAct/blob/master/hotpotqa.ipynb
https://github.com/ysymyth/ReAct/blob/master/hotpotqa.ipynb


• Sample trajectories for the HotPotQA task, taken from https://arxiv.org/abs/2210.03629

12

ReAct Trajectories

https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629


• Provide the LLM with one or more tools, where each tool comes with its own:
– Interface, i.e., function name and parameters.
– Description, including a description of the problem it solves, its parameters and return values.

13

After 2025: Tool Use is Integrated in LLM APIs

1. Given a prompt and tools, the LLM determines if:

    (a) it should respond directly. 

    (b) it needs to use a tool.

2. If (a), LLM generates and Returns the answers.

3. If (b), LLM provides which tool to call and its arguments.

4. User code calls the tool.

5. User code provides the tool output back to the LLM.

6. Repeat from Step 1.

The ReAct Loop



14

Tool Use Example: Get Stock Price

Image credit to Ali Khaledi



• Function calling lets you connect models to external tools and APIs.
• Instead of generating text responses, the model:

– Determines when to call specific functions;
– Provides the necessary parameters to execute real-world actions.

• This allows the model to act as a bridge between natural language and real-world 
actions and data. Function calling has 3 primary use cases:
– Augment Knowledge: Access information from external sources like databases, APIs, and 

knowledge bases.
– Extend Capabilities: Use external tools to perform computations and extend the limitations of 

the model, such as using a calculator or creating charts.
– Take Actions: Interact with external systems using APIs, such as scheduling appointments, 

creating invoices, sending emails, or controlling smart home devices.

15

Tool Use with the Gemini API: Function Calling

https://ai.google.dev/gemini-api/docs/function-calling

https://ai.google.dev/gemini-api/docs/function-calling
https://ai.google.dev/gemini-api/docs/function-calling
https://ai.google.dev/gemini-api/docs/function-calling
https://ai.google.dev/gemini-api/docs/function-calling
https://ai.google.dev/gemini-api/docs/function-calling
https://ai.google.dev/gemini-api/docs/function-calling


• Define Function Declaration:
– The function's name, parameters, and purpose.

• Call LLM with function declarations:
– Send user prompt along with the function declaration(s) to the model.

– It analyzes the request and determines if a function call would be helpful.

• If so, it responds with a structured JSON object.

• Execute Function Code:
– It's your application's responsibility to process the response and check for Function Call:

• If Yes: Extract the name and args of the function and execute the function in your application.

• If No: The model has provided a direct text response to the prompt.

• Create User friendly response:
– If a function was executed, user sends result back to the model in a subsequent turn of the conversation.

• LLM will use the result to generate a response that incorporates the information from the function call.
16

Tool Use with the Gemini API: Function Calling



• The tool use process can be repeated over multiple turns in a ReAct loop, allowing for 
complex interactions and workflows:
1. Call LLM with function declarations (tools).
2. Check LLM output, do one of the following:

a) Execute function code, or
b) Return answer.

3. If function executed at (a), take return value, add instructions, repeat from 1. 

• The model also supports:
– Parallel function calling: Calling multiple functions in a single turn.
– Compositional function calling: Calling multiple functions in sequence.

17

Tool Use with the Gemini API: Function Calling

https://ai.google.dev/gemini-api/docs/function-calling
https://ai.google.dev/gemini-api/docs/function-calling
https://ai.google.dev/gemini-api/docs/function-calling
https://ai.google.dev/gemini-api/docs/function-calling
https://ai.google.dev/gemini-api/docs/function-calling
https://ai.google.dev/gemini-api/docs/function-calling
https://ai.google.dev/gemini-api/docs/function-calling
https://ai.google.dev/gemini-api/docs/function-calling


1. Simple tool use.
2. Coding an explicit ReAct loop.
3. ReAct loop: one iteration:

– Get stock price, compute number of shares

4. ReAct loop: two iterations:
– Compare stock prices, compute number of shares

5. An implicit ReAct loop with Automatic Function Calling:
– Compare stock prices, compute number of shares.

6. Native tools – web search:
– One web search call to find stock price, then compute number of shares.
– Multiple web search calls to find stock prices, then compute number of shares.

18

Notebook with Tool Use Examples



7. Native tools – web search and code generation and execution:
– Web search calls to find historical stock prices for two companies.
– Code generation to fit linear predictor on historical data.
– Code use to predict next stock value for the two companies.
– Identify company most likely to appreciate in stock.

8. Sequencing of function calls.
9. Tool use API is a leaky abstraction!

– Gemini 2.5 Flash is inconsistent in its behavior when tools are irrelevant to query
• It confuses its “persona”.

– I am sorry, but I cannot answer this question. My capabilities are limited to … <tools> 
– Or it gives the right response, depending on the sample.

– Gemini 2.5 Pro is much better:
• It seems to always be able to answer regular queries (when irrelevant tools are given).

19

Notebook with Tool Use Examples



• Shown in the Jupyter notebook.

20

Examples with Gemini



• Gemini API reference:
 https://ai.google.dev/api

https://ai.google.dev/gemini-api/docs
• Function Calling reference:

 https://ai.google.dev/gemini-api/docs/function-calling
• Grounding with Google Search:

https://ai.google.dev/gemini-api/docs/google-search
• Code Execution:

https://ai.google.dev/gemini-api/docs/code-execution
• URL context:

https://ai.google.dev/gemini-api/docs/url-context

21

Supplemental Material: Gemini

https://ai.google.dev/api
https://ai.google.dev/api
https://ai.google.dev/gemini-api/docs
https://ai.google.dev/gemini-api/docs
https://ai.google.dev/gemini-api/docs
https://ai.google.dev/gemini-api/docs
https://ai.google.dev/gemini-api/docs/function-calling
https://ai.google.dev/gemini-api/docs/function-calling
https://ai.google.dev/gemini-api/docs/function-calling
https://ai.google.dev/gemini-api/docs/function-calling
https://ai.google.dev/gemini-api/docs/function-calling
https://ai.google.dev/gemini-api/docs/function-calling
https://ai.google.dev/gemini-api/docs/function-calling
https://ai.google.dev/gemini-api/docs/google-search
https://ai.google.dev/gemini-api/docs/google-search
https://ai.google.dev/gemini-api/docs/google-search
https://ai.google.dev/gemini-api/docs/google-search
https://ai.google.dev/gemini-api/docs/google-search
https://ai.google.dev/gemini-api/docs/google-search
https://ai.google.dev/gemini-api/docs/code-execution
https://ai.google.dev/gemini-api/docs/code-execution
https://ai.google.dev/gemini-api/docs/code-execution
https://ai.google.dev/gemini-api/docs/code-execution
https://ai.google.dev/gemini-api/docs/code-execution
https://ai.google.dev/gemini-api/docs/code-execution
https://ai.google.dev/gemini-api/docs/url-context
https://ai.google.dev/gemini-api/docs/url-context
https://ai.google.dev/gemini-api/docs/url-context
https://ai.google.dev/gemini-api/docs/url-context
https://ai.google.dev/gemini-api/docs/url-context
https://ai.google.dev/gemini-api/docs/url-context


• OpenAI developer platform:
 https://platform.openai.com/docs/overview

• Function Calling with OpenAI GPT:
 https://platform.openai.com/docs/guides/function-calling

• Web Search:
 https://platform.openai.com/docs/guides/tools-web-search?api-mode=responses

• Code interpreter:
 https://platform.openai.com/docs/guides/tools-code-interpreter

• File search and retrieval:
 https://platform.openai.com/docs/guides/tools-file-search
 https://platform.openai.com/docs/guides/retrieval

• Computer use:
 https://platform.openai.com/docs/guides/tools-computer-use

22

Supplemental Material: GPT 

https://platform.openai.com/docs/overview
https://platform.openai.com/docs/overview
https://platform.openai.com/docs/overview
https://platform.openai.com/docs/guides/function-calling
https://platform.openai.com/docs/guides/function-calling
https://platform.openai.com/docs/guides/function-calling
https://platform.openai.com/docs/guides/function-calling
https://platform.openai.com/docs/guides/function-calling
https://platform.openai.com/docs/guides/tools-web-search?api-mode=responses
https://platform.openai.com/docs/guides/tools-web-search?api-mode=responses
https://platform.openai.com/docs/guides/tools-web-search?api-mode=responses
https://platform.openai.com/docs/guides/tools-web-search?api-mode=responses
https://platform.openai.com/docs/guides/tools-web-search?api-mode=responses
https://platform.openai.com/docs/guides/tools-web-search?api-mode=responses
https://platform.openai.com/docs/guides/tools-web-search?api-mode=responses
https://platform.openai.com/docs/guides/tools-web-search?api-mode=responses
https://platform.openai.com/docs/guides/tools-web-search?api-mode=responses
https://platform.openai.com/docs/guides/tools-code-interpreter
https://platform.openai.com/docs/guides/tools-code-interpreter
https://platform.openai.com/docs/guides/tools-code-interpreter
https://platform.openai.com/docs/guides/tools-code-interpreter
https://platform.openai.com/docs/guides/tools-code-interpreter
https://platform.openai.com/docs/guides/tools-code-interpreter
https://platform.openai.com/docs/guides/tools-code-interpreter
https://platform.openai.com/docs/guides/tools-file-search
https://platform.openai.com/docs/guides/tools-file-search
https://platform.openai.com/docs/guides/tools-file-search
https://platform.openai.com/docs/guides/tools-file-search
https://platform.openai.com/docs/guides/tools-file-search
https://platform.openai.com/docs/guides/tools-file-search
https://platform.openai.com/docs/guides/tools-file-search
https://platform.openai.com/docs/guides/retrieval
https://platform.openai.com/docs/guides/retrieval
https://platform.openai.com/docs/guides/retrieval
https://platform.openai.com/docs/guides/tools-computer-use
https://platform.openai.com/docs/guides/tools-computer-use
https://platform.openai.com/docs/guides/tools-computer-use
https://platform.openai.com/docs/guides/tools-computer-use
https://platform.openai.com/docs/guides/tools-computer-use
https://platform.openai.com/docs/guides/tools-computer-use
https://platform.openai.com/docs/guides/tools-computer-use

