
ITCS 4101: Introduction to NLP

LLMs: Use Scenarios, Strengths, and Weaknesses

Razvan C. Bunescu

Department of Computer Science @ CCI

rbunescu@charlotte.edu

mailto:rbunescu@charlotte.edu

2

Artificial Intelligence

Machine LearningNatural Language Processing

Large Language Models

Knowledge Representation
Reasoning

Planning

Search
Robotics

Claude Sonnet 4, Opus 4

Gemini 2.5 Flash, 2.5 Pro

GPT 3.5, 4, 4o, o1, o3, 5

Mixtral

Llama 4 Scout, Maverick

Grok 4, Grok 4 Heavy

• Large Language Models (LLM) basics:

– Autoregressive Generation and Training Scheme.

• The AI Inverse Problem:

– From predicting words to AI.

• What we talk about when we talk about AI?

– “AI” cannot count letters vs. “AI” gets gold at IMO.

• How to use AI effectively:

– In general, for coding, for learning.

• What is Intelligence?
3

Outline

4

Using LLMs: Autoregressive Generation

https://web.stanford.edu/~jurafsky/slp3/9.pdf

GPT

LLM one-token distribution computation LLM multi-token autoregressive generation

https://web.stanford.edu/~jurafsky/slp3/9.pdf

5

Training LLMs: Pretraining, Instruction tuning, Alignment

Self-Supervised
Pretraining

Instruction
Fine Tuning

Human Preference
Alignment

Pretrained
Model

Instruct
Model

Aligned
Model

once upon a time …

for j in range …

la puerta esta abierta …

LM objective:
next token prediction

LM objective:
next answer token prediction

Prompt: Explain the moon

 landing to a 6 year old.

Answer: Some people went … Explain the moon landing to a 6yr old.

Some people went … In 1969, Apollo 11 …

Preference optimization:
PPO, DPO, …

GPT

Gemini

Claude

Pretraining: Language Modeling (LM) Objective

• Causal Language Modeling:
– Predict the next word in a sequence:

• AI systems use machine _____
 eat?
 learning?
 frogs?
 …

• The LM estimates P(word | word-1, word-2, ...)
– we want P(learning | machine, use) >> P(about | machine, eat).

– Decoder neural architectures are widely used to train LMs:
• GPT, Gemini, Llama, Grok, Mixtral, Claude, …

6

Pretraining: Language Modeling (LM) Objective

• Masked Language Modeling:
– Predict the most likely word in a context:

• AI systems use machine _____ models for language understanding .
 eat?
 learning?
 frogs?
 …

• The LM estimates P(word | word-1, word-2, ...; word1, word2, ...)
– we want P(learning | machine, use; models, for) >> P(frogs | machine, use; models, for).

– Encoder neural architectures are used to train masked LMs.
• BERT, RoBERTa, DistilBERT, …

7

Pretraining of LLMs

• Training a neural network to predict a missing word given words in the context.
– This is a special type of reconstructing the input idea used in other modalities, such as computer

vision (see autoencoders).

• Causal LMs trained using the distributional hypothesis:
– Context: words so far.
– Missing word: next word.

• Masked LMs trained using the distributional hypothesis:
– Context: words to the left and to the right of the center word.
– Missing word: word in the center.

8

Neural Language Modeling: Decoders

9
students opened theirthe

Neural Network

books

Neural Language Modeling: Decoders

10
students opened theirthe

Neural Network

books and

while and

Neural Language Modeling: Decoders

11
students opened theirthe

Neural Network

books and

startedread

read

Neural Language Modeling: Encoders

12
students <mask> theirthe

Neural Network

books

packed opened

Neural Language Modeling: Encoders

13
students <mask> theirthe

Neural Network

books

packed opened

<mask>and through

skimmed read

What can be learned from predicting words?

Asheville is a city located in the state of _____

14

What can be learned from predicting words?

I took ___ dog out for a walk .

15

What can be learned from predicting words?

Upon exiting the restaurant, the man realized ___ left ___ phone at the table .

16

What can be learned from predicting words?

I stopped by the grocery store to buy bread, blueberry pie, milk, and ____ .

17

What can be learned from predicting words?

Overall , the value I got from the two hours watching it was the sum total of the popcorn

and the drink .

The movie was _____

18

How can we use a pretrained LM to do sentiment analysis?
• no instruction tuning, no preference alignment.

• using just the LM estimates P(word | word-1, word-2, ...)

What can be learned from predicting words?

Andrei was eating in the kitchen .

Roxby joined him for breakfast .

After a while , Andrei went to the living room to watch TV . Once she was done with

breakfast , Roxby left the _____

19

What can be learned from predicting words?

Dan and Tom go to a restaurant for dinner . Dan leaves his coat on the chair , then goes

to the bathroom . While Dan was gone , Tom hangs Dan ’s coat on the coat rack . When

Dan comes back , he thinks his coat is on the ___

20

What can be learned from predicting words?

I have been thinking of the sequence that goes 1, 2, 4, 7, 11, 16, 22, _____

21

What can be learned from predicting missing words?

Theorem: √2 is an irrational number .

Proof: _____

Theorem: √2 is an irrational number .

Proof: Suppose that √2 were a _____

Theorem: √2 is an irrational number .

Proof: Suppose that √2 were a rational number , so by definition √2 = a _____

22

• Given a set of observations, estimate the causal factors that produced them.
– Given observations or effects, infer causes.

• Estimate the density of the Earth from measurements of its gravity field.
• Estimate sources of brain activity from magnetoencephalography (MEG) measurements.

23

Inverse Problems

MEG measurements Brain activity sources

Inverse problem

• Given a set of observations, estimate the causal factors that produced them.
– Given observations or effects, infer causes.

• Estimate an intelligent model from observations of its behavior.

24

Learning AI from Text is an Inverse Problem

Text + code + papers + … Human Level Intelligence

Inverse problem

https://bernardmarr.com/what-is-an-artificial-neural-networkshttps://commons.wikimedia.org/wiki/Main_Page

• Inverse problem are hard:
– Ill-posed, i.e., multiple solutions (causes) that can lead to the same observations (effects).

• In AI, an infinite number of neural networks can explain the same data.
– Neural networks are non-identifiable.
– AI models may achieve intelligence in a different way than humans:

» Documented non-human behavior.
» Documented human-like behavior:

» Edge detection in first layer of visual cortex.
» Neuronal activity patterns for navigation.

• Use strong regularization to prevent instability and overfitting.
• Use domain constraints, e.g., Physics Informed NNs.

– May require very large sample complexity.
• Scaling laws indicate we do not have sufficient text to take LLMs to next level.

25

Learning AI from Text is an Inverse Problem

https://www.nature.com/articles/d41586-018-05133-w
https://www.nature.com/articles/d41586-018-05133-w

26

What do people mean when they say “AI”?

27

What do people mean when they say “AI”?

Question examples from Vincent Conitzer @ CMU

Google’s AI Overview, late 2025
Google Gemini 2.5 Flash, late 2025

28

What do people mean when they say “AI”?

Question examples from Vincent Conitzer @ CMU

Google’s AI Overview, late 2025
Google Gemini 2.5 Flash, late 2025

29

What do people mean when they say “AI”?
ChatGPT, late 2024 ChatGPT, late 2025

30

What do people mean when they say “AI”?

• There are many technologies that are called “AI”.

• What one “AI” can do well, another “AI” can fail:
– Bulls: AI won gold at the International Mathematical Olympiad!

• It was actually an Advanced version of Gemini with Deep Think.
– Bears: AI cannot even count the number of b’s in “blueberry”.

• It was actually the initial release of GPT5.
– It can do it well if it is asked to write the code for it.

• Recommendations:
– Specify which “AI” you are referring to:

• ChatGPT is still ambiguous, as it can use one of many GPT models:
– Free version starts with GPT-5, after hitting limit it switches to GPT-5mini, then …

– Specify what prompt, temperature, reasoning level, …
31

What do people mean when they say “AI”?

https://deepmind.google/discover/blog/advanced-version-of-gemini-with-deep-think-officially-achieves-gold-medal-standard-at-the-international-mathematical-olympiad/
https://openai.com/index/introducing-gpt-5/

• Which “AI”?

• What is the Prompt?
– The instructions.
– Any In-Context Learning (ICL) examples?
– Any Tools?

• What is the Temperature or Reasoning Level?
– How many samples?

• What else have you tried?
– AI models can do much better at tasks that can be solved algorithmically if they are asked to write

the code for solving that task, instead of generating the output directly.
32

“AI” Cannot Do Task “X”

1. Generate the syntactic parse tree for the sentence "The NLP class is offered every Tuesday and
Thursday at 1pm.", using the Penn Treebank phrase types. Show an image of the parse tree.

33

Case Study: Visualize a Syntactic Parse Tree (1)

https://webpages.charlotte.edu/rbunescu/courses/itcs4101/examples/GeminiPro2.5_Syntactic_Parsing.pdf

Gemini 2.5 Pro

https://webpages.charlotte.edu/rbunescu/courses/itcs4101/examples/GeminiPro2.5_Syntactic_Parsing.pdf

2. Can you write Python code that uses Matplotlib to draw the parse tree?

34

Case Study: Visualize a Syntactic Parse Tree (2)

Gemini 2.5 Pro

https://webpages.charlotte.edu/rbunescu/courses/itcs4101/examples/pro_syntactic_tree.py

https://webpages.charlotte.edu/rbunescu/courses/itcs4101/examples/pro_syntactic_tree.py

• What AI can do, what it can’t, and how to tell the difference.
– by Arvind Narayanan and Sayash Kapoor, September 2025

• What AI can do,
 what it can’t do today but will likely do tomorrow,
 what it won’t do tomorrow but will likely do in 10 years,
 and what it will never do.

35

What “AI” can do

https://www.amazon.com/Snake-Oil-Artificial-Intelligence-Difference/dp/069124913X
https://www.amazon.com/Snake-Oil-Artificial-Intelligence-Difference/dp/069124913X

• Large Foundation Models (LFM) can generate code for solving problems described in natural language:
– MS Copilot, Claude Code, Gemini Code Assist, Windsurf, …

36

LFMs for Code Generation

• CS skills offer a significant advantage, whether using LFMs or not:
– Speed: much faster at using LFMs to generate correct and efficient solutions => much more productive.
– Specification: much more clear and complete problem descriptions.

• Can humans solve computational problems without learning to code?
– Yes, but can be inefficient and impractical for many problems.
– Currently LFMs offer only a leaky abstraction for programming, as LFMs do not always produce the correct

solution code given a correct problem specification => user needs to tinker with their input, repeatedly.

“People who understand the language of software through their knowledge of coding can tell an
LLM or an AI-enabled IDE what they want much more precisely and get much better results.”

The Batch, Issue 292, Andrew Ng, March 12, 2025

https://en.wikipedia.org/wiki/Leaky_abstraction
https://www.deeplearning.ai/the-batch/issue-292/

37

LFMs for Code Generation: Ideal Scenario

Problem 1 specification in NL:
Write code that reads an input text file line by line, where each line starts with the name of a category, followed
by a colon, followed by one or more instances from that category. For example, one line can be "Fruits: apple
pear strawberry". The code should create a dictionary where each category is mapped to a list of all the
instances for that category.

Windsurf produces working code from first try, no manual intervention ✅

Large Foundation Model
Problem

Specification Solution
program

OpenAI Reaches Agreement to Buy Windsurf for $3 Billion (Bloomberg News, May 5)

https://www.bloomberg.com/news/articles/2025-05-06/openai-reaches-agreement-to-buy-startup-windsurf-for-3-billion
https://www.bloomberg.com/news/articles/2025-05-06/openai-reaches-agreement-to-buy-startup-windsurf-for-3-billion
https://www.bloomberg.com/news/articles/2025-05-06/openai-reaches-agreement-to-buy-startup-windsurf-for-3-billion
https://www.bloomberg.com/news/articles/2025-05-06/openai-reaches-agreement-to-buy-startup-windsurf-for-3-billion

38

LFMs for Code Generation: Ideal Scenario

Large Foundation Model
Problem

Specification Solution
program

OpenAI Reaches Agreement to Buy Windsurf for $3 Billion (Bloomberg News, May 5)

Problem 2 specification in NL:
Generate a 2-dimensional array in NumPy, 4 by 4, that contains all integers between 1 and 16 such that, for any 3
consecutive numbers in any row and in any column, their sum is not divisible by 3.

Windsurf produces working code, but the code is very inefficient ❌
❏ Code samples random matrices, verifies input constraints, stops when found good matrix.
❏ When prompted to make it more efficient, it produces buggy code with runtime errors.

https://www.bloomberg.com/news/articles/2025-05-06/openai-reaches-agreement-to-buy-startup-windsurf-for-3-billion
https://www.bloomberg.com/news/articles/2025-05-06/openai-reaches-agreement-to-buy-startup-windsurf-for-3-billion
https://www.bloomberg.com/news/articles/2025-05-06/openai-reaches-agreement-to-buy-startup-windsurf-for-3-billion
https://www.bloomberg.com/news/articles/2025-05-06/openai-reaches-agreement-to-buy-startup-windsurf-for-3-billion

39

LFMs for Code Generation: Real Scenario

Large Foundation Model
Problem

Specification Solution
program

Verify

Good
solution?

Refine

no

yes

Done!

Specify Verify Refine (SVR) loop, employed by many users of AI:
Problem specification:
 “Make a 3D game where I can place buildings of various designs and then drive through the town I create”
SVR loop:

"The results was a sequence of back-and-forth discussions with the AI where I would tell it errors and it
would work to solve them”

40

LFMs for Code Generation: SVR Loop

Speaking things into existence, Mollick, March 11, 2025

Large Foundation Model
Problem

Specification Solution
program

Verify

Good
solution?

Refine

no

yes

Done!

https://www.oneusefulthing.org/p/speaking-things-into-existence

41

LFMs for Code Generation: Required Skills

Need skills for:
❏ Specification of problem.
❏ Verification of solution.

❏ Refinement of specification.

❏ provide Focus and Guidance

Specification, verification, and refinement skills:

❏ English: ability to formulate clear and complete description in NL.

❏ But often hard to achieve sufficient clarity in NL, can benefit from using more formal descriptions.

❏ Math and code are formal languages.

❏ CS knowledge: ability to evaluate correctness and efficiency.

❏ Domain knowledge: use domain specific terminology.

❏ important for judging correctness of solution.

42

LLMs for Trustworthy Software Engineering

Leveraging LLMs for Trustworthy Software Engineering: Insights and Challenges, Vieira, IEEE Computer, 2025.

https://ieeexplore.ieee.org/document/11052849

43

Case Study 1: Bubble Sort

1. Consider the Bubble Sort algorithm. Write code in Python, using modules such as Matplotlib, to
generate an animation showing how Bubble Sort works on the input array [25, 13, 11, 24, 12].

44

Initial Specification (1)

Of course. I can create a Python script to visualize the Bubble Sort
algorithm using Matplotlib. This script will generate an animation and
save it as a GIF file.

Here is the Python code that will create the animation for you.

Bubble Sort Animation Open

I've created the Python script to visualize the Bubble Sort algorithm.
To run it, you'll need to have matplotlib and pillow installed.

You can install them using pip: pip install matplotlib pillow

After running the script, it will generate a file named
bubble_sort.gif in the same directory, which will show the step-
by-step sorting process for the array [25, 13, 11, 24, 12]. Let
me know if you have any questions!

Gemini 2.5 Pro

https://webpages.charlotte.edu/rbunescu/courses/itcs4101/examples/bubble/bubble_sort1.py

https://webpages.charlotte.edu/rbunescu/courses/itcs4101/examples/bubble/bubble_sort1.py

2. Your code has a bug: the animation shows the array already sorted at each step. Can you fix it?

45

Use Domain Knowledge to Explain Error (2)

You've spotted a great catch! You are correct, the animation was
showing the final sorted array in every frame. This is a subtle issue
related to how Python handles lists. When the generator yielded the
array, it was yielding a reference to the same list object each time.

I've fixed this by having the generator yield a copy of the list at each
step. Here are the changes for bubble_sort_animation.py.

I've updated the bubble_sort_animation function to create and
yield a new copy of the list for each frame of the animation. This will
ensure that the visualization correctly shows the step-by-step
process of the sort. If you run the script now, the
bubble_sort.gif file should be generated correctly.

Gemini 2.5 Pro

https://webpages.charlotte.edu/rbunescu/courses/itcs4101/examples/bubble/bubble_sort2.py

https://webpages.charlotte.edu/rbunescu/courses/itcs4101/examples/bubble/conversation.pdf

https://webpages.charlotte.edu/rbunescu/courses/itcs4101/examples/bubble/bubble_sort2.py
https://webpages.charlotte.edu/rbunescu/courses/itcs4101/examples/bubble/conversation.pdf

46

Case study 2: Constraint Satisfaction

1. Write code in Python that generates a 2-dimensional array in NumPy, 4 by 4, that contains all integers between 1
and 16 such that, for any 3 consecutive numbers in any row and in any column, their sum is not divisible by 3.

47

Underspecified Requirements (1)

Gemini 2.5 Pro Gemini 2.5 Flash

https://webpages.charlotte.edu/rbunescu/courses/itcs4101/examples/Gemini2.5Pro_Modulo3_take_1.pdf

https://webpages.charlotte.edu/rbunescu/courses/itcs4101/examples/Gemini2.5Pro_Modulo3_take_1.pdf

2. What is the worst-case time complexity of this
solution?

48

Use Domain Knowledge for Focusing (2) and Refinement (3)

3. Can you develop a more efficient solution?

Gemini 2.5 Pro Gemini 2.5 Pro

49

Case study 3: Constraint Satisfaction

1. Write code in Python that ... The code should be as efficient as
possible, in particular more efficient than brute force search, and it
should have finite worst case time complexity.

50

Complete Specification (1)

Gemini 2.5 Pro

https://webpages.charlotte.edu/rbunescu/courses/itcs4101/examples/Gemini2.5Pro_Modulo3_take_2.pdf

https://webpages.charlotte.edu/rbunescu/courses/itcs4101/examples/Gemini2.5Pro_Modulo3_take_2.pdf

51

Case study 4: Sequence Completion

1. What are the next two numbers in the sequence 1 1 3 2 9 4 27 8 16 32 81 64 243 128?

52

Initial Solution (1)

Gemini 2.5 ProChatGPT with GPT-5Claude Sonnet 4

https://webpages.charlotte.edu/rbunescu/courses/itcs4101/examples/Gemini2.5Pro_Sequence_Prime.pdf

https://webpages.charlotte.edu/rbunescu/courses/itcs4101/examples/Gemini2.5Pro_Sequence_Prime.pdf

2. There is no mix-up in the middle of the sequence, all the numbers in the input sequence are correct.
Can you try again?

53

Correction (2)
G

em
in

i 2
.5

 P
ro

3. That is wrong. I will give you a hint: first, look at the positions of the elements that are powers of 3,
and then try to generalize. Can you try again?

54

Guidance (3)

G
em

in
i 2

.5
 P

ro

55

Why Sequence Completion?

 William of Occam (1288 – 1348)
• English Franciscan friar, theologian and philosopher.

“Entia non sunt multiplicanda praeter necessitatem”
– Entities must not be multiplied beyond necessity.

i.e. Do not make things needlessly complicated.
 i.e. Prefer the simplest hypothesis that fits the data.

56

Occam’s Razor

• ML problem: Find a model M
 that is simple + that fits the training data.

• Inductive hypothesis: Models that perform well on training examples are expected to
do well on test (unseen) examples.

• Occam’s Razor: Simpler models are expected to do better than complex models on
test examples (assuming similar training performance).

57

Occam’s Razor and Machine Learning

M̂ = argmin
M

 Complexity(M) + Error(M, Data)

• Occam’s Razor: Prefer the simplest hypothesis that fits the data.

• Kolmogorov Complexity = the length of the shortest program that generates the data.
– 1, 2, 4, 7, 11, 16, 22, 29, 37, 46, 56, …
– 1, 3, 6, 11, 18, 29, …
– 1, 2, 3, 5, 5, 8, 7, 11, 9, …

• Intelligence = the ability to apply Occam’s Razor.

58

From Occam’s Razor to Kolmogorov Complexity to Intelligence

• Marcus Hutter:
– “Universal Artificial Intelligence: Sequential Decisions Based on Algorithmic

Probability”
– Book, 2005.

• Shane Legg:
– “Machine Super Intelligence”
– PhD Thesis, 2008.

• http://www.vetta.org/documents/Machine_Super_Intelligence.pdf

• A definition of intelligence that can be applied to humans, animals, machine.

59

What is Intelligence? How to measure It?

• Standard psychometric tests implicitly test the ability to use Occam’s razor.
• Consider the following sequence:

1, 3, 5, 7, ...

• What do you predict will come next?
– What process do you think is generating these numbers?

• M1: 2n + 1
=> 9

• M2: 2n − 1 + (n − 1) (n − 2) (n − 3) (n – 4)
=> 33

60

Sequence Prediction & Occam’s Razor

• Some sequences are more difficult to predict than others.
– Psychometric tests correlate IQ with the difficulty of the sequences that the agent correctly

predicts.
– How to measure sequence difficulty?

• Kolmogorov Complexity (s) = the length of the smallest program that can generate
the sequence s.

• But intelligence is not passive! Agents can act => use concepts from reinforcement
learning.

61

Sequence Complexity

Informal definition, that can be applied to any agent, e.g., animal, human, machine, …

“The intelligence of an agent is the expected reward that the agent obtains over the
space of all computable environments, where (very important) the distribution of
these environments is such that environments that have lower Kolmogorov
complexity (i.e. have simpler descriptions in terms of their distribution of
observations and rewards as functions of action histories) are more likely to happen
(the "universal distribution"). This effectively rewards agents for correctly using
Occam’s razor, by weighting the environments according to their complexity.”

62

Universal Intelligence

http://www.vetta.org/documents/Machine_Super_Intelligence.pdf

• Paper:
“Razor sharp: The role of Occam's razor in science”, Johnjoe McFadden, Annals of NYAS, 2023
 https://doi.org/10.1111/nyas.15086

• Abstract:
Occam's razor – the principle of simplicity – has recently been attacked as a cultural bias without
rational foundation. Increasingly, belief in pseudoscience and mysticism is growing. I argue that
inclusion of Occam's razor is an essential factor that distinguishes science from superstition and
pseudoscience. I also describe how the razor is embedded in Bayesian inference and argue that
science is primarily the means to discover the simplest descriptions of our world.

Occam’s Razor and Science

63

https://doi.org/10.1111/nyas.15086

64

AI for Education

• Awareness of the strengths and weaknesses of LFMs.

• Students can use LFMs as a companion TA as much as possible:
– Ask questions about course material.

• Ask it to explain concepts on the slides.
– But beware explanations may contain bugs …

• All homework must be the student’s own:
– Duplicate or plagiarized work will be promptly reported.
– Even when undetected, use of LFMs for homework will be detrimental:

• Short-term:
– Blindly use LFMs for homework => poor performance on in-class quizzes and exams.

• Long-term:
– 10 Things Software Developers Should Learn about Learning, Brown et al., CACM 2024.

Using AI Tools in ITCS 4101

65

https://cacm.acm.org/research/10-things-software-developers-should-learn-about-learning/

A Sports Analogy for Understanding Different Ways to Use AI

66

aka.ms/ssc-hbr

67

LLM Use Examples

https://webpages.charlotte.edu/rbunescu/courses/itcs4101/examples/GeminiPro2.5_Syntactic_Parsing.pdf

https://webpages.charlotte.edu/rbunescu/courses/itcs4101/examples/pro_syntactic_tree.py

https://webpages.charlotte.edu/rbunescu/courses/itcs4101/examples/bubble/bubble_sort1.py

https://webpages.charlotte.edu/rbunescu/courses/itcs4101/examples/bubble/bubble_sort2.py

https://webpages.charlotte.edu/rbunescu/courses/itcs4101/examples/bubble/conversation.pdf

https://webpages.charlotte.edu/rbunescu/courses/itcs4101/examples/Gemini2.5Pro_Modulo3_take_1.pdf

https://webpages.charlotte.edu/rbunescu/courses/itcs4101/examples/Gemini2.5Pro_Modulo3_take_2.pdf

https://webpages.charlotte.edu/rbunescu/courses/itcs4101/examples/Gemini2.5Pro_Sequence_Prime.pdf

https://webpages.charlotte.edu/rbunescu/courses/itcs4101/examples/GeminiPro2.5_Syntactic_Parsing.pdf
https://webpages.charlotte.edu/rbunescu/courses/itcs4101/examples/pro_syntactic_tree.py
https://webpages.charlotte.edu/rbunescu/courses/itcs4101/examples/bubble/bubble_sort1.py
https://webpages.charlotte.edu/rbunescu/courses/itcs4101/examples/bubble/bubble_sort2.py
https://webpages.charlotte.edu/rbunescu/courses/itcs4101/examples/bubble/conversation.pdf
https://webpages.charlotte.edu/rbunescu/courses/itcs4101/examples/Gemini2.5Pro_Modulo3_take_1.pdf
https://webpages.charlotte.edu/rbunescu/courses/itcs4101/examples/Gemini2.5Pro_Modulo3_take_2.pdf
https://webpages.charlotte.edu/rbunescu/courses/itcs4101/examples/Gemini2.5Pro_Sequence_Prime.pdf

• Chapter 7 on LLMs from J & M, up to and including section 7.4.

68

Supplemental Reading

The Batch, Issue 292, Andrew Ng, March 12, 2025

Speaking things into existence, Mollick, March 11, 2025

10 Things Software Developers Should Learn about Learning, Brown et al., CACM 2024

https://web.stanford.edu/~jurafsky/slp3/7.pdf
https://web.stanford.edu/~jurafsky/slp3/7.pdf
https://www.deeplearning.ai/the-batch/issue-292/
https://www.oneusefulthing.org/p/speaking-things-into-existence
https://cacm.acm.org/research/10-things-software-developers-should-learn-about-learning/

