ICTS 4111/5111: Introduction to NLP

Razvan Bunescu

Lecture notes, March 21, 2024

1 Binary and Multinomial Logistic Regression

In binary LR, we have only two classes C_{1} and C_{2}. To do classification of a vector of features $\mathbf{x}=\left[x_{1}, x_{2}, \ldots, x_{F}\right]$, we first need to train a vector of parameters $\mathbf{w}=\left[w_{1}, w_{2}, \ldots, w_{F}\right]$ and bias b. These parameters are used to compute the probability that \mathbf{x} belongs to class C_{1} (the positive class), as follows:

1. We first compute the logit score $z=\mathbf{w}^{T} \mathbf{x}+b$.
2. Then we squash it between 0 and 1 using the logistic sigmoid $p\left(C_{1} \mid \mathbf{x}\right)=\sigma(z)=\frac{1}{1+e^{-z}}$.
3. Then we can do classification by saying that \mathbf{x} is in class C_{1} (positive) if and only if $p\left(C_{1} \mid \mathbf{x}\right)=\sigma(z) \geq 0.5$.

- We showed in class that this is equivalent with $z \geq 0$.

There are many multiclass classification problems where the number of classes is $K \geq 2$, for example LLMs predict one token auto-regresively at each step. Each token is a class, therefore there are $|V|$ classes, where V is the vocabulary.

In general, we have a set of classes $\mathcal{C}=\left\{C_{1}, C_{2}, \ldots, C_{K}\right\}$, where $K \geq 2$. For this multiclass classification case, we use multinomial $L R$, where we train a set of parameters $\mathbf{w}^{(\mathbf{k})}$ and $b^{(k)}$ for each class $1 \leq k \leq K$. To do classification, we precoeed as follows:

1. We compute a logit score $z_{k}=\mathbf{w}^{(\mathbf{k})^{T}} \mathbf{x}+b^{(k)}$ for each class k.
2. Now we have a vector of logit scores $\mathbf{z}=\left[z_{1}, z_{2}, \ldots, z_{K}\right]$. We want to transform these scores into probabilities $\mathbf{p}=\left[p_{1}, p_{2}, \ldots, p_{K}\right]$, where each p_{k} is interpreted as representing the probability the example belongs to class C_{k}, i.e. $p_{k}=p\left(C_{k} \mid \mathbf{x}\right)$. For this, we will use the softmax function, which means:

$$
\begin{aligned}
\mathbf{p} & =\operatorname{softmax}(\mathbf{z}) \\
p_{1}, p_{2}, \ldots, p_{K} & =\operatorname{softmax}\left(z_{1}, z_{2}, \ldots, z_{K}\right] \\
p_{k} & =\frac{\exp \left(z_{k}\right)}{Z}=\frac{\exp \left(z_{k}\right)}{\sum_{j=1}^{K} \exp \left(z_{j}\right)}
\end{aligned}
$$

where Z is the normalization required to make all probabilities sum up to 1 , also called the partition function.

Some exercises:

1. If the total number of features is $F=512$ in \mathbf{x}, and the number of classes is $K=30,000$, then the total number of parameters in the multinomial LR model will be (the number of classes) $\times($ the number of params for each class $)=K \times(F+1)=30,000 \times 513=$ $15.4 M$ params.
2. If the total number of features is $F=5000$ in \mathbf{x} and the number of classes is $K=$ 3 (positive, negative, neutral sentiment), then the total number of params will be $3 \times 5001=15,003$ params .

Classification is done by selecting the class with the highest computed probability:

$$
\begin{equation*}
\hat{k}=\underset{1 \leq k \leq K}{\arg \max } p\left(C_{k} \mid \mathbf{x}\right)=\underset{1 \leq k \leq K}{\arg \max } \exp \left(z_{k}\right)=\underset{1 \leq k \leq K}{\arg \max } z_{k} \tag{1}
\end{equation*}
$$

