ICTS 4111/5111: Introduction to NLP

Razvan Bunescu

Lecture notes, March 21, 2024

1 Binary and Multinomial Logistic Regression

In binary LR, we have only two classes C_1 and C_2 . To do classification of a vector of features $\mathbf{x} = [x_1, x_2, ..., x_F]$, we first need to train a vector of parameters $\mathbf{w} = [w_1, w_2, ..., w_F]$ and bias b. These parameters are used to compute the probability that \mathbf{x} belongs to class C_1 (the positive class), as follows:

- 1. We first compute the *logit* score $z = \mathbf{w}^T \mathbf{x} + b$.
- 2. Then we squash it between 0 and 1 using the logistic sigmoid $p(C_1|\mathbf{x}) = \sigma(z) = \frac{1}{1 + e^{-z}}$.
- 3. Then we can do classification by saying that \mathbf{x} is in class C_1 (positive) if and only if $p(C_1|\mathbf{x}) = \sigma(z) \ge 0.5$.
 - We showed in class that this is equivalent with $z \ge 0$.

There are many multiclass classification problems where the number of classes is $K \ge 2$, for example LLMs predict one token auto-regresively at each step. Each token is a class, therefore there are |V| classes, where V is the vocabulary.

In general, we have a set of classes $C = \{C_1, C_2, ..., C_K\}$, where $K \ge 2$. For this multiclass classification case, we use *multinomial* LR, where we train a set of parameters $\mathbf{w}^{(\mathbf{k})}$ and $b^{(k)}$ for each class $1 \le k \le K$. To do classification, we precoved as follows:

- 1. We compute a logit score $z_k = \mathbf{w}^{(\mathbf{k})^T} \mathbf{x} + b^{(k)}$ for each class k.
- 2. Now we have a vector of logit scores $\mathbf{z} = [z_1, z_2, ..., z_K]$. We want to transform these scores into probabilities $\mathbf{p} = [p_1, p_2, ..., p_K]$, where each p_k is interpreted as representing the probability the example belongs to class C_k , i.e. $p_k = p(C_k | \mathbf{x})$. For this, we will use the *softmax* function, which means:

$$\mathbf{p} = softmax(\mathbf{z})$$

$$p_1, p_2, ..., p_K = softmax(z_1, z_2, ..., z_K]$$

$$p_k = \frac{exp(z_k)}{Z} = \frac{exp(z_k)}{\sum_{j=1}^{K} exp(z_j)}$$

where Z is the normalization required to make all probabilities sum up to 1, also called the *partition* function. Some exercises:

- 1. If the total number of features is F = 512 in **x**, and the number of classes is K = 30,000, then the total number of parameters in the multinomial LR model will be (the number of classes) × (the number of params for each class) = $K \times (F + 1) = 30,000 \times 513 = 15.4M$ params.
- 2. If the total number of features is F = 5000 in **x** and the number of classes is K = 3 (positive, negative, neutral sentiment), then the total number of params will be $3 \times 5001 = 15,003$ params.

Classification is done by selecting the class with the highest computed probability:

$$\hat{k} = \underset{1 \le k \le K}{\arg\max} p(C_k | \mathbf{x}) = \underset{1 \le k \le K}{\arg\max} exp(z_k) = \underset{1 \le k \le K}{\arg\max} z_k \tag{1}$$