
ITCS 4111/5111: Introduction to NLP

Tokenization: From text to sentences and tokens

Razvan C. Bunescu

Department of Computer Science @ CCI

rbunescu@uncc.edu

mailto:rbunescu@uncc.edu

• Tokenization = segmenting text into words and sentences.
– A crucial first step in most text processing applications.
– Recent SoA language models use subword tokenization.

• Whitespace indicative of word boundaries?
– Yes: English, French, Spanish, …
– No: Chinese, Japanese, Thai, …

• Whitespace is not enough:
– ‘What’re you? Crazy?’ said Sadowsky. ‘I can’t afford to do that.’
Whitspace Þ ‘what’re_you?_crazy?_said_Sadowsky._‘I_can’t_afford_to_do_that.
Target Þ ‘_what_’re_you_?_crazy_?_Sadowsky_._‘_I_can_’t_ afford_to_do_that_.

2

Tokenization

Tokenization

• John went to San Francisco for an interview at Google.
They asked him lots of C++ questions. He’s happy that the
interview went well. John’s sister met him at the
headquarters and they walked for 2.5 miles to the hotel.
– For which company did John interview?

– What topic was he tested on?

– How is John feeling?

– Whose sister met him afterwards?

– How many miles did he walk to the hotel?

3

• In English, characters other than whitespace can be used to
separate words:
– , ; . - : ()”

• But punctuation often occurs inside words:
– m.p.h., Ph.D., AT&T, 01/02/06, google.com, 62.5
– Homework: design regular expressions to match constructions where

punctuation does not split:
– acronyms, dates, web addresses, numbers, etc.
– https://docs.python.org/3/howto/regex.html

• Expansion of clitic constructions: he’s happy Þ he is happy
• But: he’s happy vs. the book’s cover vs. ‘what are you? crazy?’

4

Word Segmentation

https://docs.python.org/3/howto/regex.html

Tokenization in IR: From Text to Tokens

• Tokenization = segmenting text into tokens:
– token = a sequence of characters, in a particular document at a

particular position.
– type = the class of all tokens that contain the same character

sequence.
• “... to be or not to be ...”
• “... so be it, he said ...”

– term = a (normalized) type that is included in the dictionary.
• text = “to sleep perchance to dream”, “US ambassador dreams”
• tokens = to, sleep, perchance, to, dream, US, ambassador, dreams
• types = to, sleep, perchance, dream, US, ambassador, dreams
• terms = sleep, perchance, dream, USA, ambassador (lemmas, norm)

5

3 tokens, 1 type

Tokenization in IR: From Text to Tokens

• Split on whitespace and non-alphanumeric?
– Good as a starting point, but complicated by many tricky cases:

• Appostrophes are ambiguous:
– possessive constructions:

» the books’s cover => the book s cover
– contractions:

» he’s happy => he is happy
» aren’t => are not

– quotations:
» ‘let it be’ => ‘ let it be ‘

6

Tokenization in IR: From Text to Tokens

• Split on whitespace and non-alphanumeric?
– Good as a starting point, but complicated by many tricky cases:

• Whitespaces in proper names or collocations:
– San Francisco => San_Francisco

» how do we determine it should be a single token?
• Hyphenations:

– co-education => co-education
– state-of-the-art => state of the art? state_of_the_art?
– lowercase, lower-case, lower case => lower_case
– Hewlett-Packard => Hewlett_Packard? Hewlett Packard?

• Whitespaces and Hyphenations:
– San Francisco-Los Angeles => San_Francisco Los_Angeles

7

Tokenization in IR: From Text to Tokens

• Split on whitespace and non-alphanumeric?
– Good as a starting point, but complicated by many tricky cases:

• Whitespaces and Hyphenations:
– split on hyphens and whitespaces, but use a phrase index.

• Unusual strings that should be recognized as tokens:
– C++, C#, B-52, C4.5,M*A*S*H.

• URLs, IP addresses, email addresses, tracking numbers.
– exclude numbers, monetary amounts, URLs from indexing?

• Use same tokenization rules for all documents:
– e.g. training vs. testing.

8

Tokenization is Language Dependent

• Need to know the language of document/query:
– Language Identification, based on classifiers trained on short

character subsequences as features, is highly effective.
– French (reduced definite article, postposed clitic pronouns):

• l’ensemble, un ensemble, donne-moi.
– German (compund nouns), need compound splitter:

• Computerlinguistik
• Lebensversicherungsgesellschaftsangestellter

– East Asian languages, need word segmenter:
• 莎拉波娃现在居住在美国东南部的佛罗里达。

– Not always guaranteed a unique tokenization
• Complicated in Japanese, with multiple alphabets intermingled.

9

Tokenization is Language Dependent

• Need to know the language of document/query:
– Arabic and Hebrew:

• Written right to left, but with certain items like numbers
written left to right.

• Words are separated, but letter forms within a word form
complex ligatures

10

← → ← → ← start

Algeria achieved its independence in 1962 after 132 years of
French occupation.

Language Dependent Processing

• Compound Splitting for German:
– usually implemented by finding segments that match against

dictionary entries.

• Word Segmentation for Chinese:
– ML sequence tagging models trained on manually segmented text:

• Logistic Regression, HMMs, Conditional Random Fields.
– Multiple segmentations are possible:

11

From Tokens to Terms: Normalization

• Token Normalization = reducing multiple tokens to the
same canonical term, such that matches occur despite
superficial differences.
1. Create equivalence classes, named after one member of the class:

• {anti-discriminatory, antidiscriminatory}
• {U.S.A., USA}

– but what about C.A.T vs. CAT?
2. Can complicate later processing tasks if annotation already done

on original, unnormalized version of text:
• Need to maintain positional correspondence between

normalized token and its original, unnormalized version

12

From Tokens to Terms: Normalization

• Accents and diacritics in French:
– résumé vs. resume.

• Umlauts in German:
– Tuebingen vs. Tübingen

• British vs. American spellings:
– colour vs. color.

• Multiple formats for dates, times:
– 09/30/2013 vs. Sep 30, 2013.

13

From Tokens to Terms: Normalization

• Case-Folding = reduce all letters to lower case:
– change Automobile at beginning of sentences to automobile.

• how about Ferrari?
– but may lead to unintended matches:

• the Fed vs. fed.
• Bush, Black, General Motors, Associated Press, ...

• Heuristic = lowercase only some tokens:
– words at beginning of sentences.
– all words in a title where most words are capitalized.

• Truecasing = use a classifier to decide when to fold:
– trained on many heuristic features.

14

Lemmatization and Stemming

• Lemmatization = reduce a word to its base/dictionary
form, i.e. its lemma:
– is, am, are => be
– car, cars => car

• Lemmatization commonly only collapses the different
inflectional forms of a lemma:
– saw => see (if verb), or saw (if noun).

15

From Tokens to Terms: Stemming

• Stemming = reduce inflectional and sometimes
derivationally related forms of a word to a common base
form i.e. the stem.
– automate, automates, automatic, automation => automat
– see, saw => s

• Crude affix chopping that is language dependent:

16

for example compressed
and compression are both
accepted as equivalent to
compress.

for exampl compress and
compress ar both accept
as equival to compress

Porter’s Algorithm

• The most common stemmer for English:
– at least as good as other stemming options.
– 5 phases of word reductions, applied sequentially.
– conventions for rule selection and application:

• select the reduction rule that applies to the longest suffix:

• check the number of syllables, for suffix determination:

17

http://www.tartarus.org/˜martin/PorterStemmer/

Other Stemming Algorithms

• Lovins stemmer, Paice/Husk stemmer, Snowball:
– http://www.cs.waikato.ac.nz/˜eibe/stemmers/
– http://www.comp.lancs.ac.uk/computing/research/stemming/

• Stemming is language- and often application-specific:
– open source and commercial plug-ins.

• Does it improve IR performance?
– mixed results for English: improves recall, but hurts precision.

• operative (dentistry) ⇒ oper
– definitely useful for languages with richer morphology:

• Spanish, German, Finish (30% gains).

18

• Generally based on punctuation marks: ? ! .
– Periods are ambiguous, as sentence boundary markers and

abbreviation/acronym markers:
• Mr., Inc., m.p.h.

– Sometimes they mark both:
• SAN FRANCISCO (MarketWatch) – Technology stocks were

mostly in positive territory on Monday, powered by gains in
shares of Microsoft Corp. and IBM Corp.

• Tokenization approaches:
– Regular Expressions.
– Machine Learning (state of the art).

19

Sentence Segmentation

Extracting Linguistic Features with spaCy

20

Apple Apple PROPN NNP nsubj Xxxxx True False
is be AUX VBZ aux xx True True
looking look VERB VBG ROOT xxxx True False
at at ADP IN prep xx True True
buying buy VERB VBG pcomp xxxx True False
U.K. U.K. PROPN NNP compound X.X. False False
startup startup NOUN NN dobj xxxx True False
for for ADP IN prep xxx True True
$ $ SYM $ quantmod $ False False
11.1 11.1 NUM CD compound dd.d False False
million million NUM CD pobj xxxx True False
. . PUNCT . punct . False False

SpaCy Visualizers

• Displaying syntactic dependences:

21

SpaCy Visualizers

• Display named entities:

• For more options and saving formats, see documentation:
– https://spacy.io/usage/visualizers

22

https://spacy.io/usage/visualizers

Tokenization and Sentence Segmentation

23

Apple is looking at buying U.K. startup for $ 1 billion . The deal is unlikely to go through .

Apple is looking at buying U.K. startup for $ 1 billion .
The deal is unlikely to go through .

Tokenization and Sentence Segmentation

• By default, spaCy’s nlp() function runs an entire linguistic pipeline:

• But this is inefficient if we only need to tokenize …

24

https://spacy.io/usage/processing-pipelines

https://spacy.io/usage/processing-pipelines

Tokenization in spaCy

• Run only the pipeline component(s) that are needed. Two options:
1. Call the component directly.
2. Use the default pipeline but disable components that are not needed.

25

U.S. economy is healing , but there ’s a long way to go . The spread of Covid-19 led to surge in
orders for factory robots .

https://spacy.io/usage/linguistic-features#tokenization
https://spacy.io/api/tokenizer

https://spacy.io/usage/linguistic-features
https://spacy.io/api/tokenizer

Tokenization in spaCy

• Run only the pipeline component(s) that are needed. Two options:
1. Call the component directly.
2. Use the default pipeline but disable components that are not needed.

26

U.S. economy is healing , but there ’s a long way to go . The spread of Covid-19 led to surge in
orders for factory robots .

https://spacy.io/usage/processing-pipelines

https://spacy.io/usage/processing-pipelines

Sentence Segmentation in spaCy

• Run only the pipeline component(s) that are needed:
– But spaCy by default uses the parser for sentence segmentation!

• Use a rule-based (but not as accurate) Sentencizer.

27

U.S. economy is healing , but there ’s a long way to go .
The spread of Covid-19 led to surge in orders for factory robots .

https://spacy.io/api/sentencizer

https://spacy.io/api/sentencizer

Tokenization in spaCy

28

https://spacy.io/usage/linguistic-features#tokenization

https://spacy.io/usage/linguistic-features

Tokenization in NLTK

29

16 CHAPTER 2 • REGULAR EXPRESSIONS, TEXT NORMALIZATION, EDIT DISTANCE

Input: "The San Francisco-based restaurant," they said,

"doesn’t charge $10".

Output: " The San Francisco-based restaurant , " they said ,
" does n’t charge $ 10 " .

In practice, since tokenization needs to be run before any other language pro-
cessing, it needs to be very fast. The standard method for tokenization is therefore
to use deterministic algorithms based on regular expressions compiled into very ef-
ficient finite state automata. For example, Fig. 2.12 shows an example of a basic
regular expression that can be used to tokenize with the nltk.regexp tokenize
function of the Python-based Natural Language Toolkit (NLTK) (Bird et al. 2009;
http://www.nltk.org).

>>> text = ’That U.S.A. poster-print costs $12.40...’

>>> pattern = r’’’(?x) # set flag to allow verbose regexps

... ([A-Z]\.)+ # abbreviations, e.g. U.S.A.

... | \w+(-\w+)* # words with optional internal hyphens

... | \$?\d+(\.\d+)?%? # currency and percentages, e.g. $12.40, 82%

... | \.\.\. # ellipsis

... | [][.,;"’?():-_‘] # these are separate tokens; includes], [

... ’’’

>>> nltk.regexp_tokenize(text, pattern)

[’That’, ’U.S.A.’, ’poster-print’, ’costs’, ’$12.40’, ’...’]

Figure 2.12 A Python trace of regular expression tokenization in the NLTK Python-based
natural language processing toolkit (Bird et al., 2009), commented for readability; the (?x)
verbose flag tells Python to strip comments and whitespace. Figure from Chapter 3 of Bird
et al. (2009).

Carefully designed deterministic algorithms can deal with the ambiguities that
arise, such as the fact that the apostrophe needs to be tokenized differently when used
as a genitive marker (as in the book’s cover), a quotative as in ‘The other class’, she
said, or in clitics like they’re.

Word tokenization is more complex in languages like written Chinese, Japanese,
and Thai, which do not use spaces to mark potential word-boundaries. In Chinese,
for example, words are composed of characters (called hanzi in Chinese). Eachhanzi
character generally represents a single unit of meaning (called a morpheme) and is
pronounceable as a single syllable. Words are about 2.4 characters long on average.
But deciding what counts as a word in Chinese is complex. For example, consider
the following sentence:
(2.4) ⁄�€e;≥[

“Yao Ming reaches the finals”
As Chen et al. (2017) point out, this could be treated as 3 words (‘Chinese Treebank’
segmentation):
(2.5) ⁄�

YaoMing
€e
reaches

;≥[
finals

or as 5 words (‘Peking University’ segmentation):
(2.6) ⁄

Yao
�
Ming

€e
reaches

;
overall

≥[
finals

Finally, it is possible in Chinese simply to ignore words altogether and use characters
as the basic elements, treating the sentence as a series of 7 characters:

>>> import nltk, re, pprint
>>> from nltk import word_tokenize
>>> from urllib import request
>>> url = http://www.gutenberg.org/files/2554/2554-0.txt
>>> response = request.urlopen(url)
>>> raw = response.read().decode('utf8’)
>>> tokens = word_tokenize(raw)
>>> len(tokens)
254354
 >>> tokens[:10]
['The', 'Project', 'Gutenberg', 'EBook', 'of', 'Crime', 'and', 'Punishment', ',', 'by']

Custom tokenization through regular expressions in NLTK:

Default word tokenizer in NLTK:
https://www.nltk.org/book/ch03.html

http://www.gutenberg.org/files/2554/2554-0.txt
https://www.nltk.org/book/ch03.html

Statistical Properties of Text

30

Statistical Properties of Text

• Zipf’s Law models the distribution of terms in a corpus:
– How many times does the kth most frequent word appears in a

corpus of size N words?
– Important for determining index terms and properties of

compression algorithms.

• Heap’s Law models the number of words in the
vocabulary as a function of the corpus size:
– What is the number of unique words appearing in a corpus of size

N words?
– This determines how the size of the inverted index in IR will scale

with the size of the corpus .

31

Word Distribution

• A few words are very common:
– The 2 most frequent words (e.g. “the”, “of”) can account for about

10% of word occurrences.

• Most words are very rare:
– Half the words in a corpus appear only once, called hapax

legomena (Greek for “read only once”)

• A “heavy tailed” or “long tailed” distribution:
– Since more of the probability mass is in the “tail” compared to an

exponential distribution.

32

Word Distribution

33

Frequency vs. rank for all words in Moby Dick.

Zipf’s Law

34

Word Distribution (Log Scale)

35

Moby Dick:
• 44% hapax legomena
• 17% dis legomena

“Honorificabilitudinitatibus”:
• Shakespeare’s hapax legomenon
• longest word with alternating
vowels and consonants

Zipf’s Law

• Rank all the words in the vocabulary by their frequency, in
decreasing order.
– Let r(w) be the rank of word w.
– Let f(w) be the frequency of word w.

• Zipf (1949) postulated that frequency and rank are related
by a power law:

– c is a normalization constant that depends on the corpus.

36

)(
)(

wr
cwf =

Zipf’s Law

• If the most frequent term (the) occurs f1 times:
– Then the second most frequent term (of) occurs f1 / 2 times.
– The third most frequent term (and) occurs f1 / 3 times, …

• Power Laws: y = cxk
– Zipf’s Law is a power law with k = –1.
– Linear relationship between log(y) and log(x):

• log(y) = log c + k log(x)
• on a log scale, power laws give a straight line with slope k.

• Zipf is quite accurate, except for very high and low rank.

37

Zipf’s Law Fit to Brown Corpus

38

)(
100000)(
wr

wf =

Mandelbrot’s Distribution

• The following more general form gives a bit better fit:

• When fit to Brown corpus:
• c = 105.4
• K = 1.15
• r = 100

39

Krcf)/(r+=

Mandelbrot’s Law Fit to Brown Corpus

40

Vocabulary vs. Collection Size

• How big is the term vocabulary?
– That is, how many distinct words are there?

• Can we assume an upper bound?
– Not really upper-bounded due to proper names, typos, etc.

• In practice, the vocabulary will keep growing with the
collection size.

41

Heap’s Law

• Given:
– M is the size of the vocabulary.
– T is the number of tokens in the collection.

• Then:
– M = kTb

– k, b depend on the collection type:
• typical values: 30 ≤ k ≤ 100 and b ≈ 0.5 (square root).
• in a log-log plot of M vs. T, Heaps’ law predicts a line with

slope of about ½.

42

Heap’s Law Fit to Reuters RCV1

• For RCV1, the dashed line
log10M = 0.49 log10T + 1.64
is the best least squares fit.

• Thus, M = 101.64T0.49 so
k = 101.64 ≈ 44 and b = 0.49.

• For first 1,000,020 tokens:
– Law predicts 38,323 terms;
– Actually, 38,365 terms.
Þ Good empirical fit for RCV1!

43

Explanations

• Zipf’s Law:
– Zipf’s explanation was his “principle of least effort”:

• Balance between speaker’s desire for a small vocabulary and
hearer’s desire for a large one.

– Herbert Simon’s explanation is “rich get richer.”
– Li (1992) shows that just random typing of letters including a

space will generate “words” with a Zipfian distribution.

• Heaps’ Law:
– Can be derived from Zipf’s law by assuming documents are

generated by randomly sampling words from a Zipfian
distribution.

44

Subword Tokenization

• NLP algorithms often learn some facts about language
from a training corpus and then use these facts to make
decisions about a separate test corpus.
– The vocabulary of tokens V is built from the training corpus.
– What to do if the test corpus contains a token that is not in V?

• Training corpus contains low, new, newer, but not lower.
• If the word lower appears in the test corpus, the NLP system

will not know what to do with it.
– But we’ve seen new and newer! If we had segmented

newer as new + er, the NLP system could have learned
that any <adj> + er means a stronger version of <adj>.

– This is how we can make (some) sense of Jabberwocky.
»

45
https://en.wikipedia.org/wiki/Jabberwocky

https://en.wikipedia.org/wiki/Jabberwocky

Word segmentation: Subwords

• Use the data to tell us how to tokenize:
– Instead of manually designed rules.
– Instead of training on manually tokenized examples.

• Called Subword tokenization:
– Because tokens are often parts of words.

• Can include common morphemes like -est or -er.
– A morpheme is the smallest meaning-bearing unit of a language;

unlikeliest has morphemes un-, likely, and -est.

Subword Tokenization

• Three common algorithms:
1. Byte-Pair Encoding (BPE) (Sennrich et al., 2016)
2. Unigram language modeling tokenization (Kudo, 2018)
3. WordPiece (Schuster and Nakajima, 2012)

• All have 2 parts:
1. A token learner that takes a raw training corpus and induces a

vocabulary, e.g. a set of tokens.
2. A token segmenter that takes a raw test sentence and tokenizes it

according to that vocabulary.

Byte Pair Encoding (BPE)

Let vocabulary be the set of all individual characters
= {A, B, C, D, … , a, b, c, d, …}

• Repeat:
– Choose the two symbols that are most frequently adjacent in

training corpus (say ‘A’, ‘B’),
– Add a new merged symbol ‘AB’ to the vocabulary
– Replace every adjacent ’A’ ’B’ in corpus with ‘AB’.

• Until k merges have been done.

BPE token learner algorithm
2.4 • TEXT NORMALIZATION 19

function BYTE-PAIR ENCODING(strings C, number of merges k) returns vocab V

V all unique characters in C # initial set of tokens is characters
for i = 1 to k do # merge tokens til k times

tL, tR Most frequent pair of adjacent tokens in C
tNEW tL + tR # make new token by concatenating
V V + tNEW # update the vocabulary
Replace each occurrence of tL, tR in C with tNEW # and update the corpus

return V

Figure 2.13 The token learner part of the BPE algorithm for taking a corpus broken up
into individual characters or bytes, and learning a vocabulary by iteratively merging tokens.
Figure adapted from Bostrom and Durrett (2020).

from the training data, greedily, in the order we learned them. (Thus the frequencies
in the test data don’t play a role, just the frequencies in the training data). So first
we segment each test sentence word into characters. Then we apply the first rule:
replace every instance of e r in the test corpus with r, and then the second rule:
replace every instance of er in the test corpus with er , and so on. By the end,
if the test corpus contained the word n e w e r , it would be tokenized as a full
word. But a new (unknown) word like l o w e r would be merged into the two
tokens low er .

Of course in real algorithms BPE is run with many thousands of merges on a very
large input corpus. The result is that most words will be represented as full symbols,
and only the very rare words (and unknown words) will have to be represented by
their parts.

2.4.4 Word Normalization, Lemmatization and Stemming
Word normalization is the task of putting words/tokens in a standard format, choos-normalization
ing a single normal form for words with multiple forms like USA and US or uh-huh
and uhhuh. This standardization may be valuable, despite the spelling information
that is lost in the normalization process. For information retrieval or information
extraction about the US, we might want to see information from documents whether
they mention the US or the USA.

Case folding is another kind of normalization. Mapping everything to lowercase folding

case means that Woodchuck and woodchuck are represented identically, which is
very helpful for generalization in many tasks, such as information retrieval or speech
recognition. For sentiment analysis and other text classification tasks, information
extraction, and machine translation, by contrast, case can be quite helpful and case
folding is generally not done. This is because maintaining the difference between,
for example, US the country and us the pronoun can outweigh the advantage in
generalization that case folding would have provided for other words.

For many natural language processing situations we also want two morpholog-
ically different forms of a word to behave similarly. For example in web search,
someone may type the string woodchucks but a useful system might want to also
return pages that mention woodchuck with no s. This is especially common in mor-
phologically complex languages like Russian, where for example the word Moscow
has different endings in the phrases Moscow, of Moscow, to Moscow, and so on.

Lemmatization is the task of determining that two words have the same root,
despite their surface differences. The words am, are, and is have the shared lemma

Byte Pair Encoding (BPE)

• Most subword algorithms are run inside white-space
separated tokens.

• So first add a special end-of-word symbol '__' before
whitespace in training corpus:
– Homework exercise:

• Design a RE and write Python code to do this substitution.
• Next, separate into letters.

BPE token learner18 CHAPTER 2 • REGULAR EXPRESSIONS, TEXT NORMALIZATION, EDIT DISTANCE

The algorithm is usually run inside words (not merging across word boundaries),
so the input corpus is first white-space-separated to give a set of strings, each corre-
sponding to the characters of a word, plus a special end-of-word symbol , and its
counts. Let’s see its operation on the following tiny input corpus of 18 word tokens
with counts for each word (the word low appears 5 times, the word newer 6 times,
and so on), which would have a starting vocabulary of 11 letters:

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w
2 l o w e s t
6 n e w e r
3 w i d e r
2 n e w

The BPE algorithm first count all pairs of adjacent symbols: the most frequent
is the pair e r because it occurs in newer (frequency of 6) and wider (frequency of
3) for a total of 9 occurrences1. We then merge these symbols, treating er as one
symbol, and count again:

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er
2 l o w e s t
6 n e w er
3 w i d er
2 n e w

Now the most frequent pair is er , which we merge; our system has learned
that there should be a token for word-final er, represented as er :

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er, er
2 l o w e s t
6 n e w er
3 w i d er
2 n e w

Next n e (total count of 8) get merged to ne:
corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er, er , ne
2 l o w e s t
6 ne w er
3 w i d er
2 ne w

If we continue, the next merges are:
Merge Current Vocabulary
(ne, w) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new
(l, o) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo
(lo, w) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low
(new, er) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low, newer
(low,) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low, newer , low

Once we’ve learned our vocabulary, the token parser is used to tokenize a test
sentence. The token parser just runs on the test data the merges we have learned

1 Note that there can be ties; we could have instead chosen to merge r first, since that also has a
frequency of 9.

Original (very fascinating🙄) corpus:

 low low low low low lowest lowest newer newer newer
newer newer newer wider wider wider new new

Add end-of-word tokens and segment:

BPE token learner

18 CHAPTER 2 • REGULAR EXPRESSIONS, TEXT NORMALIZATION, EDIT DISTANCE

The algorithm is usually run inside words (not merging across word boundaries),
so the input corpus is first white-space-separated to give a set of strings, each corre-
sponding to the characters of a word, plus a special end-of-word symbol , and its
counts. Let’s see its operation on the following tiny input corpus of 18 word tokens
with counts for each word (the word low appears 5 times, the word newer 6 times,
and so on), which would have a starting vocabulary of 11 letters:

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w
2 l o w e s t
6 n e w e r
3 w i d e r
2 n e w

The BPE algorithm first count all pairs of adjacent symbols: the most frequent
is the pair e r because it occurs in newer (frequency of 6) and wider (frequency of
3) for a total of 9 occurrences1. We then merge these symbols, treating er as one
symbol, and count again:

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er
2 l o w e s t
6 n e w er
3 w i d er
2 n e w

Now the most frequent pair is er , which we merge; our system has learned
that there should be a token for word-final er, represented as er :

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er, er
2 l o w e s t
6 n e w er
3 w i d er
2 n e w

Next n e (total count of 8) get merged to ne:
corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er, er , ne
2 l o w e s t
6 ne w er
3 w i d er
2 ne w

If we continue, the next merges are:
Merge Current Vocabulary
(ne, w) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new
(l, o) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo
(lo, w) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low
(new, er) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low, newer
(low,) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low, newer , low

Once we’ve learned our vocabulary, the token parser is used to tokenize a test
sentence. The token parser just runs on the test data the merges we have learned

1 Note that there can be ties; we could have instead chosen to merge r first, since that also has a
frequency of 9.

Merge e r to er

18 CHAPTER 2 • REGULAR EXPRESSIONS, TEXT NORMALIZATION, EDIT DISTANCE

The algorithm is usually run inside words (not merging across word boundaries),
so the input corpus is first white-space-separated to give a set of strings, each corre-
sponding to the characters of a word, plus a special end-of-word symbol , and its
counts. Let’s see its operation on the following tiny input corpus of 18 word tokens
with counts for each word (the word low appears 5 times, the word newer 6 times,
and so on), which would have a starting vocabulary of 11 letters:

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w
2 l o w e s t
6 n e w e r
3 w i d e r
2 n e w

The BPE algorithm first count all pairs of adjacent symbols: the most frequent
is the pair e r because it occurs in newer (frequency of 6) and wider (frequency of
3) for a total of 9 occurrences1. We then merge these symbols, treating er as one
symbol, and count again:

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er
2 l o w e s t
6 n e w er
3 w i d er
2 n e w

Now the most frequent pair is er , which we merge; our system has learned
that there should be a token for word-final er, represented as er :

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er, er
2 l o w e s t
6 n e w er
3 w i d er
2 n e w

Next n e (total count of 8) get merged to ne:
corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er, er , ne
2 l o w e s t
6 ne w er
3 w i d er
2 ne w

If we continue, the next merges are:
Merge Current Vocabulary
(ne, w) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new
(l, o) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo
(lo, w) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low
(new, er) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low, newer
(low,) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low, newer , low

Once we’ve learned our vocabulary, the token parser is used to tokenize a test
sentence. The token parser just runs on the test data the merges we have learned

1 Note that there can be ties; we could have instead chosen to merge r first, since that also has a
frequency of 9.

Byte Pair Encoding (BPE)

Merge er _ to er_

18 CHAPTER 2 • REGULAR EXPRESSIONS, TEXT NORMALIZATION, EDIT DISTANCE

The algorithm is usually run inside words (not merging across word boundaries),
so the input corpus is first white-space-separated to give a set of strings, each corre-
sponding to the characters of a word, plus a special end-of-word symbol , and its
counts. Let’s see its operation on the following tiny input corpus of 18 word tokens
with counts for each word (the word low appears 5 times, the word newer 6 times,
and so on), which would have a starting vocabulary of 11 letters:

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w
2 l o w e s t
6 n e w e r
3 w i d e r
2 n e w

The BPE algorithm first count all pairs of adjacent symbols: the most frequent
is the pair e r because it occurs in newer (frequency of 6) and wider (frequency of
3) for a total of 9 occurrences1. We then merge these symbols, treating er as one
symbol, and count again:

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er
2 l o w e s t
6 n e w er
3 w i d er
2 n e w

Now the most frequent pair is er , which we merge; our system has learned
that there should be a token for word-final er, represented as er :

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er, er
2 l o w e s t
6 n e w er
3 w i d er
2 n e w

Next n e (total count of 8) get merged to ne:
corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er, er , ne
2 l o w e s t
6 ne w er
3 w i d er
2 ne w

If we continue, the next merges are:
Merge Current Vocabulary
(ne, w) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new
(l, o) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo
(lo, w) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low
(new, er) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low, newer
(low,) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low, newer , low

Once we’ve learned our vocabulary, the token parser is used to tokenize a test
sentence. The token parser just runs on the test data the merges we have learned

1 Note that there can be ties; we could have instead chosen to merge r first, since that also has a
frequency of 9.

18 CHAPTER 2 • REGULAR EXPRESSIONS, TEXT NORMALIZATION, EDIT DISTANCE

The algorithm is usually run inside words (not merging across word boundaries),
so the input corpus is first white-space-separated to give a set of strings, each corre-
sponding to the characters of a word, plus a special end-of-word symbol , and its
counts. Let’s see its operation on the following tiny input corpus of 18 word tokens
with counts for each word (the word low appears 5 times, the word newer 6 times,
and so on), which would have a starting vocabulary of 11 letters:

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w
2 l o w e s t
6 n e w e r
3 w i d e r
2 n e w

The BPE algorithm first count all pairs of adjacent symbols: the most frequent
is the pair e r because it occurs in newer (frequency of 6) and wider (frequency of
3) for a total of 9 occurrences1. We then merge these symbols, treating er as one
symbol, and count again:

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er
2 l o w e s t
6 n e w er
3 w i d er
2 n e w

Now the most frequent pair is er , which we merge; our system has learned
that there should be a token for word-final er, represented as er :

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er, er
2 l o w e s t
6 n e w er
3 w i d er
2 n e w

Next n e (total count of 8) get merged to ne:
corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er, er , ne
2 l o w e s t
6 ne w er
3 w i d er
2 ne w

If we continue, the next merges are:
Merge Current Vocabulary
(ne, w) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new
(l, o) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo
(lo, w) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low
(new, er) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low, newer
(low,) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low, newer , low

Once we’ve learned our vocabulary, the token parser is used to tokenize a test
sentence. The token parser just runs on the test data the merges we have learned

1 Note that there can be ties; we could have instead chosen to merge r first, since that also has a
frequency of 9.

Byte Pair Encoding (BPE)

Merge n e to ne

18 CHAPTER 2 • REGULAR EXPRESSIONS, TEXT NORMALIZATION, EDIT DISTANCE

The algorithm is usually run inside words (not merging across word boundaries),
so the input corpus is first white-space-separated to give a set of strings, each corre-
sponding to the characters of a word, plus a special end-of-word symbol , and its
counts. Let’s see its operation on the following tiny input corpus of 18 word tokens
with counts for each word (the word low appears 5 times, the word newer 6 times,
and so on), which would have a starting vocabulary of 11 letters:

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w
2 l o w e s t
6 n e w e r
3 w i d e r
2 n e w

The BPE algorithm first count all pairs of adjacent symbols: the most frequent
is the pair e r because it occurs in newer (frequency of 6) and wider (frequency of
3) for a total of 9 occurrences1. We then merge these symbols, treating er as one
symbol, and count again:

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er
2 l o w e s t
6 n e w er
3 w i d er
2 n e w

Now the most frequent pair is er , which we merge; our system has learned
that there should be a token for word-final er, represented as er :

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er, er
2 l o w e s t
6 n e w er
3 w i d er
2 n e w

Next n e (total count of 8) get merged to ne:
corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er, er , ne
2 l o w e s t
6 ne w er
3 w i d er
2 ne w

If we continue, the next merges are:
Merge Current Vocabulary
(ne, w) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new
(l, o) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo
(lo, w) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low
(new, er) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low, newer
(low,) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low, newer , low

Once we’ve learned our vocabulary, the token parser is used to tokenize a test
sentence. The token parser just runs on the test data the merges we have learned

1 Note that there can be ties; we could have instead chosen to merge r first, since that also has a
frequency of 9.

18 CHAPTER 2 • REGULAR EXPRESSIONS, TEXT NORMALIZATION, EDIT DISTANCE

The algorithm is usually run inside words (not merging across word boundaries),
so the input corpus is first white-space-separated to give a set of strings, each corre-
sponding to the characters of a word, plus a special end-of-word symbol , and its
counts. Let’s see its operation on the following tiny input corpus of 18 word tokens
with counts for each word (the word low appears 5 times, the word newer 6 times,
and so on), which would have a starting vocabulary of 11 letters:

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w
2 l o w e s t
6 n e w e r
3 w i d e r
2 n e w

The BPE algorithm first count all pairs of adjacent symbols: the most frequent
is the pair e r because it occurs in newer (frequency of 6) and wider (frequency of
3) for a total of 9 occurrences1. We then merge these symbols, treating er as one
symbol, and count again:

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er
2 l o w e s t
6 n e w er
3 w i d er
2 n e w

Now the most frequent pair is er , which we merge; our system has learned
that there should be a token for word-final er, represented as er :

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er, er
2 l o w e s t
6 n e w er
3 w i d er
2 n e w

Next n e (total count of 8) get merged to ne:
corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er, er , ne
2 l o w e s t
6 ne w er
3 w i d er
2 ne w

If we continue, the next merges are:
Merge Current Vocabulary
(ne, w) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new
(l, o) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo
(lo, w) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low
(new, er) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low, newer
(low,) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low, newer , low

Once we’ve learned our vocabulary, the token parser is used to tokenize a test
sentence. The token parser just runs on the test data the merges we have learned

1 Note that there can be ties; we could have instead chosen to merge r first, since that also has a
frequency of 9.

Byte Pair Encoding (BPE)

The next merges are:

18 CHAPTER 2 • REGULAR EXPRESSIONS, TEXT NORMALIZATION, EDIT DISTANCE

The algorithm is usually run inside words (not merging across word boundaries),
so the input corpus is first white-space-separated to give a set of strings, each corre-
sponding to the characters of a word, plus a special end-of-word symbol , and its
counts. Let’s see its operation on the following tiny input corpus of 18 word tokens
with counts for each word (the word low appears 5 times, the word newer 6 times,
and so on), which would have a starting vocabulary of 11 letters:

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w
2 l o w e s t
6 n e w e r
3 w i d e r
2 n e w

The BPE algorithm first count all pairs of adjacent symbols: the most frequent
is the pair e r because it occurs in newer (frequency of 6) and wider (frequency of
3) for a total of 9 occurrences1. We then merge these symbols, treating er as one
symbol, and count again:

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er
2 l o w e s t
6 n e w er
3 w i d er
2 n e w

Now the most frequent pair is er , which we merge; our system has learned
that there should be a token for word-final er, represented as er :

corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er, er
2 l o w e s t
6 n e w er
3 w i d er
2 n e w

Next n e (total count of 8) get merged to ne:
corpus vocabulary
5 l o w , d, e, i, l, n, o, r, s, t, w, er, er , ne
2 l o w e s t
6 ne w er
3 w i d er
2 ne w

If we continue, the next merges are:
Merge Current Vocabulary
(ne, w) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new
(l, o) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo
(lo, w) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low
(new, er) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low, newer
(low,) , d, e, i, l, n, o, r, s, t, w, er, er , ne, new, lo, low, newer , low

Once we’ve learned our vocabulary, the token parser is used to tokenize a test
sentence. The token parser just runs on the test data the merges we have learned

1 Note that there can be ties; we could have instead chosen to merge r first, since that also has a
frequency of 9.

Using BPE on a new text

• On the test corpus, run each merge learned from the training
data:
– Greedily, in the order they were added to vocabulary.

• test frequencies don't play a role.
– So, merge every e r to er, then merge er _ to er_, etc.

•
– Test set "n e w e r _" would be tokenized as a full word.
– Test set "l o w e r _" would be two tokens: "low" + "er_ ":

• “lower” was never seen in the training corpus.
• However, we’ve seen “low” and “er”.

– The meaning of “low” + er” can be derived from the
meaning of its components.

V = {_, d, e, i, l, n, o, r, s, t, w, er, er_, ne, new, lo, low, newer_, low_}

WordPiece Tokenizer

• Used by for BERT, DistilBERT, and Electra.
• Greedy procedure like BPE.

– BPE chooses to merge the most frequent symbol pair.
– WordPiece merges the pair that maximizes the likelihood of the

training data once added to the vocabulary.
• If A and B are a candidate pair, their score is given by:

• Choose to merge the pair with the highest score.
• This can be shown to maximize the likelihood of the data.

57

𝑃(𝐴𝐵)
𝑃 𝐴 𝑃(𝐵)

https://huggingface.co/docs/transformers/tokenizer_summary#wordpiece
https://ai.googleblog.com/2021/12/a-fast-wordpiece-tokenization-system.html
https://www.tensorflow.org/text/guide/subwords_tokenizer#applying_wordpiece

how is this related to pmi(A,B)?

https://huggingface.co/docs/transformers/tokenizer_summary
https://ai.googleblog.com/2021/12/a-fast-wordpiece-tokenization-system.html
https://www.tensorflow.org/text/guide/subwords_tokenizer

Recommended Readings

• Section 2.2, 2.3, and 2.4 in J & M.
• HuggingFace summary of tokenization techniques.

58

https://huggingface.co/docs/transformers/tokenizer_summary

