Background: Generative and
Discriminative Classifiers

Logistic
Regression

Logistic Regression

Important analytic tool in natural and
social sciences

Baseline supervised machine learning
tool for classification

Is also the foundation of neural
networks

Generative and Discriminative Classifiers

Naive Bayes is a generative classifier

by contrast:

Logistic regression is a discriminative
classifier

Generative and Discriminative Classifiers

Suppose we're distinguishing cat from dog images

imagenet imagenet

Generative Classifier:

* Build a model of what's in a cat image
* Knows about whiskers, ears, eyes
* Assigns a probability to any image:
* how cat-y is this image?

Now given a new image:
Run both models and see which one fits better

Discriminative Classifier

Just try to distinguish dogs from cats

Oh look, dogs have collars!
Let's ighore everything else

Finding the correct class ¢ from a document d in
Generative vs Discriminative Classifiers

Naive Bayes

likelihood prior
—~—
¢ =argmax P(d|c) P(c)

YY)

Logistic Regression

~ posterior

¢ =argmax P(c|d)

ceC

Components of a probabilistic machine
learning classifier

Given m input/output pairs (x@ y®):

1. A feature representation of the input. For each input
observation xV), a vector of features [xy, X, ..., X,]. Feature i
for input xV is x,, more completely x), or sometimes f(x).

2. A classification function that computes y, the estimated
class, via p(y|x), like the sigmoid or softmax functions.

3. An objective function for learning, like cross-entropy loss.

An algorithm for optimizing the objective function:
stochastic gradient descent.

The two phases of Logistic Regression

Training: we learn weights w and b using stochastic
gradient descent to minimize cross-entropy loss.

Test: Given a test example x we compute p(y|x)
using learned weights w and b, and return
whichever label (y = 1 or y = 0) has higher probability

Ply=1|x) + P(y =0|x) = 1.0

Py = 1|x) > P(y = 0|x) <=> P(y=1|x) > 0.5

Background: Generative and
Discriminative Classifiers

Logistic
Regression

Classification with Logistic
Regression

Logistic
Regression

Classification Reminder

Positive/negative sentiment
Spam/not spam

Authorship attribution
(Hamilton or Madison?)

Alexander Hamilton

Text Classification: definition
Input:

o a document x
o a fixed set of classes C=1{cy, ¢5,..., C}}

Output: a predicted class y € C

Binary Classification in Logistic Regression

Given a series of input/output pairs:
o (xl) iy
For each observation x!!

> We represent x") by a feature vector [x,, X,,..., X,]
> We compute an output: a predicted class Q(i) e {0,1}

Features in logistic regression

* For feature x;,, weight w; tells how important is x.
° X;='"review contains ‘awesome’: w;= +10
° X;="review contains ‘abysmal’: w;=-10
* X, ="review contains ‘mediocre’: w,=-2

Logistic Regression for one observation x

Input observation: vector x =[x, x,,..., x|

Weights: one per feature: w = [w, w,,..., w,]
> Sometimes we call the weights0=/6,, 0,,..., 0,/

Output: a predicted class y € {0,1}

(multinomial logistic regression: y € {0, 1, 2, 3, 4})

How to do classification

For each feature x;, weight w; tells us importance of x;
o (Plus we'll have a bias b)

We'll sum up all the weighted features and the bias

n
Z = E WX b
i=1

Z = w-x+b
If this sum is high, we say y=1; if low, then y=0

But we want a probabilistic classifier

We need to formalize “sum is high”.

We'd like a principled classifier that gives us a
probability, just like Naive Bayes did

We want a model that can tell us:
p(y=1|x;)
p(y=0[x;)

The problem: zisn't a probability, it's just a
number!

Z = w-x+b

Solution: use a function of z that goes from O to 1

1 1

Vv — O o p—
y=0() l+e% 14exp(—z)

The very useful sigmoid or logistic function

|[dea of logistic regression

We'll compute w-x+b

And then we’ll pass it through the
sigmoid function:

o(w-x+b)
And we’ll just treat it as a probability

Making probabilities with sigmoids

Py=1) = o(w-x+b)
1
l4+exp(—(w-x+b))

v
Y
<

I

-
N——"

I

l—oc(w-x+b)
1
 14exp(—(w-x+D))
exp (—(w-x+b))
14+exp(—(w-x+b)) o (=(w-x+b))

= 1

Turning a probability into a classifier

. 1 if P(y=1|x) >0.5 ifwxth>0
Prediction = :
0 otherwise ifwx+b<0

0.5 here is called the decision threshold

The LR classifier

Classification in Logistic
Regression

Logistic
Regression

Logistic Regression:
Sentiment Classification

Logistic
Regression

Sentiment example: does y=1 or y=07?

It's hokey . There are virtually no surprises , and the writing is second-rate .

So why was it so enjoyable ? For one thing, the cast is

great . Another nice touch is the music . | was overcome with the urge to get off
the couch and start dancing . It sucked me in, and it'll do the same to you .

-~ -
—
-~ -
—

-
-
-
- = -~ -
§~
-
- =

It'saokey) There are V1rtually@’surprlses and the writing 1s @cond-rato.

So Why was it so€njoyabled ? For one thing , the cast is

. Anothe touch is the music @zvas overcome with the urge to get off
the couch and start,dancmg It sucked @m ,\a\nd it'll do the same to to_fou) .

\ \ P

X1=3 X5=() X6=4. 19 X4_3

Var Definition Value in Fig. 5.2
x; count(positive lexicon) € doc) 3
b)) count(negative lexicon) € doc) 2
“ { 1 if “no” € doc {

0 otherwise
x4 count(1st and 2nd pronouns € doc) 3

1 if “!” € doc
X5 . 0

0 otherwise
x¢ log(word count of doc) In(66) =4.19

Classifying sentiment for input x

Var Definition Val
X1 count(positive lexicon) € doc) 3
xp count(negative lexicon) € doc) 2
“ <’ 1 if “no” € doc .
| O otherwise
x4 count(1st and 2nd pronouns € doc) 3
s <(1 if “1” € doc 0
| 0 otherwise
x¢ log(word count of doc) In(66) =4.19

Suppose w = [2.5,—5.0,—1.2,0.5,2.0,0.7]
b=0.1

Classifying sentiment for input x

p(+[x) = P(Y = 1|x)

o(w-x+b)

5([2.5,-5.0,—1.2,0.5,2.0,0.7] - [3,2,1,3,0,4.19] +-0.1)
(.833)

.70

|
=

p(=lx) =P =0x) = 1—-0c(w-x+b)
= 0.30

We can build features for logistic regression for
any classification task: period disambiguation

End of sentence
This ends in a perio ~ \

The house at 465 Main SESS ne\@
Not end

| 1 if “Case(w;) = Lower”
7 1 0 otherwise
o — 1 if “w; € AcronymDict”
2 7) 0 otherwise
. — 1 if “w; = St. & Case(w;_1) = Cap”
3 7) 0 otherwise

Classification in (binary) logistic regression: summary
Given:

> a set of classes: (+ sentiment,- sentiment)
o avector x of features [x,, x,, .., X,]
> X,= count("awesome"

° X, = log(number of words in review)
o Avector wof weights [w,, w,, .., w,]
> w; for each feature x;

Py=1) = o(w-x+b)
1
1_|_e—(w-x—|—b)

Logistic Regression:
Sentiment Classification

Logistic
Regression

Text _
Classification: More on Sentiment

Feature Classification
Engineering

Sentiment Classification: Dealing with Negation
|Ine=d Iy | derth ik ka dliie movie

Negation changes the meaning of "like" to negative.

Negation can also change negative to positive-ish
> Don't dismiss this film
°c Doesn't let us get bored

Sentiment Classification: Dealing with Negation

Das, Sanjiv and Mike Chen. 2001. Yahoo! for Amazon: Extracting market sentiment from stock message boards. In
Proceedings of the Asia Pacific Finance Association Annual Conference (APFA).

Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan. 2002. Thumbs up? Sentiment Classification using
Machine Learning Techniques. EMNLP-2002, 79—86.

Simple baseline method:

Add NOT _ to every word between negation and following punctuation:

didn’t like this movie , but I

-

didn’t NOT like NOT this NOT movie but I

Sentiment Classification: Lexicons

Sometimes we don't have enough labeled training
data

In that case, we can make use of pre-built word lists
Called lexicons

There are various publically available lexicons

MPQA Subjectivity Cues Lexicon

Theresa Wilson, Janyce Wiebe, and Paul Hoffmann (2005). Recognizing Contextual Polarity in
Phrase-Level Sentiment Analysis. Proc. of HLT-EMNLP-2005.

Riloff and Wiebe (2003). Learning extraction patterns for subjective expressions. EMNLP-2003.

Home page: http://www.cs.pitt.edu/mpga/subj lexicon.html

6885 words from 8221 lemmas, annotated for intensity (strong/weak)
o 2718 positive
° 4912 negative

+ : admirable, beautiful, confident, dazzling, ecstatic, favor, glee, great
- . awful, bad, bias, catastrophe, cheat, deny, envious, foul, harsh, hate

http://www.cs.pitt.edu/mpqa/subj_lexicon.html

The General Inquirer

Philip J. Stone, Dexter C Dunphy, Marshall S. Smith, Daniel M. Ogilvie. 1966. The General

Inquirer: A Computer Approach to Content Analysis. MIT Press
o Home page: http://www.wjh.harvard.edu/~inquirer
o List of Categories: http://www.wjh.harvard.edu/~inquirer/homecat.htm
o Spreadsheet: http://www.wjh.harvard.edu/~inquirer/inquirerbasic.xls

Categories:
o Positiv (1915 words) and Negativ (2291 words)

o Strong vs Weak, Active vs Passive, Overstated versus Understated
o Pleasure, Pain, Virtue, Vice, Motivation, Cognitive Orientation, etc

Free for Research Use

http://www.wjh.harvard.edu/~inquirer
http://www.wjh.harvard.edu/~inquirer/homecat.htm
http://www.wjh.harvard.edu/~inquirer/inquirerbasic.xls

Bing Liu Opinion Lexicon

Minging Hu and Bing Liu. Mining and Summarizing Customer Reviews. ACM SIGKDD-2004.

Bing Liu's Page on Opinion Mining

http://www.cs.uic.edu/~liub/FBS/opinion-lexicon-English.rar

6786 words
o 2006 positive
o 4783 negative

http://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html
http://www.cs.uic.edu/~liub/FBS/opinion-lexicon-English.rar

Using Lexicons in Sentiment Classification

Add a feature that gets a count whenever a word
from the lexicon occurs
> E.g., a feature called "this word occurs in the positive
lexicon" or "this word occurs in the negative lexicon"

Now all positive words (good, great, beautiful,
wonderful) or negative words count for that feature.

Using 1-2 features isn't as good as using all the words.

* But when training data is sparse or not representative of the
test set, dense lexicon features can help

Other tasks: Spam Filtering

SpamAssassin Features:
o Mentions millions of (dollar) ((dollar) NN,NNN,NNN.NN)
o From: starts with many numbers
o Subject is all capitals
o HTML has a low ratio of text to image area
> "One hundred percent guaranteed”
o Claims you can be removed from the list
o http://spamassassin.apache.org/tests 3 3 x.html

http://spamassassin.apache.org/tests_3_3_x.html

Language ID

Determining what language a piece of text is written
in.

Features based on character n-grams do very well

Important to train on lots of varieties of each
language (world English, etc)

Text _
Classification: More on Sentiment

Feature Classification
Engineering

Logistic Regression: Learning

Logistic
Regression

Wait, where did the W’s come from?

Supervised classification:
* we know the correct label y (either 0 or 1) for each x.

What the system produces is an estimate y = p(y = 1|x)

We want to set w and b to minimize the distance between our
estimate Yl and the true yl.

* We n_eed a distance estimator: a loss function or a cost
function

* We need an optimization algorithm to update w and b to
minimize the loss.

Learning components

A loss function (to minimize):
> Cross-Entropy loss = Negative Log-Likelihood

An optimization algorithm (to minimize loss):
> Stochastic Gradient Descent

Learning in Logistic
Regression

Logistic
Regression

Cross-Entropy Loss
= Negative Log-Likelihood

Logistic
Regression

The distance between y and y

We want to know how far is the classifier output:
y = o(w-x+b) = p,(y=1]x)

from the true output:
y [= either O or 1]

We'll call this difference:
L(V ,y) = how much y differs from the true y

Intuition of negative log likelihood loss
= cross-entropy loss

A case of conditional Maximum Likelihood Estimation

* We choose the parameters w,b that maximize the
probability (likelihood) of the true y labels in the
training data given the observations x.

* w, b, that maximize the likelihood <=>
* w, b that maximize the log-likelihood <=>
* w, b that minimize the negative log-likelihood

/'

the cross-entropy

Deriving cross-entropy loss for a single observation x

Goal: maximize probability of the correct label p(y|x)

Since there are only 2 discrete outcomes (0 or 1) we can

express the probability p(y|x) from our classifier (the thing
we want to maximize) as

A A\ 1 —
pylx) = (1=
noting:
if y=1, this simplifies to y ¥ = o(w-x+b) = p,(y=1]x)
if y=0, this simplifiesto 1=y 11— $=1 —p,(y=1|x) = p,(y=0]x)

Deriving cross-entropy loss for a single observation x

Goal: maximize probability of the correct label p(y|x)
Maximize: p(ylx) = §7(1—5)'
Now take the log of both sides (mathematically handy)
Maximize: logp(ylx) = log [yAy(l _YA)l_y}
= ylogy+ (1 —y)log(l—7J)

Whatever values maximize log p(y|x) will also maximize
p(y|x)

Deriving cross-entropy loss for a single observation x

Goal: maximize probability of the correct label p(y|x)
Maximize: logp(ylx) = log [(1-5)']
= ylogy+(1—y)log(1—3)
Now flip sign to turn this into a loss: something to minimize

Cross-entropy loss (because is formula for cross-entropy(y, ¥))
Minimize: Lce(¥,y) =—logp(ylx) = —I[ylogy+ (1 —y)log(1l—7)]

Or, plugging in definition of y:
Lee(9,y) = —lylogo(w-x+b)+ (1 —y)log(l —o(w-x+Db))]

Let's see if this works for our sentiment example

We want loss to be:

* smaller if the model estimate is close to correct

* bigger if model is confused

Let's first suppose the true label of this is y=1 (positive)
It's hokey . There are virtually no surprises , and the writing is second-rate .
So why was it so enjoyable ? For one thing, the cast is great . Another nice

touch is the music . | was overcome with the urge to get off the couch and
start dancing . It sucked me in, and it'll do the same to you .

Let's see if this works for our sentiment example

True value is y=1. How well is our model doing?

p(+x)=PY =1|x) = o(w-x+Db)
= 0([2.5,-5.0,—1.2,0.5,2.0,0.7] -[3,2,1,3,0,4.19] +0.1)
= 0(.833)
= 0.70 (5.6)

Pretty welll What's the loss?
Lce(9,y) = —[ylogo(w-x+b)+(1—y)log(l—o(w-x+b))]
= —[logo(w-x+b)]
= —log(.70)
- 36

Let's see if this works for our sentiment example

Suppose true value instead was y=0.

p(—|lx)=P(Y =0|x) = 1—0c(w-x+b)

= 0.30
What's the loss?
Leg(9,y) = —[ylogo(w-x+b)+(1 —y)log(l —o(w-x+Db))]
_ —[log(1—0(w-x+b))]
= —log (.30)

— 1.2

Let's see if this works for our sentiment example

The loss when model was right (if true y=1)
—[ylogo(w-x+b)+(1—y)log(1—oc(w-x+D))]
—[logo(w-x+b)]
—log(.70)
— .36
Is lower than the loss when model was wrong (if true y=0):
Lce(9,y) = —[ylogo(w-x+0b)+(1 —y)log(l —o(w-x+Db))]
= —log(1 —o(w-x+b))]
= —1log(.30)
— 1.2

Lce(¥,y)

Sure enough, loss was bigger when model was wrong!

Cross-Entropy Loss

Logistic
Regression

Stochastic Gradient Descent

Logistic
Regression

Our goal: minimize the loss

Let's make explicit that the loss function in
parameterized by weights 6=(w,b)

We want the weights that minimize the loss,
averaged over all examples:

® = aremin 1 ZLCE (f(x(i); 9),y(i))
6 M4

Intuition of gradient descent

How do | get to the bottom of this river canyon?

2 ——
/0.

~
.
o~

&
S0 .
Z 2 | ook around me 360

Find the direction of
59 steepest slope
.

- Lﬁ «}/\ Go that way
) \&

CENN

!

Our goal: minimize the loss

For logistic regression, loss function is convex
* A convex function has just one minimum

* Gradient descent starting from any point is
guaranteed to find the minimum
* (Loss for neural networks is non-convex)

Let's first visualize for a single scalar w

Q: Given current w, should we make it bigger or smaller?
A: Move w in the reverse direction from the slope of the function

Loss

one step

A of gradient
slope of loss at Wl/j d%scent

1s negative

So we'll move
positive

Gradients

The gradient of a function of many variables is a
vector pointing in the direction of the greatest
increase in a function.

Gradient Descent: Find the gradient of the loss
function at the current point and move in the
opposite direction.

How much do we move in that direction ?

* The value of the gradient (slope in our example)
%f(x; w) weighted by a learning rate n

* Higher learning rate means move w faster

Now let's consider N dimensions

We want to know where in the N-dimensional space

(of the N parameters that make up 6) we should
move.

The gradient is just such a vector; it expresses the
directional components of the sharpest slope along
each of the N dimensions.

Imagine 2 dimensions, w and b
Cost(w,b)

Visualizing the
gradient vector at
the red point

It has two
dimensions shown
in the x-y plane

Real gradients

Are much longer; lots and lots of weights

For each dimension w; the gradient component i
tells us the slope with respect to that variable.

o “How much would a small change in w; influence the
total loss function L?”

> We express the slope as a partial derivative 0 of the loss
ow,
The gradient is then defined as a vector of these
partials.

The gradient

We'll represent ¥ as f (x; 8) to make the dependence on 6 more
obvious: -) i,
7w L(f(x:0),y)

2 L(f(x;0
VoL(f(x:0)y) = |7 F)

L L(f(x:0).y)

The final equation for updating 06 based on the gradient is thus

611 = 6;—nVL(f(x:0),y)

What are these partial derivatives for logistic regression?

The loss function
Lce(9,y) = —[ylogo(w-x+b)+(1—y)log(1—0o(w-x+b))]

The elegant derivative of this function (see textbook 5.8 for derivation)

aLCE()?vy)
aWj

= [o(w-x+5)—yl;

function STOCHASTIC GRADIENT DESCENT(L(), f(), x, y) returns 0
where: L is the loss function
f is a function parameterized by 6
x 1s the set of training inputs x(l), x(z), e x(
y is the set of training outputs (labels) y(l), y(2), e y(m)

m)

60
repeat til done # see caption
For each training tuple (x()y) (in random order)

1. Optional (for reportmg) # How are we doing on this tuple?

Compute y y f (0) # What is our estimated output y?

Compute the loss L3t), y()) # How far off is $(!)) from the true output y()?
2. g+ VoL(f(x1D;0),y) # How should we move 6 to maximize loss?
3.0-060 —ng # Go the other way instead

return 6

Hyperparameters

The learning rate n is a hyperparameter
> too high: the learner will take big steps and overshoot
> too low: the learner will take too long

More on hyperparameters in Chapter 7
* Briefly, a special kind of parameter for an ML model

* |nstead of being learned by algorithm from
supervision (like regular parameters), they are
chosen by algorithm designer.

Stochastic Gradient Descent

Logistic
Regression

Stochastic Gradient Descent:
An example and more details

Logistic
Regression

Working through an example

One step of gradient descent
A mini-sentiment example, where the true y=1 (positive)

Two features:
x; =3 (count of positive lexicon words)
X, =2 (count of negative lexicon words)
Assume 3 parameters (2 weights and 1 bias) in @° are zero:
w;=w,=b =0
n=0.1

Example of gradient descent
w;=w,=b =0;
Update step for update 6 is: X, =3; Xy =2
011 = 6 —nVL(f(x;0),y)

aLCE ()/7\7)7)

where
8Wj

= [oc(w-x+b)—ylx;
Gradient vector has 3 dimensions:

8 Aa

o) o (w-x+b) —y)x; (6(0) —)x; —0.5x, 15
Vip = | 2 | = | (a(w-x+b)—y)xs | = | (6(0)=1)x, | = | =0.5x, | = | —1.0

Lcr(3.) G(w-x+b)—y c(0)—1 —0.5 —0.5

db

Example of gradient descent
TR (G(w-x+b) —y)x, (6(0) —)x; —0.5x; 15
Vi = | 2LBUD | — | (G(w-x+b)—y)xs | = | (6(0)=1)xa | = | —0.5x | = | —1.0
o)

d
&Lca];‘;f}?,y) (w-x+b)—y —0.5 —0.5

Now that we have a gradient, we compute the new parameter vector
01 by moving 8% in the opposite direction from the gradient:

6+1 = 6, —NVL(f(x;0),y) n=0.1
[wi | 1.5 .15 |
0'=|wr | —n|—-10]=].1
b | | -05] |.05

Note that enough negative examples would eventually make w, negative

Mini-batch training

Stochastic gradient descent chooses a single
random example at a time.

That can result in choppy movements

More common to compute gradient over batches of
training instances.

Batch training: entire dataset
Mini-batch training: m examples (512, or 1024)

Stochastic Gradient Descent:
An example and more details

Logistic
Regression

Regularization

Logistic
Regression

Overfitting

A model that perfectly matches the training data
may have a problem.

It may also overfit to the data, modeling noise:

> A random word that perfectly predicts y (it happens to
only occur in one class) will get a very high weight.

o Failing to generalize to a test set without this word.

A good model should be able to generalize.

Overflttlng Useful or harmless features

X1 = "this"
+
X2 = "movie
This movie drew me in, and it'll X3 = "hated"
do the same to you. X4 = "drew me in"
- 4gram features that just
| : I h hi "memorize” training set and
hcandt tﬁ_ you _ ow muck 9 might cause problems
ated this movie. It sucked. X5 = "the same to you"

X7 = "tell you how much”

Overfitting

4-gram model on tiny data will just memorize the data
o 100% accuracy on the training set

But it will be surprised by the novel 4-grams in the test data
o Low accuracy on test set

Models that are too powerful can overfit the data

o Fitting the details of the training data so exactly that the
model doesn't generalize well to the test set

° How to avoid overfitting?
o L2 and L1 Regularization in logistic regression
o Dropout in neural networks

Regularization

A solution for overfitting
Add a regularization term R(0) to the loss function

(for now written as maximizing logprob rather than minimizing loss)

6 = argmaleogP(y(i)|x(i))—OCR(G)
O =

ldea: choose an R(B) that penalizes large weights

o fitting the data well with lots of big weights not as good
as fitting the data a little less well, with small weights

L2 Regularization (= ridge regression)

The sum of the squares of the weights

The name is because this is the (square of the)
L2 norm ||0||,, = Euclidean distance of 0 to the origin.

R(6) = |l6]l=)_6;
=1

L2 regularized objective function:

6 = argmax {ZlogP } —06292

6 =1

L1 Regularization (= lasso regression)

The sum of the (absolute value of the) weights

Named after the L1 norm ||}7]|;, = sum of the absolute
values of the weights, = Manhanttan distance

R(6) = [16]|i =) |6
i=1

L1 regularized objective function:

0

6 = argmax ZlogP(y(i)\x(i))
1=

—a) 16;
j=1

Regularization

Logistic
Regression

Multinomial Logistic
Regression

Logistic
Regression

Multinomial Logistic Regression

Often we need more than 2 classes
> Positive/negative/neutral
o Parts of speech (noun, verb, adjective, adverb, preposition, etc.)
o Classify emergency SMSs into different actionable classes

If >2 classes we use multinomial logistic regression
= Softmax regression
= Multinomial logit
= (defunct names : Maximum entropy modeling or MaxEnt)

So "logistic regression” will just mean binary (2 output classes)

Multinomial Logistic Regression

The probability of everything must still sum to 1

P(positive|doc) + P(negativel|doc) + P(neutral|doc) =1

Need a generalization of the sigmoid called the softmax
o Takes a vector z = [71, 22, ..., zk] of k arbitrary values
o Qutputs a probability distribution
o each value in the range [0,1]
° all the values summing to 1

The softmax function

Turns a vector z = [z, z,, ... , ;] Of k arbitrary values into probabilities

exp (z;)
>t exp(z))

The denominator Zle e“ 1s used to normalize all the values into probabilities.

softmax(z;) 1<i<k

exp (z1) exp (22) o exp (zk)
S exp(z) Srexp(z) Sorjexp(z)

softmax(z) =

The softmax function

o Turns avector z =[z,25,...,2;] of k arbitrary values into probabilities

z=100.6,1.1,—1.5,1.2,3.2, —1.1]

exp (z1) exp (z2) exp (zx)

St exp(z) Soijexp(z) Sorexp(z)

softmax(z) =

0.055,0.090,0.0067,0.10,0.74,0.010]

Softmax in multinomial logistic regression

exp (we-x+b
ply=clx) = — e+ be)
Zexp(wj-x—l—bj)
j=1
Input is still the dot product between weight vector w

and input vector x
But now we’ll need separate weight vectors for each

of the K classes.

Features in binary versus multinomial logistic regression

Binary: pos weight =>y=1, neg weight =>y=0

1 1if “!” € doc
S { 0 otherwise :

Multinominal: separate weights for each class:

Feature Definition W5+ W5 _ W5

° 66',7
F5(x) {1 if mredoc a5 5 53

O otherwise

Multinomial Logistic
Regression

Logistic
Regression

1ot Precision, Recall, and F measure
Classification: ’ ’

Performance
Measures

Evaluation

Let's consider just binary text classification tasks
Imagine you're the CEO of Delicious Pie Company

You want to know what people are saying about
your pies
So you build a "Delicious Pie" tweet detector

o Positive class: tweets about Delicious Pie Co
o Negative class: all other tweets

The 2-by-2 confusion matrix

gold standard labels

positive~ gold negative

t ” » . t
system Sgssiteig}e true positive \ false positive | precision = " ff
output t - 4 'pTip
labels nsggsafir\l,le false negative)true negative
I\\ JII LT T T
| = | r ACCUracy =
:recall tp+fn | y tp+p+tn+in

Evaluation: Accuracy

Why don't we use accuracy as our metric?

Imagine we saw 1 million tweets
> 100 of them talked about Delicious Pie Co.
> 999,900 talked about something else

We could build a simple classifier that just labels every
tweet "not about pie"
o |t would get 99.99% accuracy!!!l Wow!!!!
o But useless! Doesn't return the comments we are looking for!
o That's why we use precision and recall instead

100 gold positive. 0 system positive

999,900 gold negative 1,000,000 system negative
tp=0 fp=0 =>P=0/(0+0)
fi=100 tn= 999,900 =>R=0/(0+100) = 0%
gold standard labels
gold positive gold negative
system oc e] . _:““““tb_“
system pc})]sitive true positive | false positive | precision = —=
output e PTIP

system : .
labels neygative false negative | true negative

accuracy =

tp+p+tnt+in

SRRTREE
@
€
&
J—
J—
I

Evaluation: Precision

% of items the system detected (i.e., items the
system labeled as positive) that are in fact positive
(according to the human gold labels)

true positives

Precision = — .
true positives + false positives

Evaluation: Recall

% of items actually present in the input that were
correctly identified by the system.

true positives

Recall = ” :
true positives + false negatives

Why Precision and recall

Our simple pie-classifier
o Just label nothing as "about pie"

Accuracy=99.99%
but

Recall =0
o (it doesn't get any of the 100 Pie tweets)

Precision and recall, unlike accuracy, emphasize true
positives:
° finding the things that we are supposed to be looking for.

A combined measure: F

F measure: a single number that combines P and R:

(B%>+1)PR
B?P+R

Fg =

We almost always use balanced F, (i.e., B =1)

Why not use Avg = (P + R)/2?
_ 2PR 1.P=70% R=70%
PLR 2.P=90% R =50%
T Same Avg = 70%, but different F,

F

Evaluation with more than two classes:
Confusion Matrix for 3-class classification

gold labels
urgent normal spam

TR
urgent 3 10 1 precisionu= ——-—
system ST 6
output normal 5 60 50 precisionn= ————
"""" . TTTT200
pam | 3 | 30 [200 | precision s

i recallu =i recalln =}recalls =
8 1 60 1 200

- 8+5+3 10+60+30 1+50+200

How to combine P/R from 3 classes to get one metric

Macro-averaging:

o compute the performance for each class, and then
average over classes

Micro-averaging:
> collect decisions for all classes into one confusion matrix
o compute precision and recall from that table.

Macro-averaging and Micro-averaging

Class 1: Urgent Class 2: Normal Class 3: Spam Pooled
true true true true true true true true
urgent not normal not spam not yes no
system system system system
argent| & | 11 normal| 60 | 55 spam | 200 | 33 yes | 268 | 99
system system system system
ynot 8 340 ynot 40 2 1 2 ynot 5 1 83 yno 99 63 5
60 200 :
precision = ——= 42 precision= —— =.52 precision= —— =, microaverage _ _208 73
8+11 60+55 200+33 precision 268+99
macroaverage _ -42+.52+.86 60

precision 3

Development Test Sets ("Devsets") and Cross-validation

Training set Development Test Set -

Train on training set, tune on devset, report on testset
o This avoids overfitting (‘tuning to the test set’)
> More conservative estimate of performance

o But paradox: want as much data as possible for training, and as
much for dev; how to split?

See more details here:
https://scikit-learn.org/stable/modules/cross_validation.html

https://scikit-learn.org/stable/modules/cross_validation.html

Cross-validation: multiple splits

Pool results over splits, Compute pooled dev performance

Training lterations

t

© 00 N OO 0o b~ W D

—_
o

Training

Training

Training

Training

Training

Training

Training

Training

Training

Training

Training

Testing

1ot Precision, Recall, and F measure
Classification: ’ ’

Performance
Measures

Recommended readings

* Chapter 5 (LR) in J&M.

* Section 2.5 (LR), section 4.1 (sentiment analysis),
and section 4.4 (evaluation measures) in Eisenstein.

https://web.stanford.edu/~jurafsky/slp3/5.pdf

