
Logistic
Regression

Background: Generative and
Discriminative Classifiers

Logistic Regression

Important analytic tool in natural and
social sciences
Baseline supervised machine learning
tool for classification
Is also the foundation of neural
networks

Generative and Discriminative Classifiers

Naïve Bayes is a generative classifier

by contrast:

Logistic regression is a discriminative
classifier

Generative and Discriminative Classifiers

Suppose we're distinguishing cat from dog images

imagenet imagenet

Generative Classifier:
• Build a model of what's in a cat image
• Knows about whiskers, ears, eyes
• Assigns a probability to any image:

• how cat-y is this image?

Also build a model for dog images

Now given a new image:
 Run both models and see which one fits better

Discriminative Classifier

Just try to distinguish dogs from cats

Oh look, dogs have collars!
Let's ignore everything else

Finding the correct class c from a document d in
Generative vs Discriminative Classifiers

Naive Bayes

Logistic Regression

7

2 CHAPTER 5 • LOGISTIC REGRESSION

More formally, recall that the naive Bayes assigns a class c to a document d not
by directly computing P(c|d) but by computing a likelihood and a prior

ĉ = argmax
c2C

likelihoodz }| {
P(d|c)

prior
z}|{
P(c) (5.1)

A generative model like naive Bayes makes use of this likelihood term, whichgenerative
model

expresses how to generate the features of a document if we knew it was of class c.
By contrast a discriminative model in this text categorization scenario attemptsdiscriminative

model
to directly compute P(c|d). Perhaps it will learn to assign high weight to document
features that directly improve its ability to discriminate between possible classes,
even if it couldn’t generate an example of one of the classes.

Components of a probabilistic machine learning classifier: Like naive Bayes,
logistic regression is a probabilistic classifier that makes use of supervised machine
learning. Machine learning classifiers require a training corpus of M observations
input/output pairs (x(i),y(i)). (We’ll use superscripts in parentheses to refer to indi-
vidual instances in the training set—for sentiment classification each instance might
be an individual document to be classified). A machine learning system for classifi-
cation then has four components:

1. A feature representation of the input. For each input observation x(i), this
will be a vector of features [x1,x2, ...,xn]. We will generally refer to feature
i for input x(j) as x(j)

i , sometimes simplified as xi, but we will also see the
notation fi, fi(x), or, for multiclass classification, fi(c,x).

2. A classification function that computes ŷ, the estimated class, via p(y|x). In
the next section we will introduce the sigmoid and softmax tools for classifi-
cation.

3. An objective function for learning, usually involving minimizing error on
training examples. We will introduce the cross-entropy loss function

4. An algorithm for optimizing the objective function. We introduce the stochas-
tic gradient descent algorithm.

Logistic regression has two phases:

training: we train the system (specifically the weights w and b) using stochastic
gradient descent and the cross-entropy loss.

test: Given a test example x we compute p(y|x) and return the higher probability
label y = 1 or y = 0.

5.1 Classification: the sigmoid

The goal of binary logistic regression is to train a classifier that can make a binary
decision about the class of a new input observation. Here we introduce the sigmoid
classifier that will help us make this decision.

Consider a single input observation x, which we will represent by a vector of
features [x1,x2, ...,xn] (we’ll show sample features in the next subsection). The clas-
sifier output y can be 1 (meaning the observation is a member of the class) or 0
(the observation is not a member of the class). We want to know the probability
P(y = 1|x) that this observation is a member of the class. So perhaps the decision

2 CHAPTER 5 • LOGISTIC REGRESSION

More formally, recall that the naive Bayes assigns a class c to a document d not
by directly computing P(c|d) but by computing a likelihood and a prior

ĉ = argmax
c2C

likelihoodz }| {
P(d|c)

prior
z}|{
P(c) (5.1)

A generative model like naive Bayes makes use of this likelihood term, whichgenerative
model

expresses how to generate the features of a document if we knew it was of class c.
By contrast a discriminative model in this text categorization scenario attemptsdiscriminative

model
to directly compute P(c|d). Perhaps it will learn to assign high weight to document
features that directly improve its ability to discriminate between possible classes,
even if it couldn’t generate an example of one of the classes.

Components of a probabilistic machine learning classifier: Like naive Bayes,
logistic regression is a probabilistic classifier that makes use of supervised machine
learning. Machine learning classifiers require a training corpus of M observations
input/output pairs (x(i),y(i)). (We’ll use superscripts in parentheses to refer to indi-
vidual instances in the training set—for sentiment classification each instance might
be an individual document to be classified). A machine learning system for classifi-
cation then has four components:

1. A feature representation of the input. For each input observation x(i), this
will be a vector of features [x1,x2, ...,xn]. We will generally refer to feature
i for input x(j) as x(j)

i , sometimes simplified as xi, but we will also see the
notation fi, fi(x), or, for multiclass classification, fi(c,x).

2. A classification function that computes ŷ, the estimated class, via p(y|x). In
the next section we will introduce the sigmoid and softmax tools for classifi-
cation.

3. An objective function for learning, usually involving minimizing error on
training examples. We will introduce the cross-entropy loss function

4. An algorithm for optimizing the objective function. We introduce the stochas-
tic gradient descent algorithm.

Logistic regression has two phases:

training: we train the system (specifically the weights w and b) using stochastic
gradient descent and the cross-entropy loss.

test: Given a test example x we compute p(y|x) and return the higher probability
label y = 1 or y = 0.

5.1 Classification: the sigmoid

The goal of binary logistic regression is to train a classifier that can make a binary
decision about the class of a new input observation. Here we introduce the sigmoid
classifier that will help us make this decision.

Consider a single input observation x, which we will represent by a vector of
features [x1,x2, ...,xn] (we’ll show sample features in the next subsection). The clas-
sifier output y can be 1 (meaning the observation is a member of the class) or 0
(the observation is not a member of the class). We want to know the probability
P(y = 1|x) that this observation is a member of the class. So perhaps the decision

P(c|d)
posterior

Components of a probabilistic machine
learning classifier

1. A feature representation of the input. For each input
observation x(j), a vector of features [x1, x2, ... , xn]. Feature i
for input x(j) is xi, more completely xi(j), or sometimes fi(x).

2. A classification function that computes !𝑦, the estimated
class, via p(y|x), like the sigmoid or softmax functions.

3. An objective function for learning, like cross-entropy loss.
4. An algorithm for optimizing the objective function:

stochastic gradient descent.

Given m input/output pairs (x(i),y(i)):

The two phases of Logistic Regression

Training: we learn weights w and b using stochastic
gradient descent to minimize cross-entropy loss.

Test: Given a test example x we compute p(y|x)
using learned weights w and b, and return
whichever label (y = 1 or y = 0) has higher probability

P(y = 1|x) + P(y = 0|x) = 1.0
P(y = 1|x) > P(y = 0|x)

<=> P(y=1|x) > 0.5

Logistic
Regression

Background: Generative and
Discriminative Classifiers

Logistic
Regression

Classification with Logistic
Regression

Classification Reminder

Positive/negative sentiment
Spam/not spam
Authorship attribution
(Hamilton or Madison?)

Alexander Hamilton

Text Classification: definition

Input:
◦ a document x
◦ a fixed set of classes C = {c1, c2,…, cJ}

Output: a predicted class !𝑦 Î C

Binary Classification in Logistic Regression

Given a series of input/output pairs:
◦ (x(i), y(i))

For each observation x(i)
◦ We represent x(i) by a feature vector [x1, x2,…, xn]
◦ We compute an output: a predicted class y(i) Î {0,1}^

Features in logistic regression

• For feature xi, weight wi tells how important is xi
• xi ="review contains ‘awesome’": wi = +10
• xj ="review contains ‘abysmal’": wj = -10
• xk =“review contains ‘mediocre’": wk = -2

Logistic Regression for one observation x

Input observation: vector x = [x1, x2,…, xn]
Weights: one per feature: w = [w1, w2,…, wn]
◦ Sometimes we call the weights θ = [θ1, θ2,…, θn]

Output: a predicted class !𝑦	Î {0,1}

(multinomial logistic regression: y Î {0, 1, 2, 3, 4})

How to do classification

For each feature xi, weight wi tells us importance of xi
◦ (Plus we'll have a bias b)

We'll sum up all the weighted features and the bias

If this sum is high, we say y=1; if low, then y=0

5.1 • CLASSIFICATION: THE SIGMOID 3

is “positive sentiment” versus “negative sentiment”, the features represent counts
of words in a document, and P(y = 1|x) is the probability that the document has
positive sentiment, while and P(y = 0|x) is the probability that the document has
negative sentiment.

Logistic regression solves this task by learning, from a training set, a vector of
weights and a bias term. Each weight wi is a real number, and is associated with one
of the input features xi. The weight wi represents how important that input feature is
to the classification decision, and can be positive (meaning the feature is associated
with the class) or negative (meaning the feature is not associated with the class).
Thus we might expect in a sentiment task the word awesome to have a high positive
weight, and abysmal to have a very negative weight. The bias term, also called thebias term
intercept, is another real number that’s added to the weighted inputs.intercept

To make a decision on a test instance— after we’ve learned the weights in
training— the classifier first multiplies each xi by its weight wi, sums up the weighted
features, and adds the bias term b. The resulting single number z expresses the
weighted sum of the evidence for the class.

z =

 nX

i=1

wixi

!
+b (5.2)

In the rest of the book we’ll represent such sums using the dot product notation fromdot product

linear algebra. The dot product of two vectors a and b, written as a ·b is the sum of
the products of the corresponding elements of each vector. Thus the following is an
equivalent formation to Eq. 5.2:

z = w · x+b (5.3)

But note that nothing in Eq. 5.3 forces z to be a legal probability, that is, to lie
between 0 and 1. In fact, since weights are real-valued, the output might even be
negative; z ranges from �• to •.

Figure 5.1 The sigmoid function y= 1
1+e�z takes a real value and maps it to the range [0,1].

Because it is nearly linear around 0 but has a sharp slope toward the ends, it tends to squash
outlier values toward 0 or 1.

To create a probability, we’ll pass z through the sigmoid function, s(z). Thesigmoid

sigmoid function (named because it looks like an s) is also called the logistic func-
tion, and gives logistic regression its name. The sigmoid has the following equation,logistic

function
shown graphically in Fig. 5.1:

y = s(z) =
1

1+ e�z (5.4)

5.1 • CLASSIFICATION: THE SIGMOID 3

is “positive sentiment” versus “negative sentiment”, the features represent counts
of words in a document, and P(y = 1|x) is the probability that the document has
positive sentiment, while and P(y = 0|x) is the probability that the document has
negative sentiment.

Logistic regression solves this task by learning, from a training set, a vector of
weights and a bias term. Each weight wi is a real number, and is associated with one
of the input features xi. The weight wi represents how important that input feature is
to the classification decision, and can be positive (meaning the feature is associated
with the class) or negative (meaning the feature is not associated with the class).
Thus we might expect in a sentiment task the word awesome to have a high positive
weight, and abysmal to have a very negative weight. The bias term, also called thebias term
intercept, is another real number that’s added to the weighted inputs.intercept

To make a decision on a test instance— after we’ve learned the weights in
training— the classifier first multiplies each xi by its weight wi, sums up the weighted
features, and adds the bias term b. The resulting single number z expresses the
weighted sum of the evidence for the class.

z =

 nX

i=1

wixi

!
+b (5.2)

In the rest of the book we’ll represent such sums using the dot product notation fromdot product

linear algebra. The dot product of two vectors a and b, written as a ·b is the sum of
the products of the corresponding elements of each vector. Thus the following is an
equivalent formation to Eq. 5.2:

z = w · x+b (5.3)

But note that nothing in Eq. 5.3 forces z to be a legal probability, that is, to lie
between 0 and 1. In fact, since weights are real-valued, the output might even be
negative; z ranges from �• to •.

Figure 5.1 The sigmoid function y= 1
1+e�z takes a real value and maps it to the range [0,1].

Because it is nearly linear around 0 but has a sharp slope toward the ends, it tends to squash
outlier values toward 0 or 1.

To create a probability, we’ll pass z through the sigmoid function, s(z). Thesigmoid

sigmoid function (named because it looks like an s) is also called the logistic func-
tion, and gives logistic regression its name. The sigmoid has the following equation,logistic

function
shown graphically in Fig. 5.1:

y = s(z) =
1

1+ e�z (5.4)

But we want a probabilistic classifier

We need to formalize “sum is high”.
We’d like a principled classifier that gives us a
probability, just like Naive Bayes did
We want a model that can tell us:

p(y=1|x; θ)
p(y=0|x; θ)

The problem: z isn't a probability, it's just a
number!

Solution: use a function of z that goes from 0 to 1

5.1 • CLASSIFICATION: THE SIGMOID 3

is “positive sentiment” versus “negative sentiment”, the features represent counts
of words in a document, and P(y = 1|x) is the probability that the document has
positive sentiment, while and P(y = 0|x) is the probability that the document has
negative sentiment.

Logistic regression solves this task by learning, from a training set, a vector of
weights and a bias term. Each weight wi is a real number, and is associated with one
of the input features xi. The weight wi represents how important that input feature is
to the classification decision, and can be positive (meaning the feature is associated
with the class) or negative (meaning the feature is not associated with the class).
Thus we might expect in a sentiment task the word awesome to have a high positive
weight, and abysmal to have a very negative weight. The bias term, also called thebias term
intercept, is another real number that’s added to the weighted inputs.intercept

To make a decision on a test instance— after we’ve learned the weights in
training— the classifier first multiplies each xi by its weight wi, sums up the weighted
features, and adds the bias term b. The resulting single number z expresses the
weighted sum of the evidence for the class.

z =

 nX

i=1

wixi

!
+b (5.2)

In the rest of the book we’ll represent such sums using the dot product notation fromdot product

linear algebra. The dot product of two vectors a and b, written as a ·b is the sum of
the products of the corresponding elements of each vector. Thus the following is an
equivalent formation to Eq. 5.2:

z = w · x+b (5.3)

But note that nothing in Eq. 5.3 forces z to be a legal probability, that is, to lie
between 0 and 1. In fact, since weights are real-valued, the output might even be
negative; z ranges from �• to •.

Figure 5.1 The sigmoid function y= 1
1+e�z takes a real value and maps it to the range [0,1].

Because it is nearly linear around 0 but has a sharp slope toward the ends, it tends to squash
outlier values toward 0 or 1.

To create a probability, we’ll pass z through the sigmoid function, s(z). Thesigmoid

sigmoid function (named because it looks like an s) is also called the logistic func-
tion, and gives logistic regression its name. The sigmoid has the following equation,logistic

function
shown graphically in Fig. 5.1:

y = s(z) =
1

1+ e�z (5.4)

5.1 • CLASSIFICATION: THE SIGMOID 3

sentiment” versus “negative sentiment”, the features represent counts of words in a
document, P(y = 1|x) is the probability that the document has positive sentiment,
and P(y = 0|x) is the probability that the document has negative sentiment.

Logistic regression solves this task by learning, from a training set, a vector of
weights and a bias term. Each weight wi is a real number, and is associated with one
of the input features xi. The weight wi represents how important that input feature
is to the classification decision, and can be positive (providing evidence that the in-
stance being classified belongs in the positive class) or negative (providing evidence
that the instance being classified belongs in the negative class). Thus we might
expect in a sentiment task the word awesome to have a high positive weight, and
abysmal to have a very negative weight. The bias term, also called the intercept, isbias term

intercept another real number that’s added to the weighted inputs.
To make a decision on a test instance— after we’ve learned the weights in

training— the classifier first multiplies each xi by its weight wi, sums up the weighted
features, and adds the bias term b. The resulting single number z expresses the
weighted sum of the evidence for the class.

z =

 nX

i=1

wixi

!
+b (5.2)

In the rest of the book we’ll represent such sums using the dot product notation fromdot product

linear algebra. The dot product of two vectors a and b, written as a ·b is the sum of
the products of the corresponding elements of each vector. Thus the following is an
equivalent formation to Eq. 5.2:

z = w · x+b (5.3)

But note that nothing in Eq. 5.3 forces z to be a legal probability, that is, to lie
between 0 and 1. In fact, since weights are real-valued, the output might even be
negative; z ranges from �• to •.

Figure 5.1 The sigmoid function y= 1
1+e�z takes a real value and maps it to the range [0,1].

It is nearly linear around 0 but outlier values get squashed toward 0 or 1.

To create a probability, we’ll pass z through the sigmoid function, s(z). Thesigmoid

sigmoid function (named because it looks like an s) is also called the logistic func-
tion, and gives logistic regression its name. The sigmoid has the following equation,logistic

function
shown graphically in Fig. 5.1:

y = s(z) =
1

1+ e�z =
1

1+ exp(�z)
(5.4)

(For the rest of the book, we’ll use the notation exp(x) to mean ex.) The sigmoid
has a number of advantages; it takes a real-valued number and maps it into the range

!𝑦

The very useful sigmoid or logistic function

20

5.1 • CLASSIFICATION: THE SIGMOID 3

is “positive sentiment” versus “negative sentiment”, the features represent counts
of words in a document, and P(y = 1|x) is the probability that the document has
positive sentiment, while and P(y = 0|x) is the probability that the document has
negative sentiment.

Logistic regression solves this task by learning, from a training set, a vector of
weights and a bias term. Each weight wi is a real number, and is associated with one
of the input features xi. The weight wi represents how important that input feature is
to the classification decision, and can be positive (meaning the feature is associated
with the class) or negative (meaning the feature is not associated with the class).
Thus we might expect in a sentiment task the word awesome to have a high positive
weight, and abysmal to have a very negative weight. The bias term, also called thebias term
intercept, is another real number that’s added to the weighted inputs.intercept

To make a decision on a test instance— after we’ve learned the weights in
training— the classifier first multiplies each xi by its weight wi, sums up the weighted
features, and adds the bias term b. The resulting single number z expresses the
weighted sum of the evidence for the class.

z =

 nX

i=1

wixi

!
+b (5.2)

In the rest of the book we’ll represent such sums using the dot product notation fromdot product

linear algebra. The dot product of two vectors a and b, written as a ·b is the sum of
the products of the corresponding elements of each vector. Thus the following is an
equivalent formation to Eq. 5.2:

z = w · x+b (5.3)

But note that nothing in Eq. 5.3 forces z to be a legal probability, that is, to lie
between 0 and 1. In fact, since weights are real-valued, the output might even be
negative; z ranges from �• to •.

Figure 5.1 The sigmoid function y= 1
1+e�z takes a real value and maps it to the range [0,1].

Because it is nearly linear around 0 but has a sharp slope toward the ends, it tends to squash
outlier values toward 0 or 1.

To create a probability, we’ll pass z through the sigmoid function, s(z). Thesigmoid

sigmoid function (named because it looks like an s) is also called the logistic func-
tion, and gives logistic regression its name. The sigmoid has the following equation,logistic

function
shown graphically in Fig. 5.1:

y = s(z) =
1

1+ e�z (5.4)

5.1 • CLASSIFICATION: THE SIGMOID 3

is “positive sentiment” versus “negative sentiment”, the features represent counts
of words in a document, and P(y = 1|x) is the probability that the document has
positive sentiment, while and P(y = 0|x) is the probability that the document has
negative sentiment.

Logistic regression solves this task by learning, from a training set, a vector of
weights and a bias term. Each weight wi is a real number, and is associated with one
of the input features xi. The weight wi represents how important that input feature is
to the classification decision, and can be positive (meaning the feature is associated
with the class) or negative (meaning the feature is not associated with the class).
Thus we might expect in a sentiment task the word awesome to have a high positive
weight, and abysmal to have a very negative weight. The bias term, also called thebias term
intercept, is another real number that’s added to the weighted inputs.intercept

To make a decision on a test instance— after we’ve learned the weights in
training— the classifier first multiplies each xi by its weight wi, sums up the weighted
features, and adds the bias term b. The resulting single number z expresses the
weighted sum of the evidence for the class.

z =

 nX

i=1

wixi

!
+b (5.2)

In the rest of the book we’ll represent such sums using the dot product notation fromdot product

linear algebra. The dot product of two vectors a and b, written as a ·b is the sum of
the products of the corresponding elements of each vector. Thus the following is an
equivalent formation to Eq. 5.2:

z = w · x+b (5.3)

But note that nothing in Eq. 5.3 forces z to be a legal probability, that is, to lie
between 0 and 1. In fact, since weights are real-valued, the output might even be
negative; z ranges from �• to •.

Figure 5.1 The sigmoid function y= 1
1+e�z takes a real value and maps it to the range [0,1].

Because it is nearly linear around 0 but has a sharp slope toward the ends, it tends to squash
outlier values toward 0 or 1.

To create a probability, we’ll pass z through the sigmoid function, s(z). Thesigmoid

sigmoid function (named because it looks like an s) is also called the logistic func-
tion, and gives logistic regression its name. The sigmoid has the following equation,logistic

function
shown graphically in Fig. 5.1:

y = s(z) =
1

1+ e�z (5.4)!𝑦
!𝑦

Idea of logistic regression

We’ll compute w∙x+b
And then we’ll pass it through the
sigmoid function:
 σ(w∙x+b)
And we’ll just treat it as a probability

Making probabilities with sigmoids

4 CHAPTER 5 • LOGISTIC REGRESSION

[0,1], which is just what we want for a probability. Because it is nearly linear around
0 but flattens toward the ends, it tends to squash outlier values toward 0 or 1. And
it’s differentiable, which as we’ll see in Section 5.8 will be handy for learning.

We’re almost there. If we apply the sigmoid to the sum of the weighted features,
we get a number between 0 and 1. To make it a probability, we just need to make
sure that the two cases, p(y = 1) and p(y = 0), sum to 1. We can do this as follows:

P(y = 1) = s(w · x+b)

=
1

1+ exp(�(w · x+b))

P(y = 0) = 1�s(w · x+b)

= 1� 1
1+ exp(�(w · x+b))

=
exp(�(w · x+b))

1+ exp(�(w · x+b))
(5.5)

The sigmoid function has the property

1�s(x) = s(�x) (5.6)

so we could also have expressed P(y = 0) as s(�(w · x+b)).
Now we have an algorithm that given an instance x computes the probability

P(y = 1|x). How do we make a decision? For a test instance x, we say yes if the
probability P(y = 1|x) is more than .5, and no otherwise. We call .5 the decision
boundary:decision

boundary

ŷ =

⇢
1 if P(y = 1|x)> 0.5
0 otherwise

5.1.1 Example: sentiment classification
Let’s have an example. Suppose we are doing binary sentiment classification on
movie review text, and we would like to know whether to assign the sentiment class
+ or � to a review document doc. We’ll represent each input observation by the 6
features x1...x6 of the input shown in the following table; Fig. 5.2 shows the features
in a sample mini test document.

Var Definition Value in Fig. 5.2
x1 count(positive lexicon) 2 doc) 3
x2 count(negative lexicon) 2 doc) 2

x3

⇢
1 if “no” 2 doc
0 otherwise 1

x4 count(1st and 2nd pronouns 2 doc) 3

x5

⇢
1 if “!” 2 doc
0 otherwise 0

x6 log(word count of doc) ln(66) = 4.19

Let’s assume for the moment that we’ve already learned a real-valued weight for
each of these features, and that the 6 weights corresponding to the 6 features are
[2.5,�5.0,�1.2,0.5,2.0,0.7], while b = 0.1. (We’ll discuss in the next section how

4 CHAPTER 5 • LOGISTIC REGRESSION

[0,1], which is just what we want for a probability. Because it is nearly linear around
0 but flattens toward the ends, it tends to squash outlier values toward 0 or 1. And
it’s differentiable, which as we’ll see in Section 5.8 will be handy for learning.

We’re almost there. If we apply the sigmoid to the sum of the weighted features,
we get a number between 0 and 1. To make it a probability, we just need to make
sure that the two cases, p(y = 1) and p(y = 0), sum to 1. We can do this as follows:

P(y = 1) = s(w · x+b)

=
1

1+ exp(�(w · x+b))

P(y = 0) = 1�s(w · x+b)

= 1� 1
1+ exp(�(w · x+b))

=
exp(�(w · x+b))

1+ exp(�(w · x+b))
(5.5)

The sigmoid function has the property

1�s(x) = s(�x) (5.6)

so we could also have expressed P(y = 0) as s(�(w · x+b)).
Now we have an algorithm that given an instance x computes the probability

P(y = 1|x). How do we make a decision? For a test instance x, we say yes if the
probability P(y = 1|x) is more than .5, and no otherwise. We call .5 the decision
boundary:decision

boundary

ŷ =

⇢
1 if P(y = 1|x)> 0.5
0 otherwise

5.1.1 Example: sentiment classification
Let’s have an example. Suppose we are doing binary sentiment classification on
movie review text, and we would like to know whether to assign the sentiment class
+ or � to a review document doc. We’ll represent each input observation by the 6
features x1...x6 of the input shown in the following table; Fig. 5.2 shows the features
in a sample mini test document.

Var Definition Value in Fig. 5.2
x1 count(positive lexicon) 2 doc) 3
x2 count(negative lexicon) 2 doc) 2

x3

⇢
1 if “no” 2 doc
0 otherwise 1

x4 count(1st and 2nd pronouns 2 doc) 3

x5

⇢
1 if “!” 2 doc
0 otherwise 0

x6 log(word count of doc) ln(66) = 4.19

Let’s assume for the moment that we’ve already learned a real-valued weight for
each of these features, and that the 6 weights corresponding to the 6 features are
[2.5,�5.0,�1.2,0.5,2.0,0.7], while b = 0.1. (We’ll discuss in the next section how

4 CHAPTER 5 • LOGISTIC REGRESSION

[0,1], which is just what we want for a probability. Because it is nearly linear around
0 but flattens toward the ends, it tends to squash outlier values toward 0 or 1. And
it’s differentiable, which as we’ll see in Section 5.8 will be handy for learning.

We’re almost there. If we apply the sigmoid to the sum of the weighted features,
we get a number between 0 and 1. To make it a probability, we just need to make
sure that the two cases, p(y = 1) and p(y = 0), sum to 1. We can do this as follows:

P(y = 1) = s(w · x+b)

=
1

1+ exp(�(w · x+b))

P(y = 0) = 1�s(w · x+b)

= 1� 1
1+ exp(�(w · x+b))

=
exp(�(w · x+b))

1+ exp(�(w · x+b))
(5.5)

The sigmoid function has the property

1�s(x) = s(�x) (5.6)

so we could also have expressed P(y = 0) as s(�(w · x+b)).
Now we have an algorithm that given an instance x computes the probability

P(y = 1|x). How do we make a decision? For a test instance x, we say yes if the
probability P(y = 1|x) is more than .5, and no otherwise. We call .5 the decision
boundary:decision

boundary

ŷ =

⇢
1 if P(y = 1|x)> 0.5
0 otherwise

5.1.1 Example: sentiment classification
Let’s have an example. Suppose we are doing binary sentiment classification on
movie review text, and we would like to know whether to assign the sentiment class
+ or � to a review document doc. We’ll represent each input observation by the 6
features x1...x6 of the input shown in the following table; Fig. 5.2 shows the features
in a sample mini test document.

Var Definition Value in Fig. 5.2
x1 count(positive lexicon) 2 doc) 3
x2 count(negative lexicon) 2 doc) 2

x3

⇢
1 if “no” 2 doc
0 otherwise 1

x4 count(1st and 2nd pronouns 2 doc) 3

x5

⇢
1 if “!” 2 doc
0 otherwise 0

x6 log(word count of doc) ln(66) = 4.19

Let’s assume for the moment that we’ve already learned a real-valued weight for
each of these features, and that the 6 weights corresponding to the 6 features are
[2.5,�5.0,�1.2,0.5,2.0,0.7], while b = 0.1. (We’ll discuss in the next section how

=

Turning a probability into a classifier

4 CHAPTER 5 • LOGISTIC REGRESSION

The sigmoid has a number of advantages; it take a real-valued number and maps
it into the range [0,1], which is just what we want for a probability. Because it is
nearly linear around 0 but has a sharp slope toward the ends, it tends to squash outlier
values toward 0 or 1. And it’s differentiable, which as we’ll see in Section 5.8 will
be handy for learning.

We’re almost there. If we apply the sigmoid to the sum of the weighted features,
we get a number between 0 and 1. To make it a probability, we just need to make
sure that the two cases, p(y = 1) and p(y = 0), sum to 1. We can do this as follows:

P(y = 1) = s(w · x+b)

=
1

1+ e�(w·x+b)

P(y = 0) = 1�s(w · x+b)

= 1� 1
1+ e�(w·x+b)

=
e�(w·x+b)

1+ e�(w·x+b) (5.5)

Now we have an algorithm that given an instance x computes the probability
P(y = 1|x). How do we make a decision? For a test instance x, we say yes if the
probability P(y = 1|x) is more than .5, and no otherwise. We call .5 the decision
boundary:decision

boundary

ŷ =
⇢

1 if P(y = 1|x)> 0.5
0 otherwise

5.1.1 Example: sentiment classification
Let’s have an example. Suppose we are doing binary sentiment classification on
movie review text, and we would like to know whether to assign the sentiment class
+ or � to a review document doc. We’ll represent each input observation by the
following 6 features x1...x6 of the input; Fig. 5.2 shows the features in a sample mini
test document.

Var Definition Value in Fig. 5.2
x1 count(positive lexicon) 2 doc) 3
x2 count(negative lexicon) 2 doc) 2

x3

⇢
1 if “no” 2 doc
0 otherwise 1

x4 count(1st and 2nd pronouns 2 doc) 3

x5

⇢
1 if “!” 2 doc
0 otherwise 0

x6 log(word count of doc) ln(64) = 4.15

Let’s assume for the moment that we’ve already learned a real-valued weight
for each of these features, and that the 6 weights corresponding to the 6 features
are [2.5,�5.0,�1.2,0.5,2.0,0.7], while b = 0.1. (We’ll discuss in the next section
how the weights are learned.) The weight w1, for example indicates how important

0.5 here is called the decision threshold

Prediction
if w∙x+b > 0

if w∙x+b ≤ 0

4 CHAPTER 5 • LOGISTIC REGRESSION

The sigmoid has a number of advantages; it take a real-valued number and maps
it into the range [0,1], which is just what we want for a probability. Because it is
nearly linear around 0 but has a sharp slope toward the ends, it tends to squash outlier
values toward 0 or 1. And it’s differentiable, which as we’ll see in Section 5.8 will
be handy for learning.

We’re almost there. If we apply the sigmoid to the sum of the weighted features,
we get a number between 0 and 1. To make it a probability, we just need to make
sure that the two cases, p(y = 1) and p(y = 0), sum to 1. We can do this as follows:

P(y = 1) = s(w · x+b)

=
1

1+ e�(w·x+b)

P(y = 0) = 1�s(w · x+b)

= 1� 1
1+ e�(w·x+b)

=
e�(w·x+b)

1+ e�(w·x+b) (5.5)

Now we have an algorithm that given an instance x computes the probability
P(y = 1|x). How do we make a decision? For a test instance x, we say yes if the
probability P(y = 1|x) is more than .5, and no otherwise. We call .5 the decision
boundary:decision

boundary

ŷ =
⇢

1 if P(y = 1|x)> 0.5
0 otherwise

5.1.1 Example: sentiment classification
Let’s have an example. Suppose we are doing binary sentiment classification on
movie review text, and we would like to know whether to assign the sentiment class
+ or � to a review document doc. We’ll represent each input observation by the
following 6 features x1...x6 of the input; Fig. 5.2 shows the features in a sample mini
test document.

Var Definition Value in Fig. 5.2
x1 count(positive lexicon) 2 doc) 3
x2 count(negative lexicon) 2 doc) 2

x3

⇢
1 if “no” 2 doc
0 otherwise 1

x4 count(1st and 2nd pronouns 2 doc) 3

x5

⇢
1 if “!” 2 doc
0 otherwise 0

x6 log(word count of doc) ln(64) = 4.15

Let’s assume for the moment that we’ve already learned a real-valued weight
for each of these features, and that the 6 weights corresponding to the 6 features
are [2.5,�5.0,�1.2,0.5,2.0,0.7], while b = 0.1. (We’ll discuss in the next section
how the weights are learned.) The weight w1, for example indicates how important

The LR classifier

5.1 • CLASSIFICATION: THE SIGMOID 3

is “positive sentiment” versus “negative sentiment”, the features represent counts
of words in a document, and P(y = 1|x) is the probability that the document has
positive sentiment, while and P(y = 0|x) is the probability that the document has
negative sentiment.

Logistic regression solves this task by learning, from a training set, a vector of
weights and a bias term. Each weight wi is a real number, and is associated with one
of the input features xi. The weight wi represents how important that input feature is
to the classification decision, and can be positive (meaning the feature is associated
with the class) or negative (meaning the feature is not associated with the class).
Thus we might expect in a sentiment task the word awesome to have a high positive
weight, and abysmal to have a very negative weight. The bias term, also called thebias term
intercept, is another real number that’s added to the weighted inputs.intercept

To make a decision on a test instance— after we’ve learned the weights in
training— the classifier first multiplies each xi by its weight wi, sums up the weighted
features, and adds the bias term b. The resulting single number z expresses the
weighted sum of the evidence for the class.

z =

 nX

i=1

wixi

!
+b (5.2)

In the rest of the book we’ll represent such sums using the dot product notation fromdot product

linear algebra. The dot product of two vectors a and b, written as a ·b is the sum of
the products of the corresponding elements of each vector. Thus the following is an
equivalent formation to Eq. 5.2:

z = w · x+b (5.3)

But note that nothing in Eq. 5.3 forces z to be a legal probability, that is, to lie
between 0 and 1. In fact, since weights are real-valued, the output might even be
negative; z ranges from �• to •.

Figure 5.1 The sigmoid function y= 1
1+e�z takes a real value and maps it to the range [0,1].

Because it is nearly linear around 0 but has a sharp slope toward the ends, it tends to squash
outlier values toward 0 or 1.

To create a probability, we’ll pass z through the sigmoid function, s(z). Thesigmoid

sigmoid function (named because it looks like an s) is also called the logistic func-
tion, and gives logistic regression its name. The sigmoid has the following equation,logistic

function
shown graphically in Fig. 5.1:

y = s(z) =
1

1+ e�z (5.4)

z = w⋅ x + b

!𝑦 =

Logistic
Regression

Classification in Logistic
Regression

Logistic
Regression

Logistic Regression:
Sentiment Classification

Sentiment example: does y=1 or y=0?

It's hokey . There are virtually no surprises , and the writing is second-rate .
So why was it so enjoyable ? For one thing , the cast is
great . Another nice touch is the music . I was overcome with the urge to get off
the couch and start dancing . It sucked me in , and it'll do the same to you .

27

28

5.1 • CLASSIFICATION: THE SIGMOID 5

 It's hokey . There are virtually no surprises , and the writing is second-rate .
So why was it so enjoyable ? For one thing , the cast is
 great . Another nice touch is the music . I was overcome with the urge to get off
 the couch and start dancing . It sucked me in , and it'll do the same to you .

x1=3 x6=4.19

x3=1

x4=3x5=0

x2=2

Figure 5.2 A sample mini test document showing the extracted features in the vector x.

Given these 6 features and the input review x, P(+|x) and P(�|x) can be com-
puted using Eq. 5.5:

p(+|x) = P(Y = 1|x) = s(w · x+b)
= s([2.5,�5.0,�1.2,0.5,2.0,0.7] · [3,2,1,3,0,4.19]+0.1)
= s(.833)
= 0.70 (5.6)

p(�|x) = P(Y = 0|x) = 1�s(w · x+b)
= 0.30

Logistic regression is commonly applied to all sorts of NLP tasks, and any property
of the input can be a feature. Consider the task of period disambiguation: deciding
if a period is the end of a sentence or part of a word, by classifying each period
into one of two classes EOS (end-of-sentence) and not-EOS. We might use features
like x1 below expressing that the current word is lower case and the class is EOS
(perhaps with a positive weight), or that the current word is in our abbreviations
dictionary (“Prof.”) and the class is EOS (perhaps with a negative weight). A feature
can also express a quite complex combination of properties. For example a period
following an upper case word is likely to be an EOS, but if the word itself is St. and
the previous word is capitalized, then the period is likely part of a shortening of the
word street.

x1 =

⇢
1 if “Case(wi) = Lower”
0 otherwise

x2 =

⇢
1 if “wi 2 AcronymDict”
0 otherwise

x3 =

⇢
1 if “wi = St. & Case(wi�1) = Cap”
0 otherwise

Designing features: Features are generally designed by examining the training
set with an eye to linguistic intuitions and the linguistic literature on the domain. A
careful error analysis on the training set or devset of an early version of a system
often provides insights into features.

For some tasks it is especially helpful to build complex features that are combi-
nations of more primitive features. We saw such a feature for period disambiguation
above, where a period on the word St. was less likely to be the end of the sentence
if the previous word was capitalized. For logistic regression and naive Bayes these
combination features or feature interactions have to be designed by hand.feature

interactions

4 CHAPTER 5 • LOGISTIC REGRESSION

nearly linear around 0 but has a sharp slope toward the ends, it tends to squash outlier
values toward 0 or 1. And it’s differentiable, which as we’ll see in Section 5.8 will
be handy for learning.

We’re almost there. If we apply the sigmoid to the sum of the weighted features,
we get a number between 0 and 1. To make it a probability, we just need to make
sure that the two cases, p(y = 1) and p(y = 0), sum to 1. We can do this as follows:

P(y = 1) = s(w · x+b)

=
1

1+ e�(w·x+b)

P(y = 0) = 1�s(w · x+b)

= 1� 1
1+ e�(w·x+b)

=
e�(w·x+b)

1+ e�(w·x+b) (5.5)

Now we have an algorithm that given an instance x computes the probability P(y =
1|x). How do we make a decision? For a test instance x, we say yes if the probability
P(y = 1|x) is more than .5, and no otherwise. We call .5 the decision boundary:decision

boundary

ŷ =

⇢
1 if P(y = 1|x)> 0.5
0 otherwise

5.1.1 Example: sentiment classification
Let’s have an example. Suppose we are doing binary sentiment classification on
movie review text, and we would like to know whether to assign the sentiment class
+ or � to a review document doc. We’ll represent each input observation by the 6
features x1...x6 of the input shown in the following table; Fig. 5.2 shows the features
in a sample mini test document.

Var Definition Value in Fig. 5.2
x1 count(positive lexicon) 2 doc) 3
x2 count(negative lexicon) 2 doc) 2

x3

⇢
1 if “no” 2 doc
0 otherwise 1

x4 count(1st and 2nd pronouns 2 doc) 3

x5

⇢
1 if “!” 2 doc
0 otherwise 0

x6 log(word count of doc) ln(66) = 4.19

Let’s assume for the moment that we’ve already learned a real-valued weight for
each of these features, and that the 6 weights corresponding to the 6 features are
[2.5,�5.0,�1.2,0.5,2.0,0.7], while b = 0.1. (We’ll discuss in the next section how
the weights are learned.) The weight w1, for example indicates how important a
feature the number of positive lexicon words (great, nice, enjoyable, etc.) is to
a positive sentiment decision, while w2 tells us the importance of negative lexicon
words. Note that w1 = 2.5 is positive, while w2 =�5.0, meaning that negative words
are negatively associated with a positive sentiment decision, and are about twice as
important as positive words.

Classifying sentiment for input x

29

4 CHAPTER 5 • LOGISTIC REGRESSION

nearly linear around 0 but has a sharp slope toward the ends, it tends to squash outlier
values toward 0 or 1. And it’s differentiable, which as we’ll see in Section 5.8 will
be handy for learning.

We’re almost there. If we apply the sigmoid to the sum of the weighted features,
we get a number between 0 and 1. To make it a probability, we just need to make
sure that the two cases, p(y = 1) and p(y = 0), sum to 1. We can do this as follows:

P(y = 1) = s(w · x+b)

=
1

1+ e�(w·x+b)

P(y = 0) = 1�s(w · x+b)

= 1� 1
1+ e�(w·x+b)

=
e�(w·x+b)

1+ e�(w·x+b) (5.5)

Now we have an algorithm that given an instance x computes the probability P(y =
1|x). How do we make a decision? For a test instance x, we say yes if the probability
P(y = 1|x) is more than .5, and no otherwise. We call .5 the decision boundary:decision

boundary

ŷ =

⇢
1 if P(y = 1|x)> 0.5
0 otherwise

5.1.1 Example: sentiment classification
Let’s have an example. Suppose we are doing binary sentiment classification on
movie review text, and we would like to know whether to assign the sentiment class
+ or � to a review document doc. We’ll represent each input observation by the 6
features x1...x6 of the input shown in the following table; Fig. 5.2 shows the features
in a sample mini test document.

Var Definition Value in Fig. 5.2
x1 count(positive lexicon) 2 doc) 3
x2 count(negative lexicon) 2 doc) 2

x3

⇢
1 if “no” 2 doc
0 otherwise 1

x4 count(1st and 2nd pronouns 2 doc) 3

x5

⇢
1 if “!” 2 doc
0 otherwise 0

x6 log(word count of doc) ln(66) = 4.19

Let’s assume for the moment that we’ve already learned a real-valued weight for
each of these features, and that the 6 weights corresponding to the 6 features are
[2.5,�5.0,�1.2,0.5,2.0,0.7], while b = 0.1. (We’ll discuss in the next section how
the weights are learned.) The weight w1, for example indicates how important a
feature the number of positive lexicon words (great, nice, enjoyable, etc.) is to
a positive sentiment decision, while w2 tells us the importance of negative lexicon
words. Note that w1 = 2.5 is positive, while w2 =�5.0, meaning that negative words
are negatively associated with a positive sentiment decision, and are about twice as
important as positive words.

4 CHAPTER 5 • LOGISTIC REGRESSION

The sigmoid has a number of advantages; it take a real-valued number and maps
it into the range [0,1], which is just what we want for a probability. Because it is
nearly linear around 0 but has a sharp slope toward the ends, it tends to squash outlier
values toward 0 or 1. And it’s differentiable, which as we’ll see in Section 5.8 will
be handy for learning.

We’re almost there. If we apply the sigmoid to the sum of the weighted features,
we get a number between 0 and 1. To make it a probability, we just need to make
sure that the two cases, p(y = 1) and p(y = 0), sum to 1. We can do this as follows:

P(y = 1) = s(w · x+b)

=
1

1+ e�(w·x+b)

P(y = 0) = 1�s(w · x+b)

= 1� 1
1+ e�(w·x+b)

=
e�(w·x+b)

1+ e�(w·x+b) (5.5)

Now we have an algorithm that given an instance x computes the probability
P(y = 1|x). How do we make a decision? For a test instance x, we say yes if the
probability P(y = 1|x) is more than .5, and no otherwise. We call .5 the decision
boundary:decision

boundary

ŷ =
⇢

1 if P(y = 1|x)> 0.5
0 otherwise

5.1.1 Example: sentiment classification
Let’s have an example. Suppose we are doing binary sentiment classification on
movie review text, and we would like to know whether to assign the sentiment class
+ or � to a review document doc. We’ll represent each input observation by the
following 6 features x1...x6 of the input; Fig. 5.2 shows the features in a sample mini
test document.

Var Definition Value in Fig. 5.2
x1 count(positive lexicon) 2 doc) 3
x2 count(negative lexicon) 2 doc) 2

x3

⇢
1 if “no” 2 doc
0 otherwise 1

x4 count(1st and 2nd pronouns 2 doc) 3

x5

⇢
1 if “!” 2 doc
0 otherwise 0

x6 log(word count of doc) ln(64) = 4.15

Let’s assume for the moment that we’ve already learned a real-valued weight
for each of these features, and that the 6 weights corresponding to the 6 features
are [2.5,�5.0,�1.2,0.5,2.0,0.7], while b = 0.1. (We’ll discuss in the next section
how the weights are learned.) The weight w1, for example indicates how important

Suppose w =

b = 0.1

Classifying sentiment for input x

5.1 • CLASSIFICATION: THE SIGMOID 5

 It's hokey . There are virtually no surprises , and the writing is second-rate .
So why was it so enjoyable ? For one thing , the cast is
 great . Another nice touch is the music . I was overcome with the urge to get off
 the couch and start dancing . It sucked me in , and it'll do the same to you .

x1=3 x6=4.19

x3=1

x4=3x5=0

x2=2

Figure 5.2 A sample mini test document showing the extracted features in the vector x.

Given these 6 features and the input review x, P(+|x) and P(�|x) can be com-
puted using Eq. 5.5:

p(+|x) = P(Y = 1|x) = s(w · x+b)
= s([2.5,�5.0,�1.2,0.5,2.0,0.7] · [3,2,1,3,0,4.19]+0.1)
= s(.833)
= 0.70 (5.6)

p(�|x) = P(Y = 0|x) = 1�s(w · x+b)
= 0.30

Logistic regression is commonly applied to all sorts of NLP tasks, and any property
of the input can be a feature. Consider the task of period disambiguation: deciding
if a period is the end of a sentence or part of a word, by classifying each period
into one of two classes EOS (end-of-sentence) and not-EOS. We might use features
like x1 below expressing that the current word is lower case and the class is EOS
(perhaps with a positive weight), or that the current word is in our abbreviations
dictionary (“Prof.”) and the class is EOS (perhaps with a negative weight). A feature
can also express a quite complex combination of properties. For example a period
following an upper case word is likely to be an EOS, but if the word itself is St. and
the previous word is capitalized, then the period is likely part of a shortening of the
word street.

x1 =

⇢
1 if “Case(wi) = Lower”
0 otherwise

x2 =

⇢
1 if “wi 2 AcronymDict”
0 otherwise

x3 =

⇢
1 if “wi = St. & Case(wi�1) = Cap”
0 otherwise

Designing features: Features are generally designed by examining the training
set with an eye to linguistic intuitions and the linguistic literature on the domain. A
careful error analysis on the training set or devset of an early version of a system
often provides insights into features.

For some tasks it is especially helpful to build complex features that are combi-
nations of more primitive features. We saw such a feature for period disambiguation
above, where a period on the word St. was less likely to be the end of the sentence
if the previous word was capitalized. For logistic regression and naive Bayes these
combination features or feature interactions have to be designed by hand.feature

interactions

30

5.1 • CLASSIFICATION: THE SIGMOID 5

 It's hokey . There are virtually no surprises , and the writing is second-rate .
So why was it so enjoyable ? For one thing , the cast is
 great . Another nice touch is the music . I was overcome with the urge to get off
 the couch and start dancing . It sucked me in , and it'll do the same to you .

x1=3 x6=4.19

x3=1

x4=3x5=0

x2=2

Figure 5.2 A sample mini test document showing the extracted features in the vector x.

Given these 6 features and the input review x, P(+|x) and P(�|x) can be com-
puted using Eq. 5.5:

p(+|x) = P(Y = 1|x) = s(w · x+b)
= s([2.5,�5.0,�1.2,0.5,2.0,0.7] · [3,2,1,3,0,4.19]+0.1)
= s(.833)
= 0.70 (5.6)

p(�|x) = P(Y = 0|x) = 1�s(w · x+b)
= 0.30

Logistic regression is commonly applied to all sorts of NLP tasks, and any property
of the input can be a feature. Consider the task of period disambiguation: deciding
if a period is the end of a sentence or part of a word, by classifying each period
into one of two classes EOS (end-of-sentence) and not-EOS. We might use features
like x1 below expressing that the current word is lower case and the class is EOS
(perhaps with a positive weight), or that the current word is in our abbreviations
dictionary (“Prof.”) and the class is EOS (perhaps with a negative weight). A feature
can also express a quite complex combination of properties. For example a period
following an upper case word is likely to be an EOS, but if the word itself is St. and
the previous word is capitalized, then the period is likely part of a shortening of the
word street.

x1 =

⇢
1 if “Case(wi) = Lower”
0 otherwise

x2 =

⇢
1 if “wi 2 AcronymDict”
0 otherwise

x3 =

⇢
1 if “wi = St. & Case(wi�1) = Cap”
0 otherwise

Designing features: Features are generally designed by examining the training
set with an eye to linguistic intuitions and the linguistic literature on the domain. A
careful error analysis on the training set or devset of an early version of a system
often provides insights into features.

For some tasks it is especially helpful to build complex features that are combi-
nations of more primitive features. We saw such a feature for period disambiguation
above, where a period on the word St. was less likely to be the end of the sentence
if the previous word was capitalized. For logistic regression and naive Bayes these
combination features or feature interactions have to be designed by hand.feature

interactions

We can build features for logistic regression for
any classification task: period disambiguation

5.1 • CLASSIFICATION: THE SIGMOID 5

 It's hokey. There are virtually no surprises , and the writing is second-rate .
So why was it so enjoyable? For one thing , the cast is
 great . Another nice touch is the music . I was overcome with the urge to get off
 the couch and start dancing . It sucked me in , and it'll do the same to you .

x1=3 x6=4.15

x3=1

x4=3x5=0

x2=2

Figure 5.2 A sample mini test document showing the extracted features in the vector x.

a feature the number of positive lexicon words (great, nice, enjoyable, etc.) is to
a positive sentiment decision, while w2 tells us the importance of negative lexicon
words. Note that w1 = 2.5 is positive, while w2 =�5.0, meaning that negative words
are negatively associated with a positive sentiment decision, and are about twice as
important as positive words.

Given these 6 features and the input review x, P(+|x) and P(�|x) can be com-
puted using Eq. 5.5:

p(+|x) = P(Y = 1|x) = s(w · x+b)
= s([2.5,�5.0,�1.2,0.5,2.0,0.7] · [3,2,1,3,0,4.15]+0.1)
= s(1.805)
= 0.86

p(�|x) = P(Y = 0|x) = 1�s(w · x+b)
= 0.14

Logistic regression is commonly applied to all sorts of NLP tasks, and any prop-
erty of the input can be a feature. Consider the task of period disambiguation:
deciding if a period is the end of a sentence or part of a word, by classifying each
period into one of two classes EOS (end-of-sentence) and not-EOS. We might use
features like x1 below expressing that the current word is lower case and the class
is EOS (perhaps with a positive weight), or that the current word is in our abbrevia-
tions dictionary (“Prof.”) and the class is EOS (perhaps with a negative weight). A
feature can also express a quite complex combination of properties. For example a
period following a upper cased word is a likely to be an EOS, but if the word itself is
St. and the previous word is capitalized, then the period is likely part of a shortening
of the word street.

x1 =

⇢
1 if “Case(wi) = Lower”
0 otherwise

x2 =

⇢
1 if “wi 2 AcronymDict”
0 otherwise

x3 =

⇢
1 if “wi = St. & Case(wi�1) = Cap”
0 otherwise

Designing features: Features are generally designed by examining the training
set with an eye to linguistic intuitions and the linguistic literature on the domain. A
careful error analysis on the training or dev set. of an early version of a system often
provides insights into features.

31

This ends in a period.
The house at 465 Main St. is new.

End of sentence

Not end

Classification in (binary) logistic regression: summary
Given:

◦ a set of classes: (+ sentiment,- sentiment)
◦ a vector x of features [x1, x2, …, xn]

◦ x1= count("awesome")
◦ x2 = log(number of words in review)

◦ A vector w of weights [w1, w2, …, wn]
◦ wi for each feature xi

4 CHAPTER 5 • LOGISTIC REGRESSION

The sigmoid has a number of advantages; it take a real-valued number and maps
it into the range [0,1], which is just what we want for a probability. Because it is
nearly linear around 0 but has a sharp slope toward the ends, it tends to squash outlier
values toward 0 or 1. And it’s differentiable, which as we’ll see in Section 5.8 will
be handy for learning.

We’re almost there. If we apply the sigmoid to the sum of the weighted features,
we get a number between 0 and 1. To make it a probability, we just need to make
sure that the two cases, p(y = 1) and p(y = 0), sum to 1. We can do this as follows:

P(y = 1) = s(w · x+b)

=
1

1+ e�(w·x+b)

P(y = 0) = 1�s(w · x+b)

= 1� 1
1+ e�(w·x+b)

=
e�(w·x+b)

1+ e�(w·x+b) (5.5)

Now we have an algorithm that given an instance x computes the probability
P(y = 1|x). How do we make a decision? For a test instance x, we say yes if the
probability P(y = 1|x) is more than .5, and no otherwise. We call .5 the decision
boundary:decision

boundary

ŷ =
⇢

1 if P(y = 1|x)> 0.5
0 otherwise

5.1.1 Example: sentiment classification
Let’s have an example. Suppose we are doing binary sentiment classification on
movie review text, and we would like to know whether to assign the sentiment class
+ or � to a review document doc. We’ll represent each input observation by the
following 6 features x1...x6 of the input; Fig. 5.2 shows the features in a sample mini
test document.

Var Definition Value in Fig. 5.2
x1 count(positive lexicon) 2 doc) 3
x2 count(negative lexicon) 2 doc) 2

x3

⇢
1 if “no” 2 doc
0 otherwise 1

x4 count(1st and 2nd pronouns 2 doc) 3

x5

⇢
1 if “!” 2 doc
0 otherwise 0

x6 log(word count of doc) ln(64) = 4.15

Let’s assume for the moment that we’ve already learned a real-valued weight
for each of these features, and that the 6 weights corresponding to the 6 features
are [2.5,�5.0,�1.2,0.5,2.0,0.7], while b = 0.1. (We’ll discuss in the next section
how the weights are learned.) The weight w1, for example indicates how important

Logistic
Regression

Logistic Regression:
Sentiment Classification

Text
Classification:
Feature
Engineering

More on Sentiment
Classification

Sentiment Classification: Dealing with Negation

I really like this movieI really don't like this movie

Negation changes the meaning of "like" to negative.
Negation can also change negative to positive-ish

◦ Don't dismiss this film
◦ Doesn't let us get bored

Sentiment Classification: Dealing with Negation

Simple baseline method:
Add NOT_ to every word between negation and following punctuation:

didn’t like this movie , but I

didn’t NOT_like NOT_this NOT_movie but I

Das, Sanjiv and Mike Chen. 2001. Yahoo! for Amazon: Extracting market sentiment from stock message boards. In
Proceedings of the Asia Pacific Finance Association Annual Conference (APFA).
Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan. 2002. Thumbs up? Sentiment Classification using
Machine Learning Techniques. EMNLP-2002, 79—86.

Sentiment Classification: Lexicons

Sometimes we don't have enough labeled training
data
In that case, we can make use of pre-built word lists
Called lexicons
There are various publically available lexicons

MPQA Subjectivity Cues Lexicon

Home page: http://www.cs.pitt.edu/mpqa/subj_lexicon.html
6885 words from 8221 lemmas, annotated for intensity (strong/weak)

◦ 2718 positive
◦ 4912 negative

+ : admirable, beautiful, confident, dazzling, ecstatic, favor, glee, great
− : awful, bad, bias, catastrophe, cheat, deny, envious, foul, harsh, hate

38

Theresa Wilson, Janyce Wiebe, and Paul Hoffmann (2005). Recognizing Contextual Polarity in
Phrase-Level Sentiment Analysis. Proc. of HLT-EMNLP-2005.

Riloff and Wiebe (2003). Learning extraction patterns for subjective expressions. EMNLP-2003.

http://www.cs.pitt.edu/mpqa/subj_lexicon.html

The General Inquirer

◦ Home page: http://www.wjh.harvard.edu/~inquirer
◦ List of Categories: http://www.wjh.harvard.edu/~inquirer/homecat.htm
◦ Spreadsheet: http://www.wjh.harvard.edu/~inquirer/inquirerbasic.xls

Categories:
◦ Positiv (1915 words) and Negativ (2291 words)
◦ Strong vs Weak, Active vs Passive, Overstated versus Understated
◦ Pleasure, Pain, Virtue, Vice, Motivation, Cognitive Orientation, etc

Free for Research Use

Philip J. Stone, Dexter C Dunphy, Marshall S. Smith, Daniel M. Ogilvie. 1966. The General
Inquirer: A Computer Approach to Content Analysis. MIT Press

http://www.wjh.harvard.edu/~inquirer
http://www.wjh.harvard.edu/~inquirer/homecat.htm
http://www.wjh.harvard.edu/~inquirer/inquirerbasic.xls

Bing Liu Opinion Lexicon

Bing Liu's Page on Opinion Mining
http://www.cs.uic.edu/~liub/FBS/opinion-lexicon-English.rar

6786 words
◦ 2006 positive
◦ 4783 negative

40

Minqing Hu and Bing Liu. Mining and Summarizing Customer Reviews. ACM SIGKDD-2004.

http://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html
http://www.cs.uic.edu/~liub/FBS/opinion-lexicon-English.rar

Using Lexicons in Sentiment Classification

Add a feature that gets a count whenever a word
from the lexicon occurs

◦ E.g., a feature called "this word occurs in the positive
lexicon" or "this word occurs in the negative lexicon"

Now all positive words (good, great, beautiful,
wonderful) or negative words count for that feature.
Using 1-2 features isn't as good as using all the words.
• But when training data is sparse or not representative of the

test set, dense lexicon features can help

Other tasks: Spam Filtering

SpamAssassin Features:
◦ Mentions millions of (dollar) ((dollar) NN,NNN,NNN.NN)
◦ From: starts with many numbers
◦ Subject is all capitals
◦ HTML has a low ratio of text to image area
◦ "One hundred percent guaranteed"
◦ Claims you can be removed from the list
◦ http://spamassassin.apache.org/tests_3_3_x.html

http://spamassassin.apache.org/tests_3_3_x.html

Language ID

Determining what language a piece of text is written
in.
Features based on character n-grams do very well
Important to train on lots of varieties of each
language (world English, etc)

Text
Classification:
Feature
Engineering

More on Sentiment
Classification

Logistic
Regression

Logistic Regression: Learning

Wait, where did the W’s come from?
Supervised classification:
• we know the correct label y (either 0 or 1) for each x.

What the system produces is an estimate !𝑦 = 𝑝(𝑦 = 1|𝑥)	

We want to set w and b to minimize the distance between our
estimate !𝑦(i) and the true y(i).
• We need a distance estimator: a loss function or a cost

function
• We need an optimization algorithm to update w and b to

minimize the loss.
46

Learning components

A loss function (to minimize):
◦ Cross-Entropy loss = Negative Log-Likelihood

An optimization algorithm (to minimize loss):
◦ Stochastic Gradient Descent

Logistic
Regression

Learning in Logistic
Regression

Logistic
Regression

Cross-Entropy Loss
 = Negative Log-Likelihood

The distance between !𝑦	and y

We want to know how far is the classifier output:
 !𝑦	= σ(w·x+b) = pw(y=1|x)

from the true output:
 y [= either 0 or 1]

We'll call this difference:
 L(!𝑦	,y) = how much !𝑦 differs from the true y

Intuition of negative log likelihood loss
 = cross-entropy loss

A case of conditional Maximum Likelihood Estimation
• We choose the parameters w,b that maximize the

probability (likelihood) of the true y labels in the
training data given the observations x.

• w, b, that maximize the likelihood <=>
• w, b that maximize the log-likelihood <=>
• w, b that minimize the negative log-likelihood

the cross-entropy

Deriving cross-entropy loss for a single observation x

Goal: maximize probability of the correct label p(y|x)
Since there are only 2 discrete outcomes (0 or 1) we can
express the probability p(y|x) from our classifier (the thing
we want to maximize) as

noting:
 if y=1, this simplifies to !𝑦	
 if y=0, this simplifies to 1- !𝑦	

5.3 • THE CROSS-ENTROPY LOSS FUNCTION 7

the cross-entropy loss.
The second thing we need is an optimization algorithm for iteratively updating

the weights so as to minimize this loss function. The standard algorithm for this is
gradient descent; we’ll introduce the stochastic gradient descent algorithm in the
following section.

5.3 The cross-entropy loss function

We need a loss function that expresses, for an observation x, how close the classifier
output (ŷ = s(w · x+b)) is to the correct output (y, which is 0 or 1). We’ll call this:

L(ŷ,y) = How much ŷ differs from the true y (5.8)

We do this via a loss function that prefers the correct class labels of the train-
ing examples to be more likely. This is called conditional maximum likelihood
estimation: we choose the parameters w,b that maximize the log probability of
the true y labels in the training data given the observations x. The resulting loss
function is the negative log likelihood loss, generally called the cross-entropy loss.cross-entropy

loss
Let’s derive this loss function, applied to a single observation x. We’d like to

learn weights that maximize the probability of the correct label p(y|x). Since there
are only two discrete outcomes (1 or 0), this is a Bernoulli distribution, and we can
express the probability p(y|x) that our classifier produces for one observation as
the following (keeping in mind that if y=1, Eq. 5.9 simplifies to ŷ; if y=0, Eq. 5.9
simplifies to 1� ŷ):

p(y|x) = ŷ y (1� ŷ)1�y (5.9)

Now we take the log of both sides. This will turn out to be handy mathematically,
and doesn’t hurt us; whatever values maximize a probability will also maximize the
log of the probability:

log p(y|x) = log
⇥
ŷ y (1� ŷ)1�y⇤

= y log ŷ+(1� y) log(1� ŷ) (5.10)

Eq. 5.10 describes a log likelihood that should be maximized. In order to turn this
into loss function (something that we need to minimize), we’ll just flip the sign on
Eq. 5.10. The result is the cross-entropy loss LCE:

LCE(ŷ,y) =� log p(y|x) = � [y log ŷ+(1� y) log(1� ŷ)] (5.11)

Finally, we can plug in the definition of ŷ = s(w · x+b):

LCE(ŷ,y) = � [y logs(w · x+b)+(1� y) log(1�s(w · x+b))] (5.12)

Let’s see if this loss function does the right thing for our example from Fig. 5.2. We
want the loss to be smaller if the model’s estimate is close to correct, and bigger if
the model is confused. So first let’s suppose the correct gold label for the sentiment
example in Fig. 5.2 is positive, i.e., y = 1. In this case our model is doing well, since
from Eq. 5.7 it indeed gave the example a higher probability of being positive (.69)
than negative (.31). If we plug s(w · x+b) = .69 and y = 1 into Eq. 5.12, the right

!𝑦	= σ(w·x+b) = pw(y=1|x)

1− !𝑦	= 1 − pw(y=1|x) = pw(y=0|x)

Deriving cross-entropy loss for a single observation x

Now take the log of both sides (mathematically handy)

Whatever values maximize log p(y|x) will also maximize
p(y|x)

5.3 • THE CROSS-ENTROPY LOSS FUNCTION 7

the cross-entropy loss.
The second thing we need is an optimization algorithm for iteratively updating

the weights so as to minimize this loss function. The standard algorithm for this is
gradient descent; we’ll introduce the stochastic gradient descent algorithm in the
following section.

5.3 The cross-entropy loss function

We need a loss function that expresses, for an observation x, how close the classifier
output (ŷ = s(w · x+b)) is to the correct output (y, which is 0 or 1). We’ll call this:

L(ŷ,y) = How much ŷ differs from the true y (5.8)

We do this via a loss function that prefers the correct class labels of the train-
ing examples to be more likely. This is called conditional maximum likelihood
estimation: we choose the parameters w,b that maximize the log probability of
the true y labels in the training data given the observations x. The resulting loss
function is the negative log likelihood loss, generally called the cross-entropy loss.cross-entropy

loss
Let’s derive this loss function, applied to a single observation x. We’d like to

learn weights that maximize the probability of the correct label p(y|x). Since there
are only two discrete outcomes (1 or 0), this is a Bernoulli distribution, and we can
express the probability p(y|x) that our classifier produces for one observation as
the following (keeping in mind that if y=1, Eq. 5.9 simplifies to ŷ; if y=0, Eq. 5.9
simplifies to 1� ŷ):

p(y|x) = ŷ y (1� ŷ)1�y (5.9)

Now we take the log of both sides. This will turn out to be handy mathematically,
and doesn’t hurt us; whatever values maximize a probability will also maximize the
log of the probability:

log p(y|x) = log
⇥
ŷ y (1� ŷ)1�y⇤

= y log ŷ+(1� y) log(1� ŷ) (5.10)

Eq. 5.10 describes a log likelihood that should be maximized. In order to turn this
into loss function (something that we need to minimize), we’ll just flip the sign on
Eq. 5.10. The result is the cross-entropy loss LCE:

LCE(ŷ,y) =� log p(y|x) = � [y log ŷ+(1� y) log(1� ŷ)] (5.11)

Finally, we can plug in the definition of ŷ = s(w · x+b):

LCE(ŷ,y) = � [y logs(w · x+b)+(1� y) log(1�s(w · x+b))] (5.12)

Let’s see if this loss function does the right thing for our example from Fig. 5.2. We
want the loss to be smaller if the model’s estimate is close to correct, and bigger if
the model is confused. So first let’s suppose the correct gold label for the sentiment
example in Fig. 5.2 is positive, i.e., y = 1. In this case our model is doing well, since
from Eq. 5.7 it indeed gave the example a higher probability of being positive (.69)
than negative (.31). If we plug s(w · x+b) = .69 and y = 1 into Eq. 5.12, the right

5.3 • THE CROSS-ENTROPY LOSS FUNCTION 7

the cross-entropy loss.
The second thing we need is an optimization algorithm for iteratively updating

the weights so as to minimize this loss function. The standard algorithm for this is
gradient descent; we’ll introduce the stochastic gradient descent algorithm in the
following section.

5.3 The cross-entropy loss function

We need a loss function that expresses, for an observation x, how close the classifier
output (ŷ = s(w · x+b)) is to the correct output (y, which is 0 or 1). We’ll call this:

L(ŷ,y) = How much ŷ differs from the true y (5.8)

We do this via a loss function that prefers the correct class labels of the train-
ing examples to be more likely. This is called conditional maximum likelihood
estimation: we choose the parameters w,b that maximize the log probability of
the true y labels in the training data given the observations x. The resulting loss
function is the negative log likelihood loss, generally called the cross-entropy loss.cross-entropy

loss
Let’s derive this loss function, applied to a single observation x. We’d like to

learn weights that maximize the probability of the correct label p(y|x). Since there
are only two discrete outcomes (1 or 0), this is a Bernoulli distribution, and we can
express the probability p(y|x) that our classifier produces for one observation as
the following (keeping in mind that if y=1, Eq. 5.9 simplifies to ŷ; if y=0, Eq. 5.9
simplifies to 1� ŷ):

p(y|x) = ŷ y (1� ŷ)1�y (5.9)

Now we take the log of both sides. This will turn out to be handy mathematically,
and doesn’t hurt us; whatever values maximize a probability will also maximize the
log of the probability:

log p(y|x) = log
⇥
ŷ y (1� ŷ)1�y⇤

= y log ŷ+(1� y) log(1� ŷ) (5.10)

Eq. 5.10 describes a log likelihood that should be maximized. In order to turn this
into loss function (something that we need to minimize), we’ll just flip the sign on
Eq. 5.10. The result is the cross-entropy loss LCE:

LCE(ŷ,y) =� log p(y|x) = � [y log ŷ+(1� y) log(1� ŷ)] (5.11)

Finally, we can plug in the definition of ŷ = s(w · x+b):

LCE(ŷ,y) = � [y logs(w · x+b)+(1� y) log(1�s(w · x+b))] (5.12)

Let’s see if this loss function does the right thing for our example from Fig. 5.2. We
want the loss to be smaller if the model’s estimate is close to correct, and bigger if
the model is confused. So first let’s suppose the correct gold label for the sentiment
example in Fig. 5.2 is positive, i.e., y = 1. In this case our model is doing well, since
from Eq. 5.7 it indeed gave the example a higher probability of being positive (.69)
than negative (.31). If we plug s(w · x+b) = .69 and y = 1 into Eq. 5.12, the right

Goal: maximize probability of the correct label p(y|x)
Maximize:

Maximize:

Deriving cross-entropy loss for a single observation x

Now flip sign to turn this into a loss: something to minimize
Cross-entropy loss (because is formula for cross-entropy(y, !𝑦))

Or, plugging in definition of !𝑦:

5.3 • THE CROSS-ENTROPY LOSS FUNCTION 7

the cross-entropy loss.
The second thing we need is an optimization algorithm for iteratively updating

the weights so as to minimize this loss function. The standard algorithm for this is
gradient descent; we’ll introduce the stochastic gradient descent algorithm in the
following section.

5.3 The cross-entropy loss function

We need a loss function that expresses, for an observation x, how close the classifier
output (ŷ = s(w · x+b)) is to the correct output (y, which is 0 or 1). We’ll call this:

L(ŷ,y) = How much ŷ differs from the true y (5.8)

We do this via a loss function that prefers the correct class labels of the train-
ing examples to be more likely. This is called conditional maximum likelihood
estimation: we choose the parameters w,b that maximize the log probability of
the true y labels in the training data given the observations x. The resulting loss
function is the negative log likelihood loss, generally called the cross-entropy loss.cross-entropy

loss
Let’s derive this loss function, applied to a single observation x. We’d like to

learn weights that maximize the probability of the correct label p(y|x). Since there
are only two discrete outcomes (1 or 0), this is a Bernoulli distribution, and we can
express the probability p(y|x) that our classifier produces for one observation as
the following (keeping in mind that if y=1, Eq. 5.9 simplifies to ŷ; if y=0, Eq. 5.9
simplifies to 1� ŷ):

p(y|x) = ŷ y (1� ŷ)1�y (5.9)

Now we take the log of both sides. This will turn out to be handy mathematically,
and doesn’t hurt us; whatever values maximize a probability will also maximize the
log of the probability:

log p(y|x) = log
⇥
ŷ y (1� ŷ)1�y⇤

= y log ŷ+(1� y) log(1� ŷ) (5.10)

Eq. 5.10 describes a log likelihood that should be maximized. In order to turn this
into loss function (something that we need to minimize), we’ll just flip the sign on
Eq. 5.10. The result is the cross-entropy loss LCE:

LCE(ŷ,y) =� log p(y|x) = � [y log ŷ+(1� y) log(1� ŷ)] (5.11)

Finally, we can plug in the definition of ŷ = s(w · x+b):

LCE(ŷ,y) = � [y logs(w · x+b)+(1� y) log(1�s(w · x+b))] (5.12)

Let’s see if this loss function does the right thing for our example from Fig. 5.2. We
want the loss to be smaller if the model’s estimate is close to correct, and bigger if
the model is confused. So first let’s suppose the correct gold label for the sentiment
example in Fig. 5.2 is positive, i.e., y = 1. In this case our model is doing well, since
from Eq. 5.7 it indeed gave the example a higher probability of being positive (.69)
than negative (.31). If we plug s(w · x+b) = .69 and y = 1 into Eq. 5.12, the right

Goal: maximize probability of the correct label p(y|x)

Maximize:

Minimize:

5.3 • THE CROSS-ENTROPY LOSS FUNCTION 7

the cross-entropy loss.
The second thing we need is an optimization algorithm for iteratively updating

the weights so as to minimize this loss function. The standard algorithm for this is
gradient descent; we’ll introduce the stochastic gradient descent algorithm in the
following section.

5.3 The cross-entropy loss function

We need a loss function that expresses, for an observation x, how close the classifier
output (ŷ = s(w · x+b)) is to the correct output (y, which is 0 or 1). We’ll call this:

L(ŷ,y) = How much ŷ differs from the true y (5.8)

We do this via a loss function that prefers the correct class labels of the train-
ing examples to be more likely. This is called conditional maximum likelihood
estimation: we choose the parameters w,b that maximize the log probability of
the true y labels in the training data given the observations x. The resulting loss
function is the negative log likelihood loss, generally called the cross-entropy loss.cross-entropy

loss
Let’s derive this loss function, applied to a single observation x. We’d like to

learn weights that maximize the probability of the correct label p(y|x). Since there
are only two discrete outcomes (1 or 0), this is a Bernoulli distribution, and we can
express the probability p(y|x) that our classifier produces for one observation as
the following (keeping in mind that if y=1, Eq. 5.9 simplifies to ŷ; if y=0, Eq. 5.9
simplifies to 1� ŷ):

p(y|x) = ŷ y (1� ŷ)1�y (5.9)

Now we take the log of both sides. This will turn out to be handy mathematically,
and doesn’t hurt us; whatever values maximize a probability will also maximize the
log of the probability:

log p(y|x) = log
⇥
ŷ y (1� ŷ)1�y⇤

= y log ŷ+(1� y) log(1� ŷ) (5.10)

Eq. 5.10 describes a log likelihood that should be maximized. In order to turn this
into loss function (something that we need to minimize), we’ll just flip the sign on
Eq. 5.10. The result is the cross-entropy loss LCE:

LCE(ŷ,y) =� log p(y|x) = � [y log ŷ+(1� y) log(1� ŷ)] (5.11)

Finally, we can plug in the definition of ŷ = s(w · x+b):

LCE(ŷ,y) = � [y logs(w · x+b)+(1� y) log(1�s(w · x+b))] (5.12)

Let’s see if this loss function does the right thing for our example from Fig. 5.2. We
want the loss to be smaller if the model’s estimate is close to correct, and bigger if
the model is confused. So first let’s suppose the correct gold label for the sentiment
example in Fig. 5.2 is positive, i.e., y = 1. In this case our model is doing well, since
from Eq. 5.7 it indeed gave the example a higher probability of being positive (.69)
than negative (.31). If we plug s(w · x+b) = .69 and y = 1 into Eq. 5.12, the right

5.3 • THE CROSS-ENTROPY LOSS FUNCTION 7

the cross-entropy loss.
The second thing we need is an optimization algorithm for iteratively updating

the weights so as to minimize this loss function. The standard algorithm for this is
gradient descent; we’ll introduce the stochastic gradient descent algorithm in the
following section.

5.3 The cross-entropy loss function

We need a loss function that expresses, for an observation x, how close the classifier
output (ŷ = s(w · x+b)) is to the correct output (y, which is 0 or 1). We’ll call this:

L(ŷ,y) = How much ŷ differs from the true y (5.8)

We do this via a loss function that prefers the correct class labels of the train-
ing examples to be more likely. This is called conditional maximum likelihood
estimation: we choose the parameters w,b that maximize the log probability of
the true y labels in the training data given the observations x. The resulting loss
function is the negative log likelihood loss, generally called the cross-entropy loss.cross-entropy

loss
Let’s derive this loss function, applied to a single observation x. We’d like to

learn weights that maximize the probability of the correct label p(y|x). Since there
are only two discrete outcomes (1 or 0), this is a Bernoulli distribution, and we can
express the probability p(y|x) that our classifier produces for one observation as
the following (keeping in mind that if y=1, Eq. 5.9 simplifies to ŷ; if y=0, Eq. 5.9
simplifies to 1� ŷ):

p(y|x) = ŷ y (1� ŷ)1�y (5.9)

Now we take the log of both sides. This will turn out to be handy mathematically,
and doesn’t hurt us; whatever values maximize a probability will also maximize the
log of the probability:

log p(y|x) = log
⇥
ŷ y (1� ŷ)1�y⇤

= y log ŷ+(1� y) log(1� ŷ) (5.10)

Eq. 5.10 describes a log likelihood that should be maximized. In order to turn this
into loss function (something that we need to minimize), we’ll just flip the sign on
Eq. 5.10. The result is the cross-entropy loss LCE:

LCE(ŷ,y) =� log p(y|x) = � [y log ŷ+(1� y) log(1� ŷ)] (5.11)

Finally, we can plug in the definition of ŷ = s(w · x+b):

LCE(ŷ,y) = � [y logs(w · x+b)+(1� y) log(1�s(w · x+b))] (5.12)

Let’s see if this loss function does the right thing for our example from Fig. 5.2. We
want the loss to be smaller if the model’s estimate is close to correct, and bigger if
the model is confused. So first let’s suppose the correct gold label for the sentiment
example in Fig. 5.2 is positive, i.e., y = 1. In this case our model is doing well, since
from Eq. 5.7 it indeed gave the example a higher probability of being positive (.69)
than negative (.31). If we plug s(w · x+b) = .69 and y = 1 into Eq. 5.12, the right

Let's see if this works for our sentiment example
We want loss to be:
• smaller if the model estimate is close to correct
• bigger if model is confused
Let's first suppose the true label of this is y=1 (positive)

It's hokey . There are virtually no surprises , and the writing is second-rate .
So why was it so enjoyable ? For one thing , the cast is great . Another nice
touch is the music . I was overcome with the urge to get off the couch and
start dancing . It sucked me in , and it'll do the same to you .

Let's see if this works for our sentiment example

True value is y=1. How well is our model doing?

Pretty well! What's the loss?

5.1 • CLASSIFICATION: THE SIGMOID 5

 It's hokey . There are virtually no surprises , and the writing is second-rate .
So why was it so enjoyable ? For one thing , the cast is
 great . Another nice touch is the music . I was overcome with the urge to get off
 the couch and start dancing . It sucked me in , and it'll do the same to you .

x1=3 x6=4.19

x3=1

x4=3x5=0

x2=2

Figure 5.2 A sample mini test document showing the extracted features in the vector x.

Given these 6 features and the input review x, P(+|x) and P(�|x) can be com-
puted using Eq. 5.5:

p(+|x) = P(Y = 1|x) = s(w · x+b)
= s([2.5,�5.0,�1.2,0.5,2.0,0.7] · [3,2,1,3,0,4.19]+0.1)
= s(.833)
= 0.70 (5.6)

p(�|x) = P(Y = 0|x) = 1�s(w · x+b)
= 0.30

Logistic regression is commonly applied to all sorts of NLP tasks, and any property
of the input can be a feature. Consider the task of period disambiguation: deciding
if a period is the end of a sentence or part of a word, by classifying each period
into one of two classes EOS (end-of-sentence) and not-EOS. We might use features
like x1 below expressing that the current word is lower case and the class is EOS
(perhaps with a positive weight), or that the current word is in our abbreviations
dictionary (“Prof.”) and the class is EOS (perhaps with a negative weight). A feature
can also express a quite complex combination of properties. For example a period
following an upper case word is likely to be an EOS, but if the word itself is St. and
the previous word is capitalized, then the period is likely part of a shortening of the
word street.

x1 =

⇢
1 if “Case(wi) = Lower”
0 otherwise

x2 =

⇢
1 if “wi 2 AcronymDict”
0 otherwise

x3 =

⇢
1 if “wi = St. & Case(wi�1) = Cap”
0 otherwise

Designing features: Features are generally designed by examining the training
set with an eye to linguistic intuitions and the linguistic literature on the domain. A
careful error analysis on the training set or devset of an early version of a system
often provides insights into features.

For some tasks it is especially helpful to build complex features that are combi-
nations of more primitive features. We saw such a feature for period disambiguation
above, where a period on the word St. was less likely to be the end of the sentence
if the previous word was capitalized. For logistic regression and naive Bayes these
combination features or feature interactions have to be designed by hand.feature

interactions

8 CHAPTER 5 • LOGISTIC REGRESSION

side of the equation drops out, leading to the following loss (we’ll use log to mean
natural log when the base is not specified):

LCE(ŷ,y) = �[y logs(w · x+b)+(1� y) log(1�s(w · x+b))]
= � [logs(w · x+b)]
= � log(.70)
= .36

By contrast, let’s pretend instead that the example in Fig. 5.2 was actually negative,
i.e., y = 0 (perhaps the reviewer went on to say “But bottom line, the movie is
terrible! I beg you not to see it!”). In this case our model is confused and we’d want
the loss to be higher. Now if we plug y = 0 and 1�s(w · x+b) = .31 from Eq. 5.7
into Eq. 5.12, the left side of the equation drops out:

LCE(ŷ,y) = �[y logs(w · x+b)+(1� y) log(1�s(w · x+b))]
= � [log(1�s(w · x+b))]
= � log(.30)
= 1.2

Sure enough, the loss for the first classifier (.37) is less than the loss for the second
classifier (1.17).

Why does minimizing this negative log probability do what we want? A per-
fect classifier would assign probability 1 to the correct outcome (y=1 or y=0) and
probability 0 to the incorrect outcome. That means the higher ŷ (the closer it is
to 1), the better the classifier; the lower ŷ is (the closer it is to 0), the worse the
classifier. The negative log of this probability is a convenient loss metric since it
goes from 0 (negative log of 1, no loss) to infinity (negative log of 0, infinite loss).
This loss function also ensures that as the probability of the correct answer is max-
imized, the probability of the incorrect answer is minimized; since the two sum to
one, any increase in the probability of the correct answer is coming at the expense
of the incorrect answer. It’s called the cross-entropy loss, because Eq. 5.10 is also
the formula for the cross-entropy between the true probability distribution y and our
estimated distribution ŷ.

Now we know what we want to minimize; in the next section, we’ll see how to
find the minimum.

5.4 Gradient Descent

Our goal with gradient descent is to find the optimal weights: minimize the loss
function we’ve defined for the model. In Eq. 5.13 below, we’ll explicitly represent
the fact that the loss function L is parameterized by the weights, which we’ll refer
to in machine learning in general as q (in the case of logistic regression q = w,b).
So the goal is to find the set of weights which minimizes the loss function, averaged
over all examples:

q̂ = argmin
q

1
m

mX

i=1

LCE(f (x(i);q),y(i)) (5.13)

Let's see if this works for our sentiment example

Suppose true value instead was y=0.

What's the loss?

8 CHAPTER 5 • LOGISTIC REGRESSION

side of the equation drops out, leading to the following loss (we’ll use log to mean
natural log when the base is not specified):

LCE(ŷ,y) = �[y logs(w · x+b)+(1� y) log(1�s(w · x+b))]
= � [logs(w · x+b)]
= � log(.70)
= .36

By contrast, let’s pretend instead that the example in Fig. 5.2 was actually negative,
i.e., y = 0 (perhaps the reviewer went on to say “But bottom line, the movie is
terrible! I beg you not to see it!”). In this case our model is confused and we’d want
the loss to be higher. Now if we plug y = 0 and 1�s(w · x+b) = .31 from Eq. 5.7
into Eq. 5.12, the left side of the equation drops out:

LCE(ŷ,y) = �[y logs(w · x+b)+(1� y) log(1�s(w · x+b))]
= � [log(1�s(w · x+b))]
= � log(.30)
= 1.2

Sure enough, the loss for the first classifier (.37) is less than the loss for the second
classifier (1.17).

Why does minimizing this negative log probability do what we want? A per-
fect classifier would assign probability 1 to the correct outcome (y=1 or y=0) and
probability 0 to the incorrect outcome. That means the higher ŷ (the closer it is
to 1), the better the classifier; the lower ŷ is (the closer it is to 0), the worse the
classifier. The negative log of this probability is a convenient loss metric since it
goes from 0 (negative log of 1, no loss) to infinity (negative log of 0, infinite loss).
This loss function also ensures that as the probability of the correct answer is max-
imized, the probability of the incorrect answer is minimized; since the two sum to
one, any increase in the probability of the correct answer is coming at the expense
of the incorrect answer. It’s called the cross-entropy loss, because Eq. 5.10 is also
the formula for the cross-entropy between the true probability distribution y and our
estimated distribution ŷ.

Now we know what we want to minimize; in the next section, we’ll see how to
find the minimum.

5.4 Gradient Descent

Our goal with gradient descent is to find the optimal weights: minimize the loss
function we’ve defined for the model. In Eq. 5.13 below, we’ll explicitly represent
the fact that the loss function L is parameterized by the weights, which we’ll refer
to in machine learning in general as q (in the case of logistic regression q = w,b).
So the goal is to find the set of weights which minimizes the loss function, averaged
over all examples:

q̂ = argmin
q

1
m

mX

i=1

LCE(f (x(i);q),y(i)) (5.13)

5.1 • CLASSIFICATION: THE SIGMOID 5

 It's hokey . There are virtually no surprises , and the writing is second-rate .
So why was it so enjoyable ? For one thing , the cast is
 great . Another nice touch is the music . I was overcome with the urge to get off
 the couch and start dancing . It sucked me in , and it'll do the same to you .

x1=3 x6=4.19

x3=1

x4=3x5=0

x2=2

Figure 5.2 A sample mini test document showing the extracted features in the vector x.

Given these 6 features and the input review x, P(+|x) and P(�|x) can be com-
puted using Eq. 5.5:

p(+|x) = P(Y = 1|x) = s(w · x+b)
= s([2.5,�5.0,�1.2,0.5,2.0,0.7] · [3,2,1,3,0,4.19]+0.1)
= s(.833)
= 0.70 (5.6)

p(�|x) = P(Y = 0|x) = 1�s(w · x+b)
= 0.30

Logistic regression is commonly applied to all sorts of NLP tasks, and any property
of the input can be a feature. Consider the task of period disambiguation: deciding
if a period is the end of a sentence or part of a word, by classifying each period
into one of two classes EOS (end-of-sentence) and not-EOS. We might use features
like x1 below expressing that the current word is lower case and the class is EOS
(perhaps with a positive weight), or that the current word is in our abbreviations
dictionary (“Prof.”) and the class is EOS (perhaps with a negative weight). A feature
can also express a quite complex combination of properties. For example a period
following an upper case word is likely to be an EOS, but if the word itself is St. and
the previous word is capitalized, then the period is likely part of a shortening of the
word street.

x1 =

⇢
1 if “Case(wi) = Lower”
0 otherwise

x2 =

⇢
1 if “wi 2 AcronymDict”
0 otherwise

x3 =

⇢
1 if “wi = St. & Case(wi�1) = Cap”
0 otherwise

Designing features: Features are generally designed by examining the training
set with an eye to linguistic intuitions and the linguistic literature on the domain. A
careful error analysis on the training set or devset of an early version of a system
often provides insights into features.

For some tasks it is especially helpful to build complex features that are combi-
nations of more primitive features. We saw such a feature for period disambiguation
above, where a period on the word St. was less likely to be the end of the sentence
if the previous word was capitalized. For logistic regression and naive Bayes these
combination features or feature interactions have to be designed by hand.feature

interactions

Let's see if this works for our sentiment example
The loss when model was right (if true y=1)

Is lower than the loss when model was wrong (if true y=0):

Sure enough, loss was bigger when model was wrong!

8 CHAPTER 5 • LOGISTIC REGRESSION

side of the equation drops out, leading to the following loss (we’ll use log to mean
natural log when the base is not specified):

LCE(ŷ,y) = �[y logs(w · x+b)+(1� y) log(1�s(w · x+b))]
= � [logs(w · x+b)]
= � log(.70)
= .36

By contrast, let’s pretend instead that the example in Fig. 5.2 was actually negative,
i.e., y = 0 (perhaps the reviewer went on to say “But bottom line, the movie is
terrible! I beg you not to see it!”). In this case our model is confused and we’d want
the loss to be higher. Now if we plug y = 0 and 1�s(w · x+b) = .31 from Eq. 5.7
into Eq. 5.12, the left side of the equation drops out:

LCE(ŷ,y) = �[y logs(w · x+b)+(1� y) log(1�s(w · x+b))]
= � [log(1�s(w · x+b))]
= � log(.30)
= 1.2

Sure enough, the loss for the first classifier (.37) is less than the loss for the second
classifier (1.17).

Why does minimizing this negative log probability do what we want? A per-
fect classifier would assign probability 1 to the correct outcome (y=1 or y=0) and
probability 0 to the incorrect outcome. That means the higher ŷ (the closer it is
to 1), the better the classifier; the lower ŷ is (the closer it is to 0), the worse the
classifier. The negative log of this probability is a convenient loss metric since it
goes from 0 (negative log of 1, no loss) to infinity (negative log of 0, infinite loss).
This loss function also ensures that as the probability of the correct answer is max-
imized, the probability of the incorrect answer is minimized; since the two sum to
one, any increase in the probability of the correct answer is coming at the expense
of the incorrect answer. It’s called the cross-entropy loss, because Eq. 5.10 is also
the formula for the cross-entropy between the true probability distribution y and our
estimated distribution ŷ.

Now we know what we want to minimize; in the next section, we’ll see how to
find the minimum.

5.4 Gradient Descent

Our goal with gradient descent is to find the optimal weights: minimize the loss
function we’ve defined for the model. In Eq. 5.13 below, we’ll explicitly represent
the fact that the loss function L is parameterized by the weights, which we’ll refer
to in machine learning in general as q (in the case of logistic regression q = w,b).
So the goal is to find the set of weights which minimizes the loss function, averaged
over all examples:

q̂ = argmin
q

1
m

mX

i=1

LCE(f (x(i);q),y(i)) (5.13)

8 CHAPTER 5 • LOGISTIC REGRESSION

side of the equation drops out, leading to the following loss (we’ll use log to mean
natural log when the base is not specified):

LCE(ŷ,y) = �[y logs(w · x+b)+(1� y) log(1�s(w · x+b))]
= � [logs(w · x+b)]
= � log(.70)
= .36

By contrast, let’s pretend instead that the example in Fig. 5.2 was actually negative,
i.e., y = 0 (perhaps the reviewer went on to say “But bottom line, the movie is
terrible! I beg you not to see it!”). In this case our model is confused and we’d want
the loss to be higher. Now if we plug y = 0 and 1�s(w · x+b) = .31 from Eq. 5.7
into Eq. 5.12, the left side of the equation drops out:

LCE(ŷ,y) = �[y logs(w · x+b)+(1� y) log(1�s(w · x+b))]
= � [log(1�s(w · x+b))]
= � log(.30)
= 1.2

Sure enough, the loss for the first classifier (.37) is less than the loss for the second
classifier (1.17).

Why does minimizing this negative log probability do what we want? A per-
fect classifier would assign probability 1 to the correct outcome (y=1 or y=0) and
probability 0 to the incorrect outcome. That means the higher ŷ (the closer it is
to 1), the better the classifier; the lower ŷ is (the closer it is to 0), the worse the
classifier. The negative log of this probability is a convenient loss metric since it
goes from 0 (negative log of 1, no loss) to infinity (negative log of 0, infinite loss).
This loss function also ensures that as the probability of the correct answer is max-
imized, the probability of the incorrect answer is minimized; since the two sum to
one, any increase in the probability of the correct answer is coming at the expense
of the incorrect answer. It’s called the cross-entropy loss, because Eq. 5.10 is also
the formula for the cross-entropy between the true probability distribution y and our
estimated distribution ŷ.

Now we know what we want to minimize; in the next section, we’ll see how to
find the minimum.

5.4 Gradient Descent

Our goal with gradient descent is to find the optimal weights: minimize the loss
function we’ve defined for the model. In Eq. 5.13 below, we’ll explicitly represent
the fact that the loss function L is parameterized by the weights, which we’ll refer
to in machine learning in general as q (in the case of logistic regression q = w,b).
So the goal is to find the set of weights which minimizes the loss function, averaged
over all examples:

q̂ = argmin
q

1
m

mX

i=1

LCE(f (x(i);q),y(i)) (5.13)

Logistic
Regression

Cross-Entropy Loss

Logistic
Regression

Stochastic Gradient Descent

Our goal: minimize the loss

Let's make explicit that the loss function in
parameterized by weights 𝛳=(w,b)
We want the weights that minimize the loss,
averaged over all examples:

8 CHAPTER 5 • LOGISTIC REGRESSION

side of the equation drops out, leading to the following loss (we’ll use log to mean
natural log when the base is not specified):

LCE(ŷ,y) = �[y logs(w · x+b)+(1� y) log(1�s(w · x+b))]
= � [logs(w · x+b)]
= � log(.70)
= .36

By contrast, let’s pretend instead that the example in Fig. 5.2 was actually negative,
i.e., y = 0 (perhaps the reviewer went on to say “But bottom line, the movie is
terrible! I beg you not to see it!”). In this case our model is confused and we’d want
the loss to be higher. Now if we plug y = 0 and 1�s(w · x+b) = .31 from Eq. 5.7
into Eq. 5.12, the left side of the equation drops out:

LCE(ŷ,y) = �[y logs(w · x+b)+(1� y) log(1�s(w · x+b))]
= � [log(1�s(w · x+b))]
= � log(.30)
= 1.2

Sure enough, the loss for the first classifier (.37) is less than the loss for the second
classifier (1.17).

Why does minimizing this negative log probability do what we want? A per-
fect classifier would assign probability 1 to the correct outcome (y=1 or y=0) and
probability 0 to the incorrect outcome. That means the higher ŷ (the closer it is
to 1), the better the classifier; the lower ŷ is (the closer it is to 0), the worse the
classifier. The negative log of this probability is a convenient loss metric since it
goes from 0 (negative log of 1, no loss) to infinity (negative log of 0, infinite loss).
This loss function also ensures that as the probability of the correct answer is max-
imized, the probability of the incorrect answer is minimized; since the two sum to
one, any increase in the probability of the correct answer is coming at the expense
of the incorrect answer. It’s called the cross-entropy loss, because Eq. 5.10 is also
the formula for the cross-entropy between the true probability distribution y and our
estimated distribution ŷ.

Now we know what we want to minimize; in the next section, we’ll see how to
find the minimum.

5.4 Gradient Descent

Our goal with gradient descent is to find the optimal weights: minimize the loss
function we’ve defined for the model. In Eq. 5.13 below, we’ll explicitly represent
the fact that the loss function L is parameterized by the weights, which we’ll refer
to in machine learning in general as q (in the case of logistic regression q = w,b).
So the goal is to find the set of weights which minimizes the loss function, averaged
over all examples:

q̂ = argmin
q

1
m

mX

i=1

LCE(f (x(i);q),y(i)) (5.13)

Intuition of gradient descent

How do I get to the bottom of this river canyon?

x

Look around me 360∘

Find the direction of
steepest slope
Go that way

Our goal: minimize the loss

For logistic regression, loss function is convex
• A convex function has just one minimum
• Gradient descent starting from any point is

guaranteed to find the minimum
• (Loss for neural networks is non-convex)

Let's first visualize for a single scalar w

5.4 • GRADIENT DESCENT 9

How shall we find the minimum of this (or any) loss function? Gradient descent
is a method that finds a minimum of a function by figuring out in which direction
(in the space of the parameters q) the function’s slope is rising the most steeply,
and moving in the opposite direction. The intuition is that if you are hiking in a
canyon and trying to descend most quickly down to the river at the bottom, you might
look around yourself 360 degrees, find the direction where the ground is sloping the
steepest, and walk downhill in that direction.

For logistic regression, this loss function is conveniently convex. A convex func-convex

tion has just one minimum; there are no local minima to get stuck in, so gradient
descent starting from any point is guaranteed to find the minimum. (By contrast,
the loss for multi-layer neural networks is non-convex, and gradient descent may
get stuck in local minima for neural network training and never find the global opti-
mum.)

Although the algorithm (and the concept of gradient) are designed for direction
vectors, let’s first consider a visualization of the case where the parameter of our
system is just a single scalar w, shown in Fig. 5.3.

Given a random initialization of w at some value w1, and assuming the loss
function L happened to have the shape in Fig. 5.3, we need the algorithm to tell us
whether at the next iteration we should move left (making w2 smaller than w1) or
right (making w2 bigger than w1) to reach the minimum.

w

Loss

0
w1 wmin

slope of loss at w1
is negative

(goal)

one step
of gradient

descent

Figure 5.3 The first step in iteratively finding the minimum of this loss function, by moving
w in the reverse direction from the slope of the function. Since the slope is negative, we need
to move w in a positive direction, to the right. Here superscripts are used for learning steps,
so w1 means the initial value of w (which is 0), w2 at the second step, and so on.

The gradient descent algorithm answers this question by finding the gradientgradient

of the loss function at the current point and moving in the opposite direction. The
gradient of a function of many variables is a vector pointing in the direction of the
greatest increase in a function. The gradient is a multi-variable generalization of the
slope, so for a function of one variable like the one in Fig. 5.3, we can informally
think of the gradient as the slope. The dotted line in Fig. 5.3 shows the slope of this
hypothetical loss function at point w = w1. You can see that the slope of this dotted
line is negative. Thus to find the minimum, gradient descent tells us to go in the
opposite direction: moving w in a positive direction.

The magnitude of the amount to move in gradient descent is the value of the slope
d

dw f (x;w) weighted by a learning rate h . A higher (faster) learning rate means thatlearning rate

we should move w more on each step. The change we make in our parameter is the

Q: Given current w, should we make it bigger or smaller?
A: Move w in the reverse direction from the slope of the function

So we'll move
positive

Gradients

The gradient of a function of many variables is a
vector pointing in the direction of the greatest
increase in a function.

Gradient Descent: Find the gradient of the loss
function at the current point and move in the
opposite direction.

How much do we move in that direction ?

• The value of the gradient (slope in our example)
%
%&
𝑓(𝑥;𝑤) weighted by a learning rate η

• Higher learning rate means move w faster

10 CHAPTER 5 • LOGISTIC REGRESSION

learning rate times the gradient (or the slope, in our single-variable example):

wt+1 = wt �h d
dw

f (x;w) (5.14)

Now let’s extend the intuition from a function of one scalar variable w to many
variables, because we don’t just want to move left or right, we want to know where
in the N-dimensional space (of the N parameters that make up q) we should move.
The gradient is just such a vector; it expresses the directional components of the
sharpest slope along each of those N dimensions. If we’re just imagining two weight
dimensions (say for one weight w and one bias b), the gradient might be a vector with
two orthogonal components, each of which tells us how much the ground slopes in
the w dimension and in the b dimension. Fig. 5.4 shows a visualization of the value
of a 2-dimensional gradient vector taken at the red point.

Cost(w,b)

w
b

Figure 5.4 Visualization of the gradient vector at the red point in two dimensions w and b,
showing the gradient as a red arrow in the x-y plane.

In an actual logistic regression, the parameter vector w is much longer than 1 or
2, since the input feature vector x can be quite long, and we need a weight wi for
each xi. For each dimension/variable wi in w (plus the bias b), the gradient will have
a component that tells us the slope with respect to that variable. Essentially we’re
asking: “How much would a small change in that variable wi influence the total loss
function L?”

In each dimension wi, we express the slope as a partial derivative ∂
∂wi

of the loss
function. The gradient is then defined as a vector of these partials. We’ll represent ŷ
as f (x;q) to make the dependence on q more obvious:

—q L(f (x;q),y)) =

2

66664

∂
∂w1

L(f (x;q),y)
∂

∂w2
L(f (x;q),y)

...
∂

∂wn
L(f (x;q),y)

3

77775
(5.15)

The final equation for updating q based on the gradient is thus

qt+1 = qt �h—L(f (x;q),y) (5.16)

Now let's consider N dimensions

We want to know where in the N-dimensional space
(of the N parameters that make up θ) we should
move.
The gradient is just such a vector; it expresses the
directional components of the sharpest slope along
each of the N dimensions.

Imagine 2 dimensions, w and b

Visualizing the
gradient vector at
the red point
It has two
dimensions shown
in the x-y plane

10 CHAPTER 5 • LOGISTIC REGRESSION

learning rate times the gradient (or the slope, in our single-variable example):

wt+1 = wt �h d
dw

f (x;w) (5.14)

Now let’s extend the intuition from a function of one scalar variable w to many
variables, because we don’t just want to move left or right, we want to know where
in the N-dimensional space (of the N parameters that make up q) we should move.
The gradient is just such a vector; it expresses the directional components of the
sharpest slope along each of those N dimensions. If we’re just imagining two weight
dimensions (say for one weight w and one bias b), the gradient might be a vector with
two orthogonal components, each of which tells us how much the ground slopes in
the w dimension and in the b dimension. Fig. 5.4 shows a visualization of the value
of a 2-dimensional gradient vector taken at the red point.

Cost(w,b)

w
b

Figure 5.4 Visualization of the gradient vector at the red point in two dimensions w and b,
showing the gradient as a red arrow in the x-y plane.

In an actual logistic regression, the parameter vector w is much longer than 1 or
2, since the input feature vector x can be quite long, and we need a weight wi for
each xi. For each dimension/variable wi in w (plus the bias b), the gradient will have
a component that tells us the slope with respect to that variable. Essentially we’re
asking: “How much would a small change in that variable wi influence the total loss
function L?”

In each dimension wi, we express the slope as a partial derivative ∂
∂wi

of the loss
function. The gradient is then defined as a vector of these partials. We’ll represent ŷ
as f (x;q) to make the dependence on q more obvious:

—q L(f (x;q),y)) =

2

66664

∂
∂w1

L(f (x;q),y)
∂

∂w2
L(f (x;q),y)

...
∂

∂wn
L(f (x;q),y)

3

77775
(5.15)

The final equation for updating q based on the gradient is thus

qt+1 = qt �h—L(f (x;q),y) (5.16)

Real gradients

Are much longer; lots and lots of weights
For each dimension wi the gradient component i
tells us the slope with respect to that variable.

◦ “How much would a small change in wi influence the
total loss function L?”

◦ We express the slope as a partial derivative ∂ of the loss
∂wi

The gradient is then defined as a vector of these
partials.

The gradient

10 CHAPTER 5 • LOGISTIC REGRESSION

learning rate times the gradient (or the slope, in our single-variable example):

wt+1 = wt �h d
dw

f (x;w) (5.14)

Now let’s extend the intuition from a function of one scalar variable w to many
variables, because we don’t just want to move left or right, we want to know where
in the N-dimensional space (of the N parameters that make up q) we should move.
The gradient is just such a vector; it expresses the directional components of the
sharpest slope along each of those N dimensions. If we’re just imagining two weight
dimensions (say for one weight w and one bias b), the gradient might be a vector with
two orthogonal components, each of which tells us how much the ground slopes in
the w dimension and in the b dimension. Fig. 5.4 shows a visualization of the value
of a 2-dimensional gradient vector taken at the red point.

Cost(w,b)

w
b

Figure 5.4 Visualization of the gradient vector at the red point in two dimensions w and b,
showing the gradient as a red arrow in the x-y plane.

In an actual logistic regression, the parameter vector w is much longer than 1 or
2, since the input feature vector x can be quite long, and we need a weight wi for
each xi. For each dimension/variable wi in w (plus the bias b), the gradient will have
a component that tells us the slope with respect to that variable. Essentially we’re
asking: “How much would a small change in that variable wi influence the total loss
function L?”

In each dimension wi, we express the slope as a partial derivative ∂
∂wi

of the loss
function. The gradient is then defined as a vector of these partials. We’ll represent ŷ
as f (x;q) to make the dependence on q more obvious:

—q L(f (x;q),y)) =

2

66664

∂
∂w1

L(f (x;q),y)
∂

∂w2
L(f (x;q),y)

...
∂

∂wn
L(f (x;q),y)

3

77775
(5.15)

The final equation for updating q based on the gradient is thus

qt+1 = qt �h—L(f (x;q),y) (5.16)

We’ll represent !𝑦	as f (x; θ) to make the dependence on θ more
obvious:

The final equation for updating θ based on the gradient is thus

10 CHAPTER 5 • LOGISTIC REGRESSION

learning rate times the gradient (or the slope, in our single-variable example):

wt+1 = wt �h d
dw

f (x;w) (5.14)

Now let’s extend the intuition from a function of one scalar variable w to many
variables, because we don’t just want to move left or right, we want to know where
in the N-dimensional space (of the N parameters that make up q) we should move.
The gradient is just such a vector; it expresses the directional components of the
sharpest slope along each of those N dimensions. If we’re just imagining two weight
dimensions (say for one weight w and one bias b), the gradient might be a vector with
two orthogonal components, each of which tells us how much the ground slopes in
the w dimension and in the b dimension. Fig. 5.4 shows a visualization of the value
of a 2-dimensional gradient vector taken at the red point.

Cost(w,b)

w
b

Figure 5.4 Visualization of the gradient vector at the red point in two dimensions w and b,
showing the gradient as a red arrow in the x-y plane.

In an actual logistic regression, the parameter vector w is much longer than 1 or
2, since the input feature vector x can be quite long, and we need a weight wi for
each xi. For each dimension/variable wi in w (plus the bias b), the gradient will have
a component that tells us the slope with respect to that variable. Essentially we’re
asking: “How much would a small change in that variable wi influence the total loss
function L?”

In each dimension wi, we express the slope as a partial derivative ∂
∂wi

of the loss
function. The gradient is then defined as a vector of these partials. We’ll represent ŷ
as f (x;q) to make the dependence on q more obvious:

—q L(f (x;q),y)) =

2

66664

∂
∂w1

L(f (x;q),y)
∂

∂w2
L(f (x;q),y)

...
∂

∂wn
L(f (x;q),y)

3

77775
(5.15)

The final equation for updating q based on the gradient is thus

qt+1 = qt �h—L(f (x;q),y) (5.16)

What are these partial derivatives for logistic regression?

The loss function

5.4 • GRADIENT DESCENT 11

5.4.1 The Gradient for Logistic Regression
In order to update q , we need a definition for the gradient —L(f (x;q),y). Recall that
for logistic regression, the cross-entropy loss function is:

LCE(ŷ,y) = � [y logs(w · x+b)+(1� y) log(1�s(w · x+b))] (5.17)

It turns out that the derivative of this function for one observation vector x is
Eq. 5.18 (the interested reader can see Section 5.8 for the derivation of this equation):

∂LCE(ŷ,y)
∂w j

= [s(w · x+b)� y]x j (5.18)

Note in Eq. 5.18 that the gradient with respect to a single weight w j represents a
very intuitive value: the difference between the true y and our estimated ŷ = s(w ·
x+b) for that observation, multiplied by the corresponding input value x j.

5.4.2 The Stochastic Gradient Descent Algorithm
Stochastic gradient descent is an online algorithm that minimizes the loss function
by computing its gradient after each training example, and nudging q in the right
direction (the opposite direction of the gradient). Fig. 5.5 shows the algorithm.

function STOCHASTIC GRADIENT DESCENT(L(), f (), x, y) returns q
where: L is the loss function
f is a function parameterized by q
x is the set of training inputs x(1), x(2), ..., x(m)

y is the set of training outputs (labels) y(1), y(2), ..., y(m)

q 0
repeat til done # see caption

For each training tuple (x(i), y(i)) (in random order)
1. Optional (for reporting): # How are we doing on this tuple?

Compute ŷ (i) = f (x(i);q) # What is our estimated output ŷ?
Compute the loss L(ŷ (i),y(i)) # How far off is ŷ(i)) from the true output y(i)?

2. g —q L(f (x(i);q),y(i)) # How should we move q to maximize loss?
3. q q � h g # Go the other way instead

return q

Figure 5.5 The stochastic gradient descent algorithm. Step 1 (computing the loss) is used
to report how well we are doing on the current tuple. The algorithm can terminate when it
converges (or when the gradient norm < ✏), or when progress halts (for example when the
loss starts going up on a held-out set).

The learning rate h is a hyperparameter that must be adjusted. If it’s too high,hyperparameter
the learner will take steps that are too large, overshooting the minimum of the loss
function. If it’s too low, the learner will take steps that are too small, and take too
long to get to the minimum. It is common to start with a higher learning rate and then
slowly decrease it, so that it is a function of the iteration k of training; the notation
hk can be used to mean the value of the learning rate at iteration k.

We’ll discuss hyperparameters in more detail in Chapter 7, but briefly they are
a special kind of parameter for any machine learning model. Unlike regular param-
eters of a model (weights like w and b), which are learned by the algorithm from
the training set, hyperparameters are special parameters chosen by the algorithm
designer that affect how the algorithm works.

5.4 • GRADIENT DESCENT 11

5.4.1 The Gradient for Logistic Regression
In order to update q , we need a definition for the gradient —L(f (x;q),y). Recall that
for logistic regression, the cross-entropy loss function is:

LCE(ŷ,y) = � [y logs(w · x+b)+(1� y) log(1�s(w · x+b))] (5.17)

It turns out that the derivative of this function for one observation vector x is
Eq. 5.18 (the interested reader can see Section 5.8 for the derivation of this equation):

∂LCE(ŷ,y)
∂w j

= [s(w · x+b)� y]x j (5.18)

Note in Eq. 5.18 that the gradient with respect to a single weight w j represents a
very intuitive value: the difference between the true y and our estimated ŷ = s(w ·
x+b) for that observation, multiplied by the corresponding input value x j.

5.4.2 The Stochastic Gradient Descent Algorithm
Stochastic gradient descent is an online algorithm that minimizes the loss function
by computing its gradient after each training example, and nudging q in the right
direction (the opposite direction of the gradient). Fig. 5.5 shows the algorithm.

function STOCHASTIC GRADIENT DESCENT(L(), f (), x, y) returns q
where: L is the loss function
f is a function parameterized by q
x is the set of training inputs x(1), x(2), ..., x(m)

y is the set of training outputs (labels) y(1), y(2), ..., y(m)

q 0
repeat til done # see caption

For each training tuple (x(i), y(i)) (in random order)
1. Optional (for reporting): # How are we doing on this tuple?

Compute ŷ (i) = f (x(i);q) # What is our estimated output ŷ?
Compute the loss L(ŷ (i),y(i)) # How far off is ŷ(i)) from the true output y(i)?

2. g —q L(f (x(i);q),y(i)) # How should we move q to maximize loss?
3. q q � h g # Go the other way instead

return q

Figure 5.5 The stochastic gradient descent algorithm. Step 1 (computing the loss) is used
to report how well we are doing on the current tuple. The algorithm can terminate when it
converges (or when the gradient norm < ✏), or when progress halts (for example when the
loss starts going up on a held-out set).

The learning rate h is a hyperparameter that must be adjusted. If it’s too high,hyperparameter
the learner will take steps that are too large, overshooting the minimum of the loss
function. If it’s too low, the learner will take steps that are too small, and take too
long to get to the minimum. It is common to start with a higher learning rate and then
slowly decrease it, so that it is a function of the iteration k of training; the notation
hk can be used to mean the value of the learning rate at iteration k.

We’ll discuss hyperparameters in more detail in Chapter 7, but briefly they are
a special kind of parameter for any machine learning model. Unlike regular param-
eters of a model (weights like w and b), which are learned by the algorithm from
the training set, hyperparameters are special parameters chosen by the algorithm
designer that affect how the algorithm works.

The elegant derivative of this function (see textbook 5.8 for derivation)

5.4 • GRADIENT DESCENT 11

5.4.1 The Gradient for Logistic Regression
In order to update q , we need a definition for the gradient —L(f (x;q),y). Recall that
for logistic regression, the cross-entropy loss function is:

LCE(ŷ,y) = � [y logs(w · x+b)+(1� y) log(1�s(w · x+b))] (5.17)

It turns out that the derivative of this function for one observation vector x is
Eq. 5.18 (the interested reader can see Section 5.8 for the derivation of this equation):

∂LCE(ŷ,y)
∂w j

= [s(w · x+b)� y]x j (5.18)

Note in Eq. 5.18 that the gradient with respect to a single weight w j represents a
very intuitive value: the difference between the true y and our estimated ŷ = s(w ·
x+b) for that observation, multiplied by the corresponding input value x j.

5.4.2 The Stochastic Gradient Descent Algorithm
Stochastic gradient descent is an online algorithm that minimizes the loss function
by computing its gradient after each training example, and nudging q in the right
direction (the opposite direction of the gradient). Fig. 5.5 shows the algorithm.

function STOCHASTIC GRADIENT DESCENT(L(), f (), x, y) returns q
where: L is the loss function
f is a function parameterized by q
x is the set of training inputs x(1), x(2), ..., x(m)

y is the set of training outputs (labels) y(1), y(2), ..., y(m)

q 0
repeat til done # see caption

For each training tuple (x(i), y(i)) (in random order)
1. Optional (for reporting): # How are we doing on this tuple?

Compute ŷ (i) = f (x(i);q) # What is our estimated output ŷ?
Compute the loss L(ŷ (i),y(i)) # How far off is ŷ(i)) from the true output y(i)?

2. g —q L(f (x(i);q),y(i)) # How should we move q to maximize loss?
3. q q � h g # Go the other way instead

return q

Figure 5.5 The stochastic gradient descent algorithm. Step 1 (computing the loss) is used
to report how well we are doing on the current tuple. The algorithm can terminate when it
converges (or when the gradient norm < ✏), or when progress halts (for example when the
loss starts going up on a held-out set).

The learning rate h is a hyperparameter that must be adjusted. If it’s too high,hyperparameter
the learner will take steps that are too large, overshooting the minimum of the loss
function. If it’s too low, the learner will take steps that are too small, and take too
long to get to the minimum. It is common to start with a higher learning rate and then
slowly decrease it, so that it is a function of the iteration k of training; the notation
hk can be used to mean the value of the learning rate at iteration k.

We’ll discuss hyperparameters in more detail in Chapter 7, but briefly they are
a special kind of parameter for any machine learning model. Unlike regular param-
eters of a model (weights like w and b), which are learned by the algorithm from
the training set, hyperparameters are special parameters chosen by the algorithm
designer that affect how the algorithm works.

Hyperparameters

The learning rate η is a hyperparameter
◦ too high: the learner will take big steps and overshoot
◦ too low: the learner will take too long

More on hyperparameters in Chapter 7
• Briefly, a special kind of parameter for an ML model
• Instead of being learned by algorithm from

supervision (like regular parameters), they are
chosen by algorithm designer.

Logistic
Regression

Stochastic Gradient Descent

Logistic
Regression

Stochastic Gradient Descent:
An example and more details

Working through an example

One step of gradient descent
A mini-sentiment example, where the true y=1 (positive)
Two features:

x1 = 3 (count of positive lexicon words)
x2 = 2 (count of negative lexicon words)

Assume 3 parameters (2 weights and 1 bias) in Θ0 are zero:
w1 = w2 = b = 0
η = 0.1

Example of gradient descent
Update step for update θ is:

 where

Gradient vector has 3 dimensions:

10 CHAPTER 5 • LOGISTIC REGRESSION

learning rate times the gradient (or the slope, in our single-variable example):

wt+1 = wt �h d
dw

f (x;w) (5.14)

Now let’s extend the intuition from a function of one scalar variable w to many
variables, because we don’t just want to move left or right, we want to know where
in the N-dimensional space (of the N parameters that make up q) we should move.
The gradient is just such a vector; it expresses the directional components of the
sharpest slope along each of those N dimensions. If we’re just imagining two weight
dimensions (say for one weight w and one bias b), the gradient might be a vector with
two orthogonal components, each of which tells us how much the ground slopes in
the w dimension and in the b dimension. Fig. 5.4 shows a visualization of the value
of a 2-dimensional gradient vector taken at the red point.

Cost(w,b)

w
b

Figure 5.4 Visualization of the gradient vector at the red point in two dimensions w and b,
showing the gradient as a red arrow in the x-y plane.

In an actual logistic regression, the parameter vector w is much longer than 1 or
2, since the input feature vector x can be quite long, and we need a weight wi for
each xi. For each dimension/variable wi in w (plus the bias b), the gradient will have
a component that tells us the slope with respect to that variable. Essentially we’re
asking: “How much would a small change in that variable wi influence the total loss
function L?”

In each dimension wi, we express the slope as a partial derivative ∂
∂wi

of the loss
function. The gradient is then defined as a vector of these partials. We’ll represent ŷ
as f (x;q) to make the dependence on q more obvious:

—q L(f (x;q),y)) =

2

66664

∂
∂w1

L(f (x;q),y)
∂

∂w2
L(f (x;q),y)

...
∂

∂wn
L(f (x;q),y)

3

77775
(5.15)

The final equation for updating q based on the gradient is thus

qt+1 = qt �h—L(f (x;q),y) (5.16)

12 CHAPTER 5 • LOGISTIC REGRESSION

5.4.3 Working through an example
Let’s walk though a single step of the gradient descent algorithm. We’ll use a sim-
plified version of the example in Fig. 5.2 as it sees a single observation x, whose
correct value is y = 1 (this is a positive review), and with only two features:

x1 = 3 (count of positive lexicon words)
x2 = 2 (count of negative lexicon words)

Let’s assume the initial weights and bias in q 0 are all set to 0, and the initial learning
rate h is 0.1:

w1 = w2 = b = 0
h = 0.1

The single update step requires that we compute the gradient, multiplied by the
learning rate

q t+1 = q t �h—q L(f (x(i);q),y(i))

In our mini example there are three parameters, so the gradient vector has 3 dimen-
sions, for w1, w2, and b. We can compute the first gradient as follows:

—w,b =

2

64

∂LCE(ŷ,y)
∂w1

∂LCE(ŷ,y)
∂w2

∂LCE(ŷ,y)
∂b

3

75=

2

4
(s(w · x+b)� y)x1
(s(w · x+b)� y)x2
s(w · x+b)� y

3

5=

2

4
(s(0)�1)x1
(s(0)�1)x2
s(0)�1

3

5=

2

4
�0.5x1
�0.5x2
�0.5

3

5=

2

4
�1.5
�1.0
�0.5

3

5

Now that we have a gradient, we compute the new parameter vector q 1 by moving
q 0 in the opposite direction from the gradient:

q 1 =

2

4
w1
w2
b

3

5�h

2

4
�1.5
�1.0
�0.5

3

5=

2

4
.15
.1
.05

3

5

So after one step of gradient descent, the weights have shifted to be: w1 = .15,
w2 = .1, and b = .05.

Note that this observation x happened to be a positive example. We would expect
that after seeing more negative examples with high counts of negative words, that
the weight w2 would shift to have a negative value.

5.4.4 Mini-batch training
Stochastic gradient descent is called stochastic because it chooses a single random
example at a time, moving the weights so as to improve performance on that single
example. That can result in very choppy movements, so it’s common to compute the
gradient over batches of training instances rather than a single instance.

For example in batch training we compute the gradient over the entire dataset.batch training

By seeing so many examples, batch training offers a superb estimate of which di-
rection to move the weights, at the cost of spending a lot of time processing every
single example in the training set to compute this perfect direction.

A compromise is mini-batch training: we train on a group of m examples (per-mini-batch
haps 512, or 1024) that is less than the whole dataset. (If m is the size of the dataset,

w1 = w2 = b = 0;
x1 = 3; x2 = 2

5.4 • GRADIENT DESCENT 11

5.4.1 The Gradient for Logistic Regression
In order to update q , we need a definition for the gradient —L(f (x;q),y). Recall that
for logistic regression, the cross-entropy loss function is:

LCE(ŷ,y) = � [y logs(w · x+b)+(1� y) log(1�s(w · x+b))] (5.17)

It turns out that the derivative of this function for one observation vector x is
Eq. 5.18 (the interested reader can see Section 5.8 for the derivation of this equation):

∂LCE(ŷ,y)
∂w j

= [s(w · x+b)� y]x j (5.18)

Note in Eq. 5.18 that the gradient with respect to a single weight w j represents a
very intuitive value: the difference between the true y and our estimated ŷ = s(w ·
x+b) for that observation, multiplied by the corresponding input value x j.

5.4.2 The Stochastic Gradient Descent Algorithm
Stochastic gradient descent is an online algorithm that minimizes the loss function
by computing its gradient after each training example, and nudging q in the right
direction (the opposite direction of the gradient). Fig. 5.5 shows the algorithm.

function STOCHASTIC GRADIENT DESCENT(L(), f (), x, y) returns q
where: L is the loss function
f is a function parameterized by q
x is the set of training inputs x(1), x(2), ..., x(m)

y is the set of training outputs (labels) y(1), y(2), ..., y(m)

q 0
repeat til done # see caption

For each training tuple (x(i), y(i)) (in random order)
1. Optional (for reporting): # How are we doing on this tuple?

Compute ŷ (i) = f (x(i);q) # What is our estimated output ŷ?
Compute the loss L(ŷ (i),y(i)) # How far off is ŷ(i)) from the true output y(i)?

2. g —q L(f (x(i);q),y(i)) # How should we move q to maximize loss?
3. q q � h g # Go the other way instead

return q

Figure 5.5 The stochastic gradient descent algorithm. Step 1 (computing the loss) is used
to report how well we are doing on the current tuple. The algorithm can terminate when it
converges (or when the gradient norm < ✏), or when progress halts (for example when the
loss starts going up on a held-out set).

The learning rate h is a hyperparameter that must be adjusted. If it’s too high,hyperparameter
the learner will take steps that are too large, overshooting the minimum of the loss
function. If it’s too low, the learner will take steps that are too small, and take too
long to get to the minimum. It is common to start with a higher learning rate and then
slowly decrease it, so that it is a function of the iteration k of training; the notation
hk can be used to mean the value of the learning rate at iteration k.

We’ll discuss hyperparameters in more detail in Chapter 7, but briefly they are
a special kind of parameter for any machine learning model. Unlike regular param-
eters of a model (weights like w and b), which are learned by the algorithm from
the training set, hyperparameters are special parameters chosen by the algorithm
designer that affect how the algorithm works.

Example of gradient descent

10 CHAPTER 5 • LOGISTIC REGRESSION

learning rate times the gradient (or the slope, in our single-variable example):

wt+1 = wt �h d
dw

f (x;w) (5.14)

Now let’s extend the intuition from a function of one scalar variable w to many
variables, because we don’t just want to move left or right, we want to know where
in the N-dimensional space (of the N parameters that make up q) we should move.
The gradient is just such a vector; it expresses the directional components of the
sharpest slope along each of those N dimensions. If we’re just imagining two weight
dimensions (say for one weight w and one bias b), the gradient might be a vector with
two orthogonal components, each of which tells us how much the ground slopes in
the w dimension and in the b dimension. Fig. 5.4 shows a visualization of the value
of a 2-dimensional gradient vector taken at the red point.

Cost(w,b)

w
b

Figure 5.4 Visualization of the gradient vector at the red point in two dimensions w and b,
showing the gradient as a red arrow in the x-y plane.

In an actual logistic regression, the parameter vector w is much longer than 1 or
2, since the input feature vector x can be quite long, and we need a weight wi for
each xi. For each dimension/variable wi in w (plus the bias b), the gradient will have
a component that tells us the slope with respect to that variable. Essentially we’re
asking: “How much would a small change in that variable wi influence the total loss
function L?”

In each dimension wi, we express the slope as a partial derivative ∂
∂wi

of the loss
function. The gradient is then defined as a vector of these partials. We’ll represent ŷ
as f (x;q) to make the dependence on q more obvious:

—q L(f (x;q),y)) =

2

66664

∂
∂w1

L(f (x;q),y)
∂

∂w2
L(f (x;q),y)

...
∂

∂wn
L(f (x;q),y)

3

77775
(5.15)

The final equation for updating q based on the gradient is thus

qt+1 = qt �h—L(f (x;q),y) (5.16)

12 CHAPTER 5 • LOGISTIC REGRESSION

5.4.3 Working through an example
Let’s walk though a single step of the gradient descent algorithm. We’ll use a sim-
plified version of the example in Fig. 5.2 as it sees a single observation x, whose
correct value is y = 1 (this is a positive review), and with only two features:

x1 = 3 (count of positive lexicon words)
x2 = 2 (count of negative lexicon words)

Let’s assume the initial weights and bias in q 0 are all set to 0, and the initial learning
rate h is 0.1:

w1 = w2 = b = 0
h = 0.1

The single update step requires that we compute the gradient, multiplied by the
learning rate

q t+1 = q t �h—q L(f (x(i);q),y(i))

In our mini example there are three parameters, so the gradient vector has 3 dimen-
sions, for w1, w2, and b. We can compute the first gradient as follows:

—w,b =

2

64

∂LCE(ŷ,y)
∂w1

∂LCE(ŷ,y)
∂w2

∂LCE(ŷ,y)
∂b

3

75=

2

4
(s(w · x+b)� y)x1
(s(w · x+b)� y)x2
s(w · x+b)� y

3

5=

2

4
(s(0)�1)x1
(s(0)�1)x2
s(0)�1

3

5=

2

4
�0.5x1
�0.5x2
�0.5

3

5=

2

4
�1.5
�1.0
�0.5

3

5

Now that we have a gradient, we compute the new parameter vector q 1 by moving
q 0 in the opposite direction from the gradient:

q 1 =

2

4
w1
w2
b

3

5�h

2

4
�1.5
�1.0
�0.5

3

5=

2

4
.15
.1
.05

3

5

So after one step of gradient descent, the weights have shifted to be: w1 = .15,
w2 = .1, and b = .05.

Note that this observation x happened to be a positive example. We would expect
that after seeing more negative examples with high counts of negative words, that
the weight w2 would shift to have a negative value.

5.4.4 Mini-batch training
Stochastic gradient descent is called stochastic because it chooses a single random
example at a time, moving the weights so as to improve performance on that single
example. That can result in very choppy movements, so it’s common to compute the
gradient over batches of training instances rather than a single instance.

For example in batch training we compute the gradient over the entire dataset.batch training

By seeing so many examples, batch training offers a superb estimate of which di-
rection to move the weights, at the cost of spending a lot of time processing every
single example in the training set to compute this perfect direction.

A compromise is mini-batch training: we train on a group of m examples (per-mini-batch
haps 512, or 1024) that is less than the whole dataset. (If m is the size of the dataset,

η = 0.1;

12 CHAPTER 5 • LOGISTIC REGRESSION

5.4.3 Working through an example
Let’s walk though a single step of the gradient descent algorithm. We’ll use a sim-
plified version of the example in Fig. 5.2 as it sees a single observation x, whose
correct value is y = 1 (this is a positive review), and with only two features:

x1 = 3 (count of positive lexicon words)
x2 = 2 (count of negative lexicon words)

Let’s assume the initial weights and bias in q 0 are all set to 0, and the initial learning
rate h is 0.1:

w1 = w2 = b = 0
h = 0.1

The single update step requires that we compute the gradient, multiplied by the
learning rate

q t+1 = q t �h—q L(f (x(i);q),y(i))

In our mini example there are three parameters, so the gradient vector has 3 dimen-
sions, for w1, w2, and b. We can compute the first gradient as follows:

—w,b =

2

64

∂LCE(ŷ,y)
∂w1

∂LCE(ŷ,y)
∂w2

∂LCE(ŷ,y)
∂b

3

75=

2

4
(s(w · x+b)� y)x1
(s(w · x+b)� y)x2
s(w · x+b)� y

3

5=

2

4
(s(0)�1)x1
(s(0)�1)x2
s(0)�1

3

5=

2

4
�0.5x1
�0.5x2
�0.5

3

5=

2

4
�1.5
�1.0
�0.5

3

5

Now that we have a gradient, we compute the new parameter vector q 1 by moving
q 0 in the opposite direction from the gradient:

q 1 =

2

4
w1
w2
b

3

5�h

2

4
�1.5
�1.0
�0.5

3

5=

2

4
.15
.1
.05

3

5

So after one step of gradient descent, the weights have shifted to be: w1 = .15,
w2 = .1, and b = .05.

Note that this observation x happened to be a positive example. We would expect
that after seeing more negative examples with high counts of negative words, that
the weight w2 would shift to have a negative value.

5.4.4 Mini-batch training
Stochastic gradient descent is called stochastic because it chooses a single random
example at a time, moving the weights so as to improve performance on that single
example. That can result in very choppy movements, so it’s common to compute the
gradient over batches of training instances rather than a single instance.

For example in batch training we compute the gradient over the entire dataset.batch training

By seeing so many examples, batch training offers a superb estimate of which di-
rection to move the weights, at the cost of spending a lot of time processing every
single example in the training set to compute this perfect direction.

A compromise is mini-batch training: we train on a group of m examples (per-mini-batch
haps 512, or 1024) that is less than the whole dataset. (If m is the size of the dataset,

Now that we have a gradient, we compute the new parameter vector
θ1 by moving θ0 in the opposite direction from the gradient:

Note that enough negative examples would eventually make w2 negative

Mini-batch training

Stochastic gradient descent chooses a single
random example at a time.
That can result in choppy movements
More common to compute gradient over batches of
training instances.
Batch training: entire dataset
Mini-batch training: m examples (512, or 1024)

Logistic
Regression

Stochastic Gradient Descent:
An example and more details

Logistic
Regression

Regularization

Overfitting

A model that perfectly matches the training data
may have a problem.
It may also overfit to the data, modeling noise:

◦ A random word that perfectly predicts y (it happens to
only occur in one class) will get a very high weight.

◦ Failing to generalize to a test set without this word.

A good model should be able to generalize.

Overfitting

This movie drew me in, and it'll
do the same to you.

83

X1 = "this"
X2 = "movie
X3 = "hated"

I can't tell you how much I
hated this movie. It sucked. X5 = "the same to you"

X7 = "tell you how much"

X4 = "drew me in"

+

-

Useful or harmless features

4gram features that just
"memorize" training set and
might cause problems

Overfitting

4-gram model on tiny data will just memorize the data
◦ 100% accuracy on the training set

But it will be surprised by the novel 4-grams in the test data
◦ Low accuracy on test set

Models that are too powerful can overfit the data
◦ Fitting the details of the training data so exactly that the

model doesn't generalize well to the test set
◦ How to avoid overfitting?

◦ L2 and L1 Regularization in logistic regression
◦ Dropout in neural networks

84

Regularization

A solution for overfitting
Add a regularization term R(θ) to the loss function
(for now written as maximizing logprob rather than minimizing loss)

Idea: choose an R(θ) that penalizes large weights
◦ fitting the data well with lots of big weights not as good

as fitting the data a little less well, with small weights

14 CHAPTER 5 • LOGISTIC REGRESSION

data to the unseen test set, but a model that overfits will have poor generalization.
To avoid overfitting, a new regularization term R(q) is added to the objectiveregularization

function in Eq. 5.13, resulting in the following objective for a batch of m exam-
ples (slightly rewritten from Eq. 5.13 to be maximizing log probability rather than
minimizing loss, and removing the 1

m term which doesn’t affect the argmax):

q̂ = argmax
q

mX

i=1

logP(y(i)|x(i))�aR(q) (5.22)

The new regularization term R(q) is used to penalize large weights. Thus a setting
of the weights that matches the training data perfectly— but uses many weights with
high values to do so—will be penalized more than a setting that matches the data a
little less well, but does so using smaller weights. There are two common ways to
compute this regularization term R(q). L2 regularization is a quadratic function ofL2

regularization
the weight values, named because it uses the (square of the) L2 norm of the weight
values. The L2 norm, ||q ||2, is the same as the Euclidean distance of the vector q
from the origin. If q consists of n weights, then:

R(q) = ||q ||22 =
nX

j=1

q 2
j (5.23)

The L2 regularized objective function becomes:

q̂ = argmax
q

" mX

i=1

logP(y(i)|x(i))
#
�a

nX

j=1

q 2
j (5.24)

L1 regularization is a linear function of the weight values, named after the L1 normL1
regularization

||W ||1, the sum of the absolute values of the weights, or Manhattan distance (the
Manhattan distance is the distance you’d have to walk between two points in a city
with a street grid like New York):

R(q) = ||q ||1 =
nX

i=1

|qi| (5.25)

The L1 regularized objective function becomes:

q̂ = argmax
q

" mX

1=i

logP(y(i)|x(i))
#
�a

nX

j=1

|q j| (5.26)

These kinds of regularization come from statistics, where L1 regularization is called
lasso regression (Tibshirani, 1996) and L2 regularization is called ridge regression,lasso

ridge and both are commonly used in language processing. L2 regularization is easier to
optimize because of its simple derivative (the derivative of q 2 is just 2q), while
L1 regularization is more complex (the derivative of |q | is non-continuous at zero).
But where L2 prefers weight vectors with many small weights, L1 prefers sparse
solutions with some larger weights but many more weights set to zero. Thus L1
regularization leads to much sparser weight vectors, that is, far fewer features.

Both L1 and L2 regularization have Bayesian interpretations as constraints on
the prior of how weights should look. L1 regularization can be viewed as a Laplace
prior on the weights. L2 regularization corresponds to assuming that weights are

L2 Regularization (= ridge regression)

The sum of the squares of the weights
The name is because this is the (square of the)
L2 norm ||θ||2, = Euclidean distance of θ to the origin.

L2 regularized objective function:

14 CHAPTER 5 • LOGISTIC REGRESSION

data to the unseen test set, but a model that overfits will have poor generalization.
To avoid overfitting, a new regularization term R(q) is added to the objectiveregularization

function in Eq. 5.13, resulting in the following objective for a batch of m exam-
ples (slightly rewritten from Eq. 5.13 to be maximizing log probability rather than
minimizing loss, and removing the 1

m term which doesn’t affect the argmax):

q̂ = argmax
q

mX

i=1

logP(y(i)|x(i))�aR(q) (5.22)

The new regularization term R(q) is used to penalize large weights. Thus a setting
of the weights that matches the training data perfectly— but uses many weights with
high values to do so—will be penalized more than a setting that matches the data a
little less well, but does so using smaller weights. There are two common ways to
compute this regularization term R(q). L2 regularization is a quadratic function ofL2

regularization
the weight values, named because it uses the (square of the) L2 norm of the weight
values. The L2 norm, ||q ||2, is the same as the Euclidean distance of the vector q
from the origin. If q consists of n weights, then:

R(q) = ||q ||22 =
nX

j=1

q 2
j (5.23)

The L2 regularized objective function becomes:

q̂ = argmax
q

" mX

i=1

logP(y(i)|x(i))
#
�a

nX

j=1

q 2
j (5.24)

L1 regularization is a linear function of the weight values, named after the L1 normL1
regularization

||W ||1, the sum of the absolute values of the weights, or Manhattan distance (the
Manhattan distance is the distance you’d have to walk between two points in a city
with a street grid like New York):

R(q) = ||q ||1 =
nX

i=1

|qi| (5.25)

The L1 regularized objective function becomes:

q̂ = argmax
q

" mX

1=i

logP(y(i)|x(i))
#
�a

nX

j=1

|q j| (5.26)

These kinds of regularization come from statistics, where L1 regularization is called
lasso regression (Tibshirani, 1996) and L2 regularization is called ridge regression,lasso

ridge and both are commonly used in language processing. L2 regularization is easier to
optimize because of its simple derivative (the derivative of q 2 is just 2q), while
L1 regularization is more complex (the derivative of |q | is non-continuous at zero).
But where L2 prefers weight vectors with many small weights, L1 prefers sparse
solutions with some larger weights but many more weights set to zero. Thus L1
regularization leads to much sparser weight vectors, that is, far fewer features.

Both L1 and L2 regularization have Bayesian interpretations as constraints on
the prior of how weights should look. L1 regularization can be viewed as a Laplace
prior on the weights. L2 regularization corresponds to assuming that weights are

14 CHAPTER 5 • LOGISTIC REGRESSION

data to the unseen test set, but a model that overfits will have poor generalization.
To avoid overfitting, a new regularization term R(q) is added to the objectiveregularization

function in Eq. 5.13, resulting in the following objective for a batch of m exam-
ples (slightly rewritten from Eq. 5.13 to be maximizing log probability rather than
minimizing loss, and removing the 1

m term which doesn’t affect the argmax):

q̂ = argmax
q

mX

i=1

logP(y(i)|x(i))�aR(q) (5.22)

The new regularization term R(q) is used to penalize large weights. Thus a setting
of the weights that matches the training data perfectly— but uses many weights with
high values to do so—will be penalized more than a setting that matches the data a
little less well, but does so using smaller weights. There are two common ways to
compute this regularization term R(q). L2 regularization is a quadratic function ofL2

regularization
the weight values, named because it uses the (square of the) L2 norm of the weight
values. The L2 norm, ||q ||2, is the same as the Euclidean distance of the vector q
from the origin. If q consists of n weights, then:

R(q) = ||q ||22 =
nX

j=1

q 2
j (5.23)

The L2 regularized objective function becomes:

q̂ = argmax
q

" mX

i=1

logP(y(i)|x(i))
#
�a

nX

j=1

q 2
j (5.24)

L1 regularization is a linear function of the weight values, named after the L1 normL1
regularization

||W ||1, the sum of the absolute values of the weights, or Manhattan distance (the
Manhattan distance is the distance you’d have to walk between two points in a city
with a street grid like New York):

R(q) = ||q ||1 =
nX

i=1

|qi| (5.25)

The L1 regularized objective function becomes:

q̂ = argmax
q

" mX

1=i

logP(y(i)|x(i))
#
�a

nX

j=1

|q j| (5.26)

These kinds of regularization come from statistics, where L1 regularization is called
lasso regression (Tibshirani, 1996) and L2 regularization is called ridge regression,lasso

ridge and both are commonly used in language processing. L2 regularization is easier to
optimize because of its simple derivative (the derivative of q 2 is just 2q), while
L1 regularization is more complex (the derivative of |q | is non-continuous at zero).
But where L2 prefers weight vectors with many small weights, L1 prefers sparse
solutions with some larger weights but many more weights set to zero. Thus L1
regularization leads to much sparser weight vectors, that is, far fewer features.

Both L1 and L2 regularization have Bayesian interpretations as constraints on
the prior of how weights should look. L1 regularization can be viewed as a Laplace
prior on the weights. L2 regularization corresponds to assuming that weights are

L1 Regularization (= lasso regression)

The sum of the (absolute value of the) weights
Named after the L1 norm ||W||1, = sum of the absolute
values of the weights, = Manhattan distance

L1 regularized objective function:

14 CHAPTER 5 • LOGISTIC REGRESSION

data to the unseen test set, but a model that overfits will have poor generalization.
To avoid overfitting, a new regularization term R(q) is added to the objectiveregularization

function in Eq. 5.13, resulting in the following objective for a batch of m exam-
ples (slightly rewritten from Eq. 5.13 to be maximizing log probability rather than
minimizing loss, and removing the 1

m term which doesn’t affect the argmax):

q̂ = argmax
q

mX

i=1

logP(y(i)|x(i))�aR(q) (5.22)

The new regularization term R(q) is used to penalize large weights. Thus a setting
of the weights that matches the training data perfectly— but uses many weights with
high values to do so—will be penalized more than a setting that matches the data a
little less well, but does so using smaller weights. There are two common ways to
compute this regularization term R(q). L2 regularization is a quadratic function ofL2

regularization
the weight values, named because it uses the (square of the) L2 norm of the weight
values. The L2 norm, ||q ||2, is the same as the Euclidean distance of the vector q
from the origin. If q consists of n weights, then:

R(q) = ||q ||22 =
nX

j=1

q 2
j (5.23)

The L2 regularized objective function becomes:

q̂ = argmax
q

" mX

i=1

logP(y(i)|x(i))
#
�a

nX

j=1

q 2
j (5.24)

L1 regularization is a linear function of the weight values, named after the L1 normL1
regularization

||W ||1, the sum of the absolute values of the weights, or Manhattan distance (the
Manhattan distance is the distance you’d have to walk between two points in a city
with a street grid like New York):

R(q) = ||q ||1 =
nX

i=1

|qi| (5.25)

The L1 regularized objective function becomes:

q̂ = argmax
q

" mX

1=i

logP(y(i)|x(i))
#
�a

nX

j=1

|q j| (5.26)

These kinds of regularization come from statistics, where L1 regularization is called
lasso regression (Tibshirani, 1996) and L2 regularization is called ridge regression,lasso

ridge and both are commonly used in language processing. L2 regularization is easier to
optimize because of its simple derivative (the derivative of q 2 is just 2q), while
L1 regularization is more complex (the derivative of |q | is non-continuous at zero).
But where L2 prefers weight vectors with many small weights, L1 prefers sparse
solutions with some larger weights but many more weights set to zero. Thus L1
regularization leads to much sparser weight vectors, that is, far fewer features.

Both L1 and L2 regularization have Bayesian interpretations as constraints on
the prior of how weights should look. L1 regularization can be viewed as a Laplace
prior on the weights. L2 regularization corresponds to assuming that weights are

14 CHAPTER 5 • LOGISTIC REGRESSION

data to the unseen test set, but a model that overfits will have poor generalization.
To avoid overfitting, a new regularization term R(q) is added to the objectiveregularization

function in Eq. 5.13, resulting in the following objective for a batch of m exam-
ples (slightly rewritten from Eq. 5.13 to be maximizing log probability rather than
minimizing loss, and removing the 1

m term which doesn’t affect the argmax):

q̂ = argmax
q

mX

i=1

logP(y(i)|x(i))�aR(q) (5.22)

The new regularization term R(q) is used to penalize large weights. Thus a setting
of the weights that matches the training data perfectly— but uses many weights with
high values to do so—will be penalized more than a setting that matches the data a
little less well, but does so using smaller weights. There are two common ways to
compute this regularization term R(q). L2 regularization is a quadratic function ofL2

regularization
the weight values, named because it uses the (square of the) L2 norm of the weight
values. The L2 norm, ||q ||2, is the same as the Euclidean distance of the vector q
from the origin. If q consists of n weights, then:

R(q) = ||q ||22 =
nX

j=1

q 2
j (5.23)

The L2 regularized objective function becomes:

q̂ = argmax
q

" mX

i=1

logP(y(i)|x(i))
#
�a

nX

j=1

q 2
j (5.24)

L1 regularization is a linear function of the weight values, named after the L1 normL1
regularization

||W ||1, the sum of the absolute values of the weights, or Manhattan distance (the
Manhattan distance is the distance you’d have to walk between two points in a city
with a street grid like New York):

R(q) = ||q ||1 =
nX

i=1

|qi| (5.25)

The L1 regularized objective function becomes:

q̂ = argmax
q

" mX

1=i

logP(y(i)|x(i))
#
�a

nX

j=1

|q j| (5.26)

These kinds of regularization come from statistics, where L1 regularization is called
lasso regression (Tibshirani, 1996) and L2 regularization is called ridge regression,lasso

ridge and both are commonly used in language processing. L2 regularization is easier to
optimize because of its simple derivative (the derivative of q 2 is just 2q), while
L1 regularization is more complex (the derivative of |q | is non-continuous at zero).
But where L2 prefers weight vectors with many small weights, L1 prefers sparse
solutions with some larger weights but many more weights set to zero. Thus L1
regularization leads to much sparser weight vectors, that is, far fewer features.

Both L1 and L2 regularization have Bayesian interpretations as constraints on
the prior of how weights should look. L1 regularization can be viewed as a Laplace
prior on the weights. L2 regularization corresponds to assuming that weights are

Logistic
Regression

Regularization

Logistic
Regression

Multinomial Logistic
Regression

Multinomial Logistic Regression

Often we need more than 2 classes
◦ Positive/negative/neutral
◦ Parts of speech (noun, verb, adjective, adverb, preposition, etc.)
◦ Classify emergency SMSs into different actionable classes

If >2 classes we use multinomial logistic regression
= Softmax regression
= Multinomial logit
= (defunct names : Maximum entropy modeling or MaxEnt)

So "logistic regression" will just mean binary (2 output classes)
90

Multinomial Logistic Regression

The probability of everything must still sum to 1

P(positive|doc) + P(negative|doc) + P(neutral|doc) = 1

Need a generalization of the sigmoid called the softmax
◦ Takes a vector z = [z1, z2, ..., zk] of k arbitrary values
◦ Outputs a probability distribution
◦ each value in the range [0,1]
◦ all the values summing to 1

91

The softmax function
Turns a vector z = [z1, z2, ... , zk] of k arbitrary values into probabilities

92

5.6 • MULTINOMIAL LOGISTIC REGRESSION 15

distributed according to a Gaussian distribution with mean µ = 0. In a Gaussian
or normal distribution, the further away a value is from the mean, the lower its
probability (scaled by the variance s). By using a Gaussian prior on the weights, we
are saying that weights prefer to have the value 0. A Gaussian for a weight q j is

1q
2ps2

j

exp

�
(q j �µ j)2

2s2
j

!
(5.27)

If we multiply each weight by a Gaussian prior on the weight, we are thus maximiz-
ing the following constraint:

q̂ = argmax
q

MY

i=1

P(y(i)|x(i))⇥
nY

j=1

1q
2ps2

j

exp

�
(q j �µ j)2

2s2
j

!
(5.28)

which in log space, with µ = 0, and assuming 2s2 = 1, corresponds to

q̂ = argmax
q

mX

i=1

logP(y(i)|x(i))�a
nX

j=1

q 2
j (5.29)

which is in the same form as Eq. 5.24.

5.6 Multinomial logistic regression

Sometimes we need more than two classes. Perhaps we might want to do 3-way
sentiment classification (positive, negative, or neutral). Or we could be assigning
some of the labels we will introduce in Chapter 8, like the part of speech of a word
(choosing from 10, 30, or even 50 different parts of speech), or the named entity
type of a phrase (choosing from tags like person, location, organization).

In such cases we use multinomial logistic regression, also called softmax re-
multinomial

logistic
regression gression (or, historically, the maxent classifier). In multinomial logistic regression

the target y is a variable that ranges over more than two classes; we want to know
the probability of y being in each potential class c 2C, p(y = c|x).

The multinomial logistic classifier uses a generalization of the sigmoid, called
the softmax function, to compute the probability p(y = c|x). The softmax functionsoftmax
takes a vector z = [z1,z2, ...,zk] of k arbitrary values and maps them to a probability
distribution, with each value in the range (0,1), and all the values summing to 1.
Like the sigmoid, it is an exponential function.

For a vector z of dimensionality k, the softmax is defined as:

softmax(zi) =
exp(zi)Pk
j=1 exp(z j)

1  i  k (5.30)

The softmax of an input vector z = [z1,z2, ...,zk] is thus a vector itself:

softmax(z) =

"
exp(z1)Pk
i=1 exp(zi)

,
exp(z2)Pk
i=1 exp(zi)

, ...,
exp(zk)Pk
i=1 exp(zi)

#
(5.31)

5.6 • MULTINOMIAL LOGISTIC REGRESSION 15

distributed according to a Gaussian distribution with mean µ = 0. In a Gaussian
or normal distribution, the further away a value is from the mean, the lower its
probability (scaled by the variance s). By using a Gaussian prior on the weights, we
are saying that weights prefer to have the value 0. A Gaussian for a weight q j is

1q
2ps2

j

exp

�
(q j �µ j)2

2s2
j

!
(5.27)

If we multiply each weight by a Gaussian prior on the weight, we are thus maximiz-
ing the following constraint:

q̂ = argmax
q

MY

i=1

P(y(i)|x(i))⇥
nY

j=1

1q
2ps2

j

exp

�
(q j �µ j)2

2s2
j

!
(5.28)

which in log space, with µ = 0, and assuming 2s2 = 1, corresponds to

q̂ = argmax
q

mX

i=1

logP(y(i)|x(i))�a
nX

j=1

q 2
j (5.29)

which is in the same form as Eq. 5.24.

5.6 Multinomial logistic regression

Sometimes we need more than two classes. Perhaps we might want to do 3-way
sentiment classification (positive, negative, or neutral). Or we could be assigning
some of the labels we will introduce in Chapter 8, like the part of speech of a word
(choosing from 10, 30, or even 50 different parts of speech), or the named entity
type of a phrase (choosing from tags like person, location, organization).

In such cases we use multinomial logistic regression, also called softmax re-
multinomial

logistic
regression gression (or, historically, the maxent classifier). In multinomial logistic regression

the target y is a variable that ranges over more than two classes; we want to know
the probability of y being in each potential class c 2C, p(y = c|x).

The multinomial logistic classifier uses a generalization of the sigmoid, called
the softmax function, to compute the probability p(y = c|x). The softmax functionsoftmax
takes a vector z = [z1,z2, ...,zk] of k arbitrary values and maps them to a probability
distribution, with each value in the range (0,1), and all the values summing to 1.
Like the sigmoid, it is an exponential function.

For a vector z of dimensionality k, the softmax is defined as:

softmax(zi) =
exp(zi)Pk
j=1 exp(z j)

1  i  k (5.30)

The softmax of an input vector z = [z1,z2, ...,zk] is thus a vector itself:

softmax(z) =

"
exp(z1)Pk
i=1 exp(zi)

,
exp(z2)Pk
i=1 exp(zi)

, ...,
exp(zk)Pk
i=1 exp(zi)

#
(5.31)

5.6 • MULTINOMIAL LOGISTIC REGRESSION 15

For a vector z of dimensionality k, the softmax is defined as:

softmax(zi) =
ezi

Pk
j=1 ez j

1  i  k (5.32)

The softmax of an input vector z = [z1,z2, ...,zk] is thus a vector itself:

softmax(z) =

"
ez1

Pk
i=1 ezi

,
ez2

Pk
i=1 ezi

, ...,
ezk

Pk
i=1 ezi

#
(5.33)

The denominator
Pk

i=1 ezi is used to normalize all the values into probabilities.
Thus for example given a vector:

z = [0.6,1.1,�1.5,1.2,3.2,�1.1]

the result softmax(z) is

[0.055,0.090,0.0067,0.10,0.74,0.010]

Again like the sigmoid, the input to the softmax will be the dot product between
a weight vector w and an input vector x (plus a bias). But now we’ll need separate
weight vectors (and bias) for each of the K classes.

p(y = c|x) =
ewc · x+bc

kX

j=1

ew j · x+b j

(5.34)

Like the sigmoid, the softmax has the property of squashing values toward 0 or
1. thus if one of the inputs is larger than the others, will tend to push its probability
toward 1, and suppress the probabilities of the smaller inputs.

5.6.1 Features in Multinomial Logistic Regression
For multiclass classification the input features need to be a function of both the
observation x and the candidate output class c. Thus instead of the notation xi, fi
or fi(x), when we’re discussing features we will use the notation fi(c,x), meaning
feature i for a particular class c for a given observation x.

In binary classification, a positive weight on a feature pointed toward y=1 and
a negative weight toward y=0... but in multiclass a feature could be evidence for or
against an individual class.

Let’s look at some sample features for a few NLP tasks to help understand this
perhaps unintuitive use of features that are functions of both the observation x and
the class c,

Suppose we are doing text classification, and instead of binary classification our
task is to assign one of the 3 classes +, �, or 0 (neutral) to a document. Now a
feature related to exclamation marks might have a negative weight for 0 documents,
and a positive weight for + or � documents:

The softmax function

◦ Turns a vector z = [z1,z2,...,zk] of k arbitrary values into probabilities

93

5.6 • MULTINOMIAL LOGISTIC REGRESSION 15

For a vector z of dimensionality k, the softmax is defined as:

softmax(zi) =
ezi

Pk
j=1 ez j

1  i  k (5.32)

The softmax of an input vector z = [z1,z2, ...,zk] is thus a vector itself:

softmax(z) =

"
ez1

Pk
i=1 ezi

,
ez2

Pk
i=1 ezi

, ...,
ezk

Pk
i=1 ezi

#
(5.33)

The denominator
Pk

i=1 ezi is used to normalize all the values into probabilities.
Thus for example given a vector:

z = [0.6,1.1,�1.5,1.2,3.2,�1.1]

the result softmax(z) is

[0.055,0.090,0.0067,0.10,0.74,0.010]

Again like the sigmoid, the input to the softmax will be the dot product between
a weight vector w and an input vector x (plus a bias). But now we’ll need separate
weight vectors (and bias) for each of the K classes.

p(y = c|x) =
ewc · x+bc

kX

j=1

ew j · x+b j

(5.34)

Like the sigmoid, the softmax has the property of squashing values toward 0 or
1. thus if one of the inputs is larger than the others, will tend to push its probability
toward 1, and suppress the probabilities of the smaller inputs.

5.6.1 Features in Multinomial Logistic Regression
For multiclass classification the input features need to be a function of both the
observation x and the candidate output class c. Thus instead of the notation xi, fi
or fi(x), when we’re discussing features we will use the notation fi(c,x), meaning
feature i for a particular class c for a given observation x.

In binary classification, a positive weight on a feature pointed toward y=1 and
a negative weight toward y=0... but in multiclass a feature could be evidence for or
against an individual class.

Let’s look at some sample features for a few NLP tasks to help understand this
perhaps unintuitive use of features that are functions of both the observation x and
the class c,

Suppose we are doing text classification, and instead of binary classification our
task is to assign one of the 3 classes +, �, or 0 (neutral) to a document. Now a
feature related to exclamation marks might have a negative weight for 0 documents,
and a positive weight for + or � documents:

5.6 • MULTINOMIAL LOGISTIC REGRESSION 15

For a vector z of dimensionality k, the softmax is defined as:

softmax(zi) =
ezi

Pk
j=1 ez j

1  i  k (5.32)

The softmax of an input vector z = [z1,z2, ...,zk] is thus a vector itself:

softmax(z) =

"
ez1

Pk
i=1 ezi

,
ez2

Pk
i=1 ezi

, ...,
ezk

Pk
i=1 ezi

#
(5.33)

The denominator
Pk

i=1 ezi is used to normalize all the values into probabilities.
Thus for example given a vector:

z = [0.6,1.1,�1.5,1.2,3.2,�1.1]

the result softmax(z) is

[0.055,0.090,0.0067,0.10,0.74,0.010]

Again like the sigmoid, the input to the softmax will be the dot product between
a weight vector w and an input vector x (plus a bias). But now we’ll need separate
weight vectors (and bias) for each of the K classes.

p(y = c|x) =
ewc · x+bc

kX

j=1

ew j · x+b j

(5.34)

Like the sigmoid, the softmax has the property of squashing values toward 0 or
1. thus if one of the inputs is larger than the others, will tend to push its probability
toward 1, and suppress the probabilities of the smaller inputs.

5.6.1 Features in Multinomial Logistic Regression
For multiclass classification the input features need to be a function of both the
observation x and the candidate output class c. Thus instead of the notation xi, fi
or fi(x), when we’re discussing features we will use the notation fi(c,x), meaning
feature i for a particular class c for a given observation x.

In binary classification, a positive weight on a feature pointed toward y=1 and
a negative weight toward y=0... but in multiclass a feature could be evidence for or
against an individual class.

Let’s look at some sample features for a few NLP tasks to help understand this
perhaps unintuitive use of features that are functions of both the observation x and
the class c,

Suppose we are doing text classification, and instead of binary classification our
task is to assign one of the 3 classes +, �, or 0 (neutral) to a document. Now a
feature related to exclamation marks might have a negative weight for 0 documents,
and a positive weight for + or � documents:

5.6 • MULTINOMIAL LOGISTIC REGRESSION 15

distributed according to a Gaussian distribution with mean µ = 0. In a Gaussian
or normal distribution, the further away a value is from the mean, the lower its
probability (scaled by the variance s). By using a Gaussian prior on the weights, we
are saying that weights prefer to have the value 0. A Gaussian for a weight q j is

1q
2ps2

j

exp

�
(q j �µ j)2

2s2
j

!
(5.27)

If we multiply each weight by a Gaussian prior on the weight, we are thus maximiz-
ing the following constraint:

q̂ = argmax
q

MY

i=1

P(y(i)|x(i))⇥
nY

j=1

1q
2ps2

j

exp

�
(q j �µ j)2

2s2
j

!
(5.28)

which in log space, with µ = 0, and assuming 2s2 = 1, corresponds to

q̂ = argmax
q

mX

i=1

logP(y(i)|x(i))�a
nX

j=1

q 2
j (5.29)

which is in the same form as Eq. 5.24.

5.6 Multinomial logistic regression

Sometimes we need more than two classes. Perhaps we might want to do 3-way
sentiment classification (positive, negative, or neutral). Or we could be assigning
some of the labels we will introduce in Chapter 8, like the part of speech of a word
(choosing from 10, 30, or even 50 different parts of speech), or the named entity
type of a phrase (choosing from tags like person, location, organization).

In such cases we use multinomial logistic regression, also called softmax re-
multinomial

logistic
regression gression (or, historically, the maxent classifier). In multinomial logistic regression

the target y is a variable that ranges over more than two classes; we want to know
the probability of y being in each potential class c 2C, p(y = c|x).

The multinomial logistic classifier uses a generalization of the sigmoid, called
the softmax function, to compute the probability p(y = c|x). The softmax functionsoftmax
takes a vector z = [z1,z2, ...,zk] of k arbitrary values and maps them to a probability
distribution, with each value in the range (0,1), and all the values summing to 1.
Like the sigmoid, it is an exponential function.

For a vector z of dimensionality k, the softmax is defined as:

softmax(zi) =
exp(zi)Pk
j=1 exp(z j)

1  i  k (5.30)

The softmax of an input vector z = [z1,z2, ...,zk] is thus a vector itself:

softmax(z) =

"
exp(z1)Pk
i=1 exp(zi)

,
exp(z2)Pk
i=1 exp(zi)

, ...,
exp(zk)Pk
i=1 exp(zi)

#
(5.31)

Softmax in multinomial logistic regression

16 CHAPTER 5 • LOGISTIC REGRESSION

The denominator
Pk

i=1 exp(zi) is used to normalize all the values into probabil-
ities. Thus for example given a vector:

z = [0.6,1.1,�1.5,1.2,3.2,�1.1]

the resulting (rounded) softmax(z) is

[0.055,0.090,0.006,0.099,0.74,0.010]

Again like the sigmoid, the input to the softmax will be the dot product between
a weight vector w and an input vector x (plus a bias). But now we’ll need separate
weight vectors (and bias) for each of the K classes.

p(y = c|x) =
exp(wc · x+bc)

kX

j=1

exp(w j · x+b j)

(5.32)

Like the sigmoid, the softmax has the property of squashing values toward 0 or 1.
Thus if one of the inputs is larger than the others, it will tend to push its probability
toward 1, and suppress the probabilities of the smaller inputs.

5.6.1 Features in Multinomial Logistic Regression
Features in multinomial logistic regression function similarly to binary logistic re-
gression, with one difference that we’ll need separate weight vectors (and biases) for
each of the K classes. Recall our binary exclamation point feature x5 from page 79:

x5 =

⇢
1 if “!” 2 doc
0 otherwise

In binary classification a positive weight w5 on a feature influences the classifier
toward y = 1 (positive sentiment) and a negative weight influences it toward y = 0
(negative sentiment) with the absolute value indicating how important the feature
is. For multinominal logistic regression, by contrast, with separate weights for each
class, a feature can be evidence for or against each individual class.

In 3-way multiclass sentiment classification, for example, we must assign each
document one of the 3 classes +, �, or 0 (neutral). Now a feature related to excla-
mation marks might have a negative weight for 0 documents, and a positive weight
for + or � documents:

Feature Definition w5,+ w5,� w5,0

f5(x)
⇢

1 if “!” 2 doc
0 otherwise 3.5 3.1 �5.3

5.6.2 Learning in Multinomial Logistic Regression
The loss function for multinomial logistic regression generalizes the loss function
for binary logistic regression from 2 to K classes. Recall that that the cross-entropy
loss for binary logistic regression (repeated from Eq. 5.11) is:

LCE(ŷ,y) =� log p(y|x) = � [y log ŷ+(1� y) log(1� ŷ)] (5.33)

94

Input is still the dot product between weight vector w
and input vector x
But now we’ll need separate weight vectors for each
of the K classes.

Features in binary versus multinomial logistic regression

Binary: pos weight => y=1, neg weight => y=0

Multinominal: separate weights for each class:

95

16 CHAPTER 5 • LOGISTIC REGRESSION

The denominator
Pk

i=1 exp(zi) is used to normalize all the values into probabil-
ities. Thus for example given a vector:

z = [0.6,1.1,�1.5,1.2,3.2,�1.1]

the resulting (rounded) softmax(z) is

[0.055,0.090,0.006,0.099,0.74,0.010]

Again like the sigmoid, the input to the softmax will be the dot product between
a weight vector w and an input vector x (plus a bias). But now we’ll need separate
weight vectors (and bias) for each of the K classes.

p(y = c|x) =
exp(wc · x+bc)

kX

j=1

exp(w j · x+b j)

(5.32)

Like the sigmoid, the softmax has the property of squashing values toward 0 or 1.
Thus if one of the inputs is larger than the others, it will tend to push its probability
toward 1, and suppress the probabilities of the smaller inputs.

5.6.1 Features in Multinomial Logistic Regression
Features in multinomial logistic regression function similarly to binary logistic re-
gression, with one difference that we’ll need separate weight vectors (and biases) for
each of the K classes. Recall our binary exclamation point feature x5 from page 79:

x5 =

⇢
1 if “!” 2 doc
0 otherwise

In binary classification a positive weight w5 on a feature influences the classifier
toward y = 1 (positive sentiment) and a negative weight influences it toward y = 0
(negative sentiment) with the absolute value indicating how important the feature
is. For multinominal logistic regression, by contrast, with separate weights for each
class, a feature can be evidence for or against each individual class.

In 3-way multiclass sentiment classification, for example, we must assign each
document one of the 3 classes +, �, or 0 (neutral). Now a feature related to excla-
mation marks might have a negative weight for 0 documents, and a positive weight
for + or � documents:

Feature Definition w5,+ w5,� w5,0

f5(x)
⇢

1 if “!” 2 doc
0 otherwise 3.5 3.1 �5.3

5.6.2 Learning in Multinomial Logistic Regression
The loss function for multinomial logistic regression generalizes the loss function
for binary logistic regression from 2 to K classes. Recall that that the cross-entropy
loss for binary logistic regression (repeated from Eq. 5.11) is:

LCE(ŷ,y) =� log p(y|x) = � [y log ŷ+(1� y) log(1� ŷ)] (5.33)

w5 = 3.0

16 CHAPTER 5 • LOGISTIC REGRESSION

The denominator
Pk

i=1 exp(zi) is used to normalize all the values into probabil-
ities. Thus for example given a vector:

z = [0.6,1.1,�1.5,1.2,3.2,�1.1]

the resulting (rounded) softmax(z) is

[0.055,0.090,0.006,0.099,0.74,0.010]

Again like the sigmoid, the input to the softmax will be the dot product between
a weight vector w and an input vector x (plus a bias). But now we’ll need separate
weight vectors (and bias) for each of the K classes.

p(y = c|x) =
exp(wc · x+bc)

kX

j=1

exp(w j · x+b j)

(5.32)

Like the sigmoid, the softmax has the property of squashing values toward 0 or 1.
Thus if one of the inputs is larger than the others, it will tend to push its probability
toward 1, and suppress the probabilities of the smaller inputs.

5.6.1 Features in Multinomial Logistic Regression
Features in multinomial logistic regression function similarly to binary logistic re-
gression, with one difference that we’ll need separate weight vectors (and biases) for
each of the K classes. Recall our binary exclamation point feature x5 from page 79:

x5 =

⇢
1 if “!” 2 doc
0 otherwise

In binary classification a positive weight w5 on a feature influences the classifier
toward y = 1 (positive sentiment) and a negative weight influences it toward y = 0
(negative sentiment) with the absolute value indicating how important the feature
is. For multinominal logistic regression, by contrast, with separate weights for each
class, a feature can be evidence for or against each individual class.

In 3-way multiclass sentiment classification, for example, we must assign each
document one of the 3 classes +, �, or 0 (neutral). Now a feature related to excla-
mation marks might have a negative weight for 0 documents, and a positive weight
for + or � documents:

Feature Definition w5,+ w5,� w5,0

f5(x)
⇢

1 if “!” 2 doc
0 otherwise 3.5 3.1 �5.3

5.6.2 Learning in Multinomial Logistic Regression
The loss function for multinomial logistic regression generalizes the loss function
for binary logistic regression from 2 to K classes. Recall that that the cross-entropy
loss for binary logistic regression (repeated from Eq. 5.11) is:

LCE(ŷ,y) =� log p(y|x) = � [y log ŷ+(1� y) log(1� ŷ)] (5.33)

Logistic
Regression

Multinomial Logistic
Regression

Text
Classification:
Performance
Measures

Precision, Recall, and F measure

Evaluation

Let's consider just binary text classification tasks
Imagine you're the CEO of Delicious Pie Company
You want to know what people are saying about
your pies
So you build a "Delicious Pie" tweet detector

◦ Positive class: tweets about Delicious Pie Co
◦ Negative class: all other tweets

The 2-by-2 confusion matrix

4.7 • EVALUATION: PRECISION, RECALL, F-MEASURE 11

As it happens, the positive model assigns a higher probability to the sentence:
P(s|pos) > P(s|neg). Note that this is just the likelihood part of the naive Bayes
model; once we multiply in the prior a full naive Bayes model might well make a
different classification decision.

4.7 Evaluation: Precision, Recall, F-measure

To introduce the methods for evaluating text classification, let’s first consider some
simple binary detection tasks. For example, in spam detection, our goal is to label
every text as being in the spam category (“positive”) or not in the spam category
(“negative”). For each item (email document) we therefore need to know whether
our system called it spam or not. We also need to know whether the email is actually
spam or not, i.e. the human-defined labels for each document that we are trying to
match. We will refer to these human labels as the gold labels.gold labels

Or imagine you’re the CEO of the Delicious Pie Company and you need to know
what people are saying about your pies on social media, so you build a system that
detects tweets concerning Delicious Pie. Here the positive class is tweets about
Delicious Pie and the negative class is all other tweets.

In both cases, we need a metric for knowing how well our spam detector (or
pie-tweet-detector) is doing. To evaluate any system for detecting things, we start
by building a confusion matrix like the one shown in Fig. 4.4. A confusion matrixconfusion

matrix
is a table for visualizing how an algorithm performs with respect to the human gold
labels, using two dimensions (system output and gold labels), and each cell labeling
a set of possible outcomes. In the spam detection case, for example, true positives
are documents that are indeed spam (indicated by human-created gold labels) that
our system correctly said were spam. False negatives are documents that are indeed
spam but our system incorrectly labeled as non-spam.

To the bottom right of the table is the equation for accuracy, which asks what
percentage of all the observations (for the spam or pie examples that means all emails
or tweets) our system labeled correctly. Although accuracy might seem a natural
metric, we generally don’t use it for text classification tasks. That’s because accuracy
doesn’t work well when the classes are unbalanced (as indeed they are with spam,
which is a large majority of email, or with tweets, which are mainly not about pie).

true positive

false negative

false positive

true negative

gold positive gold negative
system
positive
system

negative

gold standard labels

system
output
labels

recall =
tp

tp+fn

precision =
tp

tp+fp

accuracy =
tp+tn

tp+fp+tn+fn

Figure 4.4 A confusion matrix for visualizing how well a binary classification system per-
forms against gold standard labels.

To make this more explicit, imagine that we looked at a million tweets, and
let’s say that only 100 of them are discussing their love (or hatred) for our pie,

Evaluation: Accuracy

Why don't we use accuracy as our metric?
Imagine we saw 1 million tweets

◦ 100 of them talked about Delicious Pie Co.
◦ 999,900 talked about something else

We could build a simple classifier that just labels every
tweet "not about pie"

◦ It would get 99.99% accuracy!!! Wow!!!!
◦ But useless! Doesn't return the comments we are looking for!
◦ That's why we use precision and recall instead

4.7 • EVALUATION: PRECISION, RECALL, F-MEASURE 11

As it happens, the positive model assigns a higher probability to the sentence:
P(s|pos) > P(s|neg). Note that this is just the likelihood part of the naive Bayes
model; once we multiply in the prior a full naive Bayes model might well make a
different classification decision.

4.7 Evaluation: Precision, Recall, F-measure

To introduce the methods for evaluating text classification, let’s first consider some
simple binary detection tasks. For example, in spam detection, our goal is to label
every text as being in the spam category (“positive”) or not in the spam category
(“negative”). For each item (email document) we therefore need to know whether
our system called it spam or not. We also need to know whether the email is actually
spam or not, i.e. the human-defined labels for each document that we are trying to
match. We will refer to these human labels as the gold labels.gold labels

Or imagine you’re the CEO of the Delicious Pie Company and you need to know
what people are saying about your pies on social media, so you build a system that
detects tweets concerning Delicious Pie. Here the positive class is tweets about
Delicious Pie and the negative class is all other tweets.

In both cases, we need a metric for knowing how well our spam detector (or
pie-tweet-detector) is doing. To evaluate any system for detecting things, we start
by building a confusion matrix like the one shown in Fig. 4.4. A confusion matrixconfusion

matrix
is a table for visualizing how an algorithm performs with respect to the human gold
labels, using two dimensions (system output and gold labels), and each cell labeling
a set of possible outcomes. In the spam detection case, for example, true positives
are documents that are indeed spam (indicated by human-created gold labels) that
our system correctly said were spam. False negatives are documents that are indeed
spam but our system incorrectly labeled as non-spam.

To the bottom right of the table is the equation for accuracy, which asks what
percentage of all the observations (for the spam or pie examples that means all emails
or tweets) our system labeled correctly. Although accuracy might seem a natural
metric, we generally don’t use it for text classification tasks. That’s because accuracy
doesn’t work well when the classes are unbalanced (as indeed they are with spam,
which is a large majority of email, or with tweets, which are mainly not about pie).

true positive

false negative

false positive

true negative

gold positive gold negative
system
positive
system

negative

gold standard labels

system
output
labels

recall =
tp

tp+fn

precision =
tp

tp+fp

accuracy =
tp+tn

tp+fp+tn+fn

Figure 4.4 A confusion matrix for visualizing how well a binary classification system per-
forms against gold standard labels.

To make this more explicit, imagine that we looked at a million tweets, and
let’s say that only 100 of them are discussing their love (or hatred) for our pie,

fp = 0tp = 0

fn = 100 tn = 999,900

100 gold positive.
999,900 gold negative

0 system positive
1,000,000 system negative

=> P = 0 / (0 + 0)
=> R = 0 / (0 + 100) = 0%

Evaluation: Precision

% of items the system detected (i.e., items the
system labeled as positive) that are in fact positive
(according to the human gold labels)

12 CHAPTER 4 • NAIVE BAYES AND SENTIMENT CLASSIFICATION

while the other 999,900 are tweets about something completely unrelated. Imagine a
simple classifier that stupidly classified every tweet as “not about pie”. This classifier
would have 999,900 true negatives and only 100 false negatives for an accuracy of
999,900/1,000,000 or 99.99%! What an amazing accuracy level! Surely we should
be happy with this classifier? But of course this fabulous ‘no pie’ classifier would
be completely useless, since it wouldn’t find a single one of the customer comments
we are looking for. In other words, accuracy is not a good metric when the goal is
to discover something that is rare, or at least not completely balanced in frequency,
which is a very common situation in the world.

That’s why instead of accuracy we generally turn to two other metrics shown in
Fig. 4.4: precision and recall. Precision measures the percentage of the items thatprecision

the system detected (i.e., the system labeled as positive) that are in fact positive (i.e.,
are positive according to the human gold labels). Precision is defined as

Precision =
true positives

true positives + false positives

Recall measures the percentage of items actually present in the input that wererecall
correctly identified by the system. Recall is defined as

Recall = true positives
true positives + false negatives

Precision and recall will help solve the problem with the useless “nothing is
pie” classifier. This classifier, despite having a fabulous accuracy of 99.99%, has
a terrible recall of 0 (since there are no true positives, and 100 false negatives, the
recall is 0/100). You should convince yourself that the precision at finding relevant
tweets is equally problematic. Thus precision and recall, unlike accuracy, emphasize
true positives: finding the things that we are supposed to be looking for.

There are many ways to define a single metric that incorporates aspects of both
precision and recall. The simplest of these combinations is the F-measure (vanF-measure
Rijsbergen, 1975) , defined as:

Fb =
(b 2 +1)PR

b 2P+R

The b parameter differentially weights the importance of recall and precision,
based perhaps on the needs of an application. Values of b > 1 favor recall, while
values of b < 1 favor precision. When b = 1, precision and recall are equally bal-
anced; this is the most frequently used metric, and is called Fb=1 or just F1:F1

F1 =
2PR

P+R
(4.16)

F-measure comes from a weighted harmonic mean of precision and recall. The
harmonic mean of a set of numbers is the reciprocal of the arithmetic mean of recip-
rocals:

HarmonicMean(a1,a2,a3,a4, ...,an) =
n

1
a1
+ 1

a2
+ 1

a3
+ ...+ 1

an

(4.17)

and hence F-measure is

F =
1

a 1
P +(1�a) 1

R
or
✓

with b 2 =
1�a

a

◆
F =

(b 2 +1)PR
b 2P+R

(4.18)

Evaluation: Recall

% of items actually present in the input that were
correctly identified by the system.

12 CHAPTER 4 • NAIVE BAYES AND SENTIMENT CLASSIFICATION

while the other 999,900 are tweets about something completely unrelated. Imagine a
simple classifier that stupidly classified every tweet as “not about pie”. This classifier
would have 999,900 true negatives and only 100 false negatives for an accuracy of
999,900/1,000,000 or 99.99%! What an amazing accuracy level! Surely we should
be happy with this classifier? But of course this fabulous ‘no pie’ classifier would
be completely useless, since it wouldn’t find a single one of the customer comments
we are looking for. In other words, accuracy is not a good metric when the goal is
to discover something that is rare, or at least not completely balanced in frequency,
which is a very common situation in the world.

That’s why instead of accuracy we generally turn to two other metrics shown in
Fig. 4.4: precision and recall. Precision measures the percentage of the items thatprecision

the system detected (i.e., the system labeled as positive) that are in fact positive (i.e.,
are positive according to the human gold labels). Precision is defined as

Precision =
true positives

true positives + false positives

Recall measures the percentage of items actually present in the input that wererecall
correctly identified by the system. Recall is defined as

Recall = true positives
true positives + false negatives

Precision and recall will help solve the problem with the useless “nothing is
pie” classifier. This classifier, despite having a fabulous accuracy of 99.99%, has
a terrible recall of 0 (since there are no true positives, and 100 false negatives, the
recall is 0/100). You should convince yourself that the precision at finding relevant
tweets is equally problematic. Thus precision and recall, unlike accuracy, emphasize
true positives: finding the things that we are supposed to be looking for.

There are many ways to define a single metric that incorporates aspects of both
precision and recall. The simplest of these combinations is the F-measure (vanF-measure
Rijsbergen, 1975) , defined as:

Fb =
(b 2 +1)PR

b 2P+R

The b parameter differentially weights the importance of recall and precision,
based perhaps on the needs of an application. Values of b > 1 favor recall, while
values of b < 1 favor precision. When b = 1, precision and recall are equally bal-
anced; this is the most frequently used metric, and is called Fb=1 or just F1:F1

F1 =
2PR

P+R
(4.16)

F-measure comes from a weighted harmonic mean of precision and recall. The
harmonic mean of a set of numbers is the reciprocal of the arithmetic mean of recip-
rocals:

HarmonicMean(a1,a2,a3,a4, ...,an) =
n

1
a1
+ 1

a2
+ 1

a3
+ ...+ 1

an

(4.17)

and hence F-measure is

F =
1

a 1
P +(1�a) 1

R
or
✓

with b 2 =
1�a

a

◆
F =

(b 2 +1)PR
b 2P+R

(4.18)

Why Precision and recall

Our simple pie-classifier
◦ Just label nothing as "about pie"

Accuracy=99.99%
 but

Recall = 0
◦ (it doesn't get any of the 100 Pie tweets)

Precision and recall, unlike accuracy, emphasize true
positives:

◦ finding the things that we are supposed to be looking for.

A combined measure: F

F measure: a single number that combines P and R:

We almost always use balanced F1 (i.e., b = 1)

12 CHAPTER 4 • NAIVE BAYES AND SENTIMENT CLASSIFICATION

while the other 999,900 are tweets about something completely unrelated. Imagine a
simple classifier that stupidly classified every tweet as “not about pie”. This classifier
would have 999,900 true negatives and only 100 false negatives for an accuracy of
999,900/1,000,000 or 99.99%! What an amazing accuracy level! Surely we should
be happy with this classifier? But of course this fabulous ‘no pie’ classifier would
be completely useless, since it wouldn’t find a single one of the customer comments
we are looking for. In other words, accuracy is not a good metric when the goal is
to discover something that is rare, or at least not completely balanced in frequency,
which is a very common situation in the world.

That’s why instead of accuracy we generally turn to two other metrics shown in
Fig. 4.4: precision and recall. Precision measures the percentage of the items thatprecision

the system detected (i.e., the system labeled as positive) that are in fact positive (i.e.,
are positive according to the human gold labels). Precision is defined as

Precision =
true positives

true positives + false positives

Recall measures the percentage of items actually present in the input that wererecall
correctly identified by the system. Recall is defined as

Recall = true positives
true positives + false negatives

Precision and recall will help solve the problem with the useless “nothing is
pie” classifier. This classifier, despite having a fabulous accuracy of 99.99%, has
a terrible recall of 0 (since there are no true positives, and 100 false negatives, the
recall is 0/100). You should convince yourself that the precision at finding relevant
tweets is equally problematic. Thus precision and recall, unlike accuracy, emphasize
true positives: finding the things that we are supposed to be looking for.

There are many ways to define a single metric that incorporates aspects of both
precision and recall. The simplest of these combinations is the F-measure (vanF-measure
Rijsbergen, 1975) , defined as:

Fb =
(b 2 +1)PR

b 2P+R

The b parameter differentially weights the importance of recall and precision,
based perhaps on the needs of an application. Values of b > 1 favor recall, while
values of b < 1 favor precision. When b = 1, precision and recall are equally bal-
anced; this is the most frequently used metric, and is called Fb=1 or just F1:F1

F1 =
2PR

P+R
(4.16)

F-measure comes from a weighted harmonic mean of precision and recall. The
harmonic mean of a set of numbers is the reciprocal of the arithmetic mean of recip-
rocals:

HarmonicMean(a1,a2,a3,a4, ...,an) =
n

1
a1
+ 1

a2
+ 1

a3
+ ...+ 1

an

(4.17)

and hence F-measure is

F =
1

a 1
P +(1�a) 1

R
or
✓

with b 2 =
1�a

a

◆
F =

(b 2 +1)PR
b 2P+R

(4.18)

12 CHAPTER 4 • NAIVE BAYES AND SENTIMENT CLASSIFICATION

while the other 999,900 are tweets about something completely unrelated. Imagine a
simple classifier that stupidly classified every tweet as “not about pie”. This classifier
would have 999,900 true negatives and only 100 false negatives for an accuracy of
999,900/1,000,000 or 99.99%! What an amazing accuracy level! Surely we should
be happy with this classifier? But of course this fabulous ‘no pie’ classifier would
be completely useless, since it wouldn’t find a single one of the customer comments
we are looking for. In other words, accuracy is not a good metric when the goal is
to discover something that is rare, or at least not completely balanced in frequency,
which is a very common situation in the world.

That’s why instead of accuracy we generally turn to two other metrics shown in
Fig. 4.4: precision and recall. Precision measures the percentage of the items thatprecision

the system detected (i.e., the system labeled as positive) that are in fact positive (i.e.,
are positive according to the human gold labels). Precision is defined as

Precision =
true positives

true positives + false positives

Recall measures the percentage of items actually present in the input that wererecall
correctly identified by the system. Recall is defined as

Recall = true positives
true positives + false negatives

Precision and recall will help solve the problem with the useless “nothing is
pie” classifier. This classifier, despite having a fabulous accuracy of 99.99%, has
a terrible recall of 0 (since there are no true positives, and 100 false negatives, the
recall is 0/100). You should convince yourself that the precision at finding relevant
tweets is equally problematic. Thus precision and recall, unlike accuracy, emphasize
true positives: finding the things that we are supposed to be looking for.

There are many ways to define a single metric that incorporates aspects of both
precision and recall. The simplest of these combinations is the F-measure (vanF-measure
Rijsbergen, 1975) , defined as:

Fb =
(b 2 +1)PR

b 2P+R

The b parameter differentially weights the importance of recall and precision,
based perhaps on the needs of an application. Values of b > 1 favor recall, while
values of b < 1 favor precision. When b = 1, precision and recall are equally bal-
anced; this is the most frequently used metric, and is called Fb=1 or just F1:F1

F1 =
2PR

P+R
(4.16)

F-measure comes from a weighted harmonic mean of precision and recall. The
harmonic mean of a set of numbers is the reciprocal of the arithmetic mean of recip-
rocals:

HarmonicMean(a1,a2,a3,a4, ...,an) =
n

1
a1
+ 1

a2
+ 1

a3
+ ...+ 1

an

(4.17)

and hence F-measure is

F =
1

a 1
P +(1�a) 1

R
or
✓

with b 2 =
1�a

a

◆
F =

(b 2 +1)PR
b 2P+R

(4.18)

Why not use Avg = (P + R)/2?
1. P = 70% R = 70%
2. P = 90% R = 50%
Same Avg = 70%, but different F1

Evaluation with more than two classes:
Confusion Matrix for 3-class classification

4.8 • TEST SETS AND CROSS-VALIDATION 13

Harmonic mean is used because it is a conservative metric; the harmonic mean of
two values is closer to the minimum of the two values than the arithmetic mean is.
Thus it weighs the lower of the two numbers more heavily.

4.7.1 Evaluating with more than two classes
Up to now we have been describing text classification tasks with only two classes.
But lots of classification tasks in language processing have more than two classes.
For sentiment analysis we generally have 3 classes (positive, negative, neutral) and
even more classes are common for tasks like part-of-speech tagging, word sense
disambiguation, semantic role labeling, emotion detection, and so on. Luckily the
naive Bayes algorithm is already a multi-class classification algorithm.

8
5

10
60

urgent normal
gold labels

system
output

recallu =
8

8+5+3

precisionu=
8

8+10+11
50

30 200

spam

urgent

normal

spam 3
recalln = recalls =

precisionn=
60

5+60+50

precisions=
200

3+30+200

60
10+60+30

200
1+50+200

Figure 4.5 Confusion matrix for a three-class categorization task, showing for each pair of
classes (c1,c2), how many documents from c1 were (in)correctly assigned to c2

But we’ll need to slightly modify our definitions of precision and recall. Con-
sider the sample confusion matrix for a hypothetical 3-way one-of email catego-
rization decision (urgent, normal, spam) shown in Fig. 4.5. The matrix shows, for
example, that the system mistakenly labeled one spam document as urgent, and we
have shown how to compute a distinct precision and recall value for each class. In
order to derive a single metric that tells us how well the system is doing, we can com-
bine these values in two ways. In macroaveraging, we compute the performancemacroaveraging
for each class, and then average over classes. In microaveraging, we collect the de-microaveraging

cisions for all classes into a single confusion matrix, and then compute precision and
recall from that table. Fig. 4.6 shows the confusion matrix for each class separately,
and shows the computation of microaveraged and macroaveraged precision.

As the figure shows, a microaverage is dominated by the more frequent class (in
this case spam), since the counts are pooled. The macroaverage better reflects the
statistics of the smaller classes, and so is more appropriate when performance on all
the classes is equally important.

4.8 Test sets and Cross-validation

The training and testing procedure for text classification follows what we saw with
language modeling (Section ??): we use the training set to train the model, then use
the development test set (also called a devset) to perhaps tune some parameters,development

test set
devset

How to combine P/R from 3 classes to get one metric

Macro-averaging:
◦ compute the performance for each class, and then

average over classes

Micro-averaging:
◦ collect decisions for all classes into one confusion matrix
◦ compute precision and recall from that table.

Macro-averaging and Micro-averaging14 CHAPTER 4 • NAIVE BAYES AND SENTIMENT CLASSIFICATION

8
8

11
340

true
urgent

true
not

system
urgent

system
not

60
40

55
212

true
normal

true
not

system
normal
system

not

200
51

33
83

true
spam

true
not

system
spam

system
not

268
99

99
635

true
yes

true
no

system
yes

system
no

precision =
8+11

8
= .42 precision =

200+33
200

= .86precision =
60+55

60
= .52 microaverage

precision 268+99
268

= .73=

macroaverage
precision 3

.42+.52+.86
= .60=

PooledClass 3: SpamClass 2: NormalClass 1: Urgent

Figure 4.6 Separate confusion matrices for the 3 classes from the previous figure, showing the pooled confu-
sion matrix and the microaveraged and macroaveraged precision.

and in general decide what the best model is. Once we come up with what we think
is the best model, we run it on the (hitherto unseen) test set to report its performance.

While the use of a devset avoids overfitting the test set, having a fixed train-
ing set, devset, and test set creates another problem: in order to save lots of data
for training, the test set (or devset) might not be large enough to be representative.
Wouldn’t it be better if we could somehow use all our data for training and still use
all our data for test? We can do this by cross-validation: we randomly choose across-validation
training and test set division of our data, train our classifier, and then compute the
error rate on the test set. Then we repeat with a different randomly selected training
set and test set. We do this sampling process 10 times and average these 10 runs to
get an average error rate. This is called 10-fold cross-validation.10-fold

cross-validation
The only problem with cross-validation is that because all the data is used for

testing, we need the whole corpus to be blind; we can’t examine any of the data
to suggest possible features and in general see what’s going on, because we’d be
peeking at the test set, and such cheating would cause us to overestimate the perfor-
mance of our system. However, looking at the corpus to understand what’s going
on is important in designing NLP systems! What to do? For this reason, it is com-
mon to create a fixed training set and test set, then do 10-fold cross-validation inside
the training set, but compute error rate the normal way in the test set, as shown in
Fig. 4.7.

Training Iterations

1

3

4

5

2

6

7

8

9

10

Dev

Dev

Dev

Dev

Dev

Dev

Dev

Dev

Dev

Dev

Training
Training

Training
Training

Training
Training

Training
Training

Training
Training

Training Test
Set

Testing

Figure 4.7 10-fold cross-validation

Development Test Sets ("Devsets") and Cross-validation

Train on training set, tune on devset, report on testset
◦ This avoids overfitting (‘tuning to the test set’)
◦ More conservative estimate of performance
◦ But paradox: want as much data as possible for training, and as

much for dev; how to split?

Training set Development Test Set Test Set

See more details here:
https://scikit-learn.org/stable/modules/cross_validation.html

https://scikit-learn.org/stable/modules/cross_validation.html

Cross-validation: multiple splits
Pool results over splits, Compute pooled dev performance

14 CHAPTER 4 • NAIVE BAYES AND SENTIMENT CLASSIFICATION

8
8

11
340

true
urgent

true
not

system
urgent

system
not

60
40

55
212

true
normal

true
not

system
normal
system

not

200
51

33
83

true
spam

true
not

system
spam

system
not

268
99

99
635

true
yes

true
no

system
yes

system
no

precision =
8+11

8
= .42 precision =

200+33
200

= .86precision =
60+55

60
= .52 microaverage

precision 268+99
268

= .73=

macroaverage
precision 3

.42+.52+.86
= .60=

PooledClass 3: SpamClass 2: NormalClass 1: Urgent

Figure 4.6 Separate confusion matrices for the 3 classes from the previous figure, showing the pooled confu-
sion matrix and the microaveraged and macroaveraged precision.

and in general decide what the best model is. Once we come up with what we think
is the best model, we run it on the (hitherto unseen) test set to report its performance.

While the use of a devset avoids overfitting the test set, having a fixed train-
ing set, devset, and test set creates another problem: in order to save lots of data
for training, the test set (or devset) might not be large enough to be representative.
Wouldn’t it be better if we could somehow use all our data for training and still use
all our data for test? We can do this by cross-validation: we randomly choose across-validation
training and test set division of our data, train our classifier, and then compute the
error rate on the test set. Then we repeat with a different randomly selected training
set and test set. We do this sampling process 10 times and average these 10 runs to
get an average error rate. This is called 10-fold cross-validation.10-fold

cross-validation
The only problem with cross-validation is that because all the data is used for

testing, we need the whole corpus to be blind; we can’t examine any of the data
to suggest possible features and in general see what’s going on, because we’d be
peeking at the test set, and such cheating would cause us to overestimate the perfor-
mance of our system. However, looking at the corpus to understand what’s going
on is important in designing NLP systems! What to do? For this reason, it is com-
mon to create a fixed training set and test set, then do 10-fold cross-validation inside
the training set, but compute error rate the normal way in the test set, as shown in
Fig. 4.7.

Training Iterations

1

3

4

5

2

6

7

8

9

10

Dev

Dev

Dev

Dev

Dev

Dev

Dev

Dev

Dev

Dev

Training
Training

Training
Training

Training
Training

Training
Training

Training
Training

Training Test
Set

Testing

Figure 4.7 10-fold cross-validation

Text
Classification:
Performance
Measures

Precision, Recall, and F measure

Recommended readings

• Chapter 5 (LR) in J&M.
• Section 2.5 (LR), section 4.1 (sentiment analysis),

and section 4.4 (evaluation measures) in Eisenstein.

https://web.stanford.edu/~jurafsky/slp3/5.pdf

