
One-Hot Vector Representations

Sparse vector representation:
◦ V is the vocabulary
◦ Each word w is mapped to a unique id(w) between 1 and |V|.

◦ i.e. the position of the word in the vocabulary.
◦ Represent a word w using a “one-hot” vector w of length |V|:

◦ w[i] = 1, if i = id(w).
◦ w[i] = 0, otherwise

Example:
◦ Suppose id(ocean) = 2 and id(water) = 4 and id(laptop) = 5. Then:

◦ w(ocean) = [0, 1, 0, 0, 0, ..., 0]
◦ w(water) = [0, 0, 0, 1, 0, ..., 0]
◦ w(laptop) = [0, 0, 0, 0, 1, ..., 0]

1

Sparse Representations of Words are
Problematic for Machine Learning in NLP

1. Document classification:
◦ Bag-of-words representation:

◦ each document is the sum of the vectors of all the words in the document,
normalized to unit length.

◦ Suppose we use softmax regression to classify into classes in C.
◦ A parameter is needed for each (word, class) pair:

◦ => |V| × |C| parameters => 100K × 10 => 1M parameters.
◦ The number of labeled documents needed to train these many parameters may be unfeasible to

obtain.

◦ If voleyball does not appear in the training documents, but is mentioned
in the test document, it will be completely ignored:
◦ Even though voleyball is semantically close to basketball, which appeared many times in training

documents from the Sports category.

2

Vector
Semantics &
Embeddings

Word Meaning

What do words mean?

Introductory logic classes:
◦ The meaning of "dog" is DOG; cat is CAT
 ∀x DOG(x) ⟶ MAMMAL(x)

Old joke by Barbara Partee:
◦ Q: What's the meaning of life?
◦ A: LIFE

That seems unsatisfactory!

What do words mean?

Next thought: look in a dictionary

http://www.oed.com/

http://wordnetweb.princeton.edu/perl/webwn

http://www.oed.com/
http://wordnetweb.princeton.edu/perl/webwn

Words, Lemmas, Senses, Definitions

Pronunciation:

pepper, n.
 Brit. /ˈpɛpə/ , U.S. /ˈpɛpər/

Forms: OE peopor (rare), OE pipcer (transmission error), OE pipor, OE pipur (rare ...

Frequency (in current use):
Etymology: A borrowing from Latin. Etymon: Latin piper.
< classical Latin piper, a loanword < Indo-Aryan (as is ancient Greek πέπερι); compare Sanskrit ...

 I. The spice or the plant.
 1.
 a. A hot pungent spice derived from the prepared fruits (peppercorns) of
the pepper plant, Piper nigrum (see sense 2a), used from early times to
season food, either whole or ground to powder (often in association with
salt). Also (locally, chiefly with distinguishing word): a similar spice
derived from the fruits of certain other species of the genus Piper; the
fruits themselves.

The ground spice from Piper nigrum comes in two forms, the more pungent black pepper, produced
from black peppercorns, and the milder white pepper, produced from white peppercorns: see BLACK

adj. and n. Special uses 5a, PEPPERCORN n. 1a, and WHITE adj. and n. Special uses 7b(a).

cubeb, mignonette pepper, etc.: see the first element.

 b. With distinguishing word: any of certain other pungent spices derived
from plants of other families, esp. ones used as seasonings.

Cayenne, Jamaica pepper, etc.: see the first element.

 2.
 a. The plant Piper nigrum (family Piperaceae), a climbing shrub
indigenous to South Asia and also cultivated elsewhere in the tropics,
which has alternate stalked entire leaves, with pendulous spikes of small
green flowers opposite the leaves, succeeded by small berries turning red
when ripe. Also more widely: any plant of the genus Piper or the family
Piperaceae.

 b. Usu. with distinguishing word: any of numerous plants of other
families having hot pungent fruits or leaves which resemble pepper (1a)
in taste and in some cases are used as a substitute for it.

1

Oxford English Dictionary | The definitive record of the English
language

Pronunciation:

pepper, n.
 Brit. /ˈpɛpə/ , U.S. /ˈpɛpər/

Forms: OE peopor (rare), OE pipcer (transmission error), OE pipor, OE pipur (rare ...

Frequency (in current use):
Etymology: A borrowing from Latin. Etymon: Latin piper.
< classical Latin piper, a loanword < Indo-Aryan (as is ancient Greek πέπερι); compare Sanskrit ...

 I. The spice or the plant.
 1.
 a. A hot pungent spice derived from the prepared fruits (peppercorns) of
the pepper plant, Piper nigrum (see sense 2a), used from early times to
season food, either whole or ground to powder (often in association with
salt). Also (locally, chiefly with distinguishing word): a similar spice
derived from the fruits of certain other species of the genus Piper; the
fruits themselves.

The ground spice from Piper nigrum comes in two forms, the more pungent black pepper, produced
from black peppercorns, and the milder white pepper, produced from white peppercorns: see BLACK

adj. and n. Special uses 5a, PEPPERCORN n. 1a, and WHITE adj. and n. Special uses 7b(a).

cubeb, mignonette pepper, etc.: see the first element.

 b. With distinguishing word: any of certain other pungent spices derived
from plants of other families, esp. ones used as seasonings.

Cayenne, Jamaica pepper, etc.: see the first element.

 2.
 a. The plant Piper nigrum (family Piperaceae), a climbing shrub
indigenous to South Asia and also cultivated elsewhere in the tropics,
which has alternate stalked entire leaves, with pendulous spikes of small
green flowers opposite the leaves, succeeded by small berries turning red
when ripe. Also more widely: any plant of the genus Piper or the family
Piperaceae.

 b. Usu. with distinguishing word: any of numerous plants of other
families having hot pungent fruits or leaves which resemble pepper (1a)
in taste and in some cases are used as a substitute for it.

1

Oxford English Dictionary | The definitive record of the English
language

betel-, malagueta, wall pepper, etc.: see the first element. See also WATER PEPPER n. 1.

 c. U.S. The California pepper tree, Schinus molle. Cf. PEPPER TREE n. 3.

 3. Any of various forms of capsicum, esp. Capsicum annuum var.
annuum. Originally (chiefly with distinguishing word): any variety of the
C. annuum Longum group, with elongated fruits having a hot, pungent
taste, the source of cayenne, chilli powder, paprika, etc., or of the
perennial C. frutescens, the source of Tabasco sauce. Now frequently
(more fully sweet pepper): any variety of the C. annuum Grossum
group, with large, bell-shaped or apple-shaped, mild-flavoured fruits,
usually ripening to red, orange, or yellow and eaten raw in salads or
cooked as a vegetable. Also: the fruit of any of these capsicums.

Sweet peppers are often used in their green immature state (more fully green pepper), but some
new varieties remain green when ripe.

bell-, bird-, cherry-, pod-, red pepper, etc.: see the first element. See also CHILLI n. 1, PIMENTO n. 2, etc.

 II. Extended uses.
 4.
 a. Phrases. to have pepper in the nose: to behave superciliously or
contemptuously. to take pepper in the nose, to snuff pepper: to
take offence, become angry. Now arch.

 b. In other allusive and proverbial contexts, chiefly with reference to the
biting, pungent, inflaming, or stimulating qualities of pepper.

†c. slang. Rough treatment; a severe beating, esp. one inflicted during a
boxing match. Cf. Pepper Alley n. at Compounds 2, PEPPER v. 3. Obs.

 5. Short for PEPPERPOT n. 1a.

 6. colloq. A rapid rate of turning the rope in a game of skipping. Also:
skipping at such a rate.

betel-, malagueta, wall pepper, etc.: see the first element. See also WATER PEPPER n. 1.

 c. U.S. The California pepper tree, Schinus molle. Cf. PEPPER TREE n. 3.

 3. Any of various forms of capsicum, esp. Capsicum annuum var.
annuum. Originally (chiefly with distinguishing word): any variety of the
C. annuum Longum group, with elongated fruits having a hot, pungent
taste, the source of cayenne, chilli powder, paprika, etc., or of the
perennial C. frutescens, the source of Tabasco sauce. Now frequently
(more fully sweet pepper): any variety of the C. annuum Grossum
group, with large, bell-shaped or apple-shaped, mild-flavoured fruits,
usually ripening to red, orange, or yellow and eaten raw in salads or
cooked as a vegetable. Also: the fruit of any of these capsicums.

Sweet peppers are often used in their green immature state (more fully green pepper), but some
new varieties remain green when ripe.

bell-, bird-, cherry-, pod-, red pepper, etc.: see the first element. See also CHILLI n. 1, PIMENTO n. 2, etc.

 II. Extended uses.
 4.
 a. Phrases. to have pepper in the nose: to behave superciliously or
contemptuously. to take pepper in the nose, to snuff pepper: to
take offence, become angry. Now arch.

 b. In other allusive and proverbial contexts, chiefly with reference to the
biting, pungent, inflaming, or stimulating qualities of pepper.

†c. slang. Rough treatment; a severe beating, esp. one inflicted during a
boxing match. Cf. Pepper Alley n. at Compounds 2, PEPPER v. 3. Obs.

 5. Short for PEPPERPOT n. 1a.

 6. colloq. A rapid rate of turning the rope in a game of skipping. Also:
skipping at such a rate.

senselemma definition

Lemma pepper

Sense 1: spice from pepper plant
Sense 2: the pepper plant itself
Sense 3: another similar plant (Jamaican pepper)
Sense 4: another plant with peppercorns (California pepper)
Sense 5: capsicum (i.e. chili, paprika, bell pepper, etc)

A sense or “concept” is the meaning component of a word

Word Sense Disambiguation (WSD)

WSD = mapping a word in context to its correct sense in a
dictionary.
I like to season my fries with ground pepper.
1. Sense 1: spice from pepper plant
2. Sense 2: the pepper plant itself
3. Sense 3: another similar plant (Jamaican pepper)
4. Sense 4: another plant with peppercorns (California

pepper)
5. Sense 5: capsicum (i.e. chili, paprika, bell pepper, etc)

Word Sense Disambiguation (WSD)

WSD = mapping a word in context to its correct sense in a
dictionary.
I like to season my fries with ground pepper.
1. Sense 1: spice from pepper plant
2. Sense 2: the pepper plant itself
3. Sense 3: another similar plant (Jamaican pepper)
4. Sense 4: another plant with peppercorns (California

pepper)
5. Sense 5: capsicum (i.e. chili, paprika, bell pepper, etc)

Many papers have been written on WSD (before the advent of word embeddings).

Word Sense Disambiguation (WSD)

WSD = mapping a word in context to its correct
sense in a dictionary.
I like to season my fries with ground pepper.
1. Sense 1: spice from pepper plant:

◦ A hot pungent spice derived from the prepared fruits
(peppercorns) of the pepper plant, Piper nigrum (see
sense 2a), used from early times to season food,
either whole or ground to powder (often in
association with salt).

https://www.oed.com/view/Entry/140433?rskey=XOEyBl&result=1&isAdvanced=false

Word Sense Disambiguation (WSD)

WSD = mapping a word in context to its correct
sense in a dictionary.
I like to season my fries with ground pepper.
1. Sense 1: spice from pepper plant:

◦ A hot pungent spice derived from the prepared fruits
(peppercorns) of the pepper plant, Piper nigrum (see
sense 2a), used from early times to season food,
either whole or ground to powder (often in
association with salt).

https://www.oed.com/view/Entry/140433?rskey=XOEyBl&result=1&isAdvanced=false

Word Sense Disambiguation (WSD)

Word Sense Disambiguation (WSD)

Relations between senses: Synonymy
Synonyms have the same meaning in some or all
contexts.

◦ filbert / hazelnut
◦ couch / sofa
◦ big / large
◦ automobile / car
◦ vomit / throw up
◦ water / H20

Relation: Synonymy

Note that there are probably no examples of perfect
synonymy.

◦ Even if many aspects of meaning are identical
◦ Still may not preserve the acceptability based on notions

of politeness, slang, register, genre, etc.

Relation: Synonymy?

water / H20
big / large
brave / courageous
strong / powerful

The Linguistic Principle of Contrast

Difference in form => difference in meaning

Abbé Gabriel Girard 1718

 [I do not believe that there
is a synonymous word in any
language]

"

"

Re: "exact" synonyms

Relation: Similarity

Words with similar meanings. Not synonyms, but sharing
some element of meaning

car, bicycle

cow, horse

Ask humans how similar 2 words are

word1 word2 similarity

vanish disappear 9.8
behave obey 7.3
belief impression 5.95
muscle bone 3.65
modest flexible 0.98
hole agreement 0.3

SimLex-999 dataset (Hill et al., 2015)

Relation: Word relatedness

Also called "word association”.
Words can be related in any way, perhaps via a semantic
frame or field:

◦ car, bicycle: similar
◦ car, gasoline: related, not similar

◦ See also FrameNet:
◦ https://framenet.icsi.berkeley.edu/
◦ https://en.wikipedia.org/wiki/FrameNet

https://framenet.icsi.berkeley.edu/fndrupal/
https://en.wikipedia.org/wiki/FrameNet

Semantic field

Words that:
◦ cover a particular semantic domain.
◦ bear structured relations with each other.

hospitals
 surgeon, scalpel, nurse, anaesthetic, hospital
restaurants
 waiter, menu, plate, food, menu, chef
houses
 door, roof, kitchen, family, bed

Relation: Antonymy

Senses that are opposites with respect to only one
feature of meaning.
Otherwise, they are very similar!

dark/light short/long fast/slow rise/fall
hot/cold up/down in/out

More formally: antonyms can
◦ define a binary opposition or be at opposite ends of a scale

◦ long/short, fast/slow
◦ Be reversives:

◦ rise/fall, up/down

Relation: Superordinate/ subordinate

One sense is a subordinate of another if the first sense
is more specific, denoXng a subclass of the other

◦ car is a subordinate of vehicle
◦ mango is a subordinate of fruit

Conversely superordinate
◦ vehicle is a superordinate of car
◦ fruit is a subodinate of mango

Superordinate vehicle fruit furniture
Subordinate car mango chair

These levels are not symmetric

• Subordinate is the antonym (reverse) of superordinate.
• They lead to a tree of senses.
• One categorization level is distinguished from the

others:
• The basic level.

26

An animal sleeps on the couch.

A cat sleeps on the couch.

A white Persian cat sleeps on the couch.

27

A cat sleeps on the piece of furniture.

A cat sleeps on the couch.

A cat sleeps on the white leather couch.

Name these items

Superordinate Basic Subordinate

 chair office chair
 piano chair
 rocking chair
furniture lamp torchiere
 desk lamp
 table end table
 coffee table

z

Cluster of Interactional Properties

Basic level things are “human-sized”
Consider chairs
◦ We know how to interact with a chair (sit)
◦ Not so clear for superordinate categories like

furniture
◦ “Imagine a furniture without thinking of a

bed/table/chair/specific basic-level category”

The basic level

Distinctive actions
Learned earliest in childhood
Names are shortest
Names are most frequent

Connotation (sentiment)

Words have affective meanings:

◦ positive connotations (happy)
◦ negative connotations (sad)

◦ positive evaluation (great, love)
◦ negative evaluation (terrible, hate).

Connotation

Words seem to vary along 3 affective dimensions:
◦ valence: the pleasantness of the stimulus (e.g.: unhappy vs. happy)
◦ arousal: the intensity of emotion provoked by the stimulus (excited vs.

calm)
◦ dominance: the degree of control exerted by the stimulus (controlling vs.

awed)

4 CHAPTER 6 • VECTOR SEMANTICS AND EMBEDDINGS

kitchen, family, bed). Semantic fields are also related to topic models, like Latenttopic models

Dirichlet Allocation, LDA, which apply unsupervised learning on large sets of texts
to induce sets of associated words from text. Semantic fields and topic models are
very useful tools for discovering topical structure in documents.

In Chapter 18 we’ll introduce more relations between senses like hypernymy or
IS-A, antonymy (opposites) and meronymy (part-whole relations).

Semantic Frames and Roles Closely related to semantic fields is the idea of a
semantic frame. A semantic frame is a set of words that denote perspectives orsemantic frame
participants in a particular type of event. A commercial transaction, for example,
is a kind of event in which one entity trades money to another entity in return for
some good or service, after which the good changes hands or perhaps the service is
performed. This event can be encoded lexically by using verbs like buy (the event
from the perspective of the buyer), sell (from the perspective of the seller), pay
(focusing on the monetary aspect), or nouns like buyer. Frames have semantic roles
(like buyer, seller, goods, money), and words in a sentence can take on these roles.

Knowing that buy and sell have this relation makes it possible for a system to
know that a sentence like Sam bought the book from Ling could be paraphrased as
Ling sold the book to Sam, and that Sam has the role of the buyer in the frame and
Ling the seller. Being able to recognize such paraphrases is important for question
answering, and can help in shifting perspective for machine translation.

Connotation Finally, words have affective meanings or connotations. The wordconnotations
connotation has different meanings in different fields, but here we use it to mean
the aspects of a word’s meaning that are related to a writer or reader’s emotions,
sentiment, opinions, or evaluations. For example some words have positive conno-
tations (happy) while others have negative connotations (sad). Even words whose
meanings are similar in other ways can vary in connotation; consider the difference
in connotations between fake, knockoff, forgery, on the one hand, and copy, replica,
reproduction on the other, or innocent (positive connotation) and naive (negative
connotation). Some words describe positive evaluation (great, love) and others neg-
ative evaluation (terrible, hate). Positive or negative evaluation language is called
sentiment, as we saw in Chapter 4, and word sentiment plays a role in importantsentiment
tasks like sentiment analysis, stance detection, and applications of NLP to the lan-
guage of politics and consumer reviews.

Early work on affective meaning (Osgood et al., 1957) found that words varied
along three important dimensions of affective meaning:

valence: the pleasantness of the stimulus
arousal: the intensity of emotion provoked by the stimulus
dominance: the degree of control exerted by the stimulus

Thus words like happy or satisfied are high on valence, while unhappy or an-
noyed are low on valence. Excited is high on arousal, while calm is low on arousal.
Controlling is high on dominance, while awed or influenced are low on dominance.
Each word is thus represented by three numbers, corresponding to its value on each
of the three dimensions:

Valence Arousal Dominance
courageous 8.05 5.5 7.38
music 7.67 5.57 6.5
heartbreak 2.45 5.65 3.58
cub 6.71 3.95 4.24

[Osgood et al. (1957)]

So far

Concepts or word senses
◦ Have a complex many-to-many associaFon with words (homonymy,

mulFple senses)

Have relaXons with each other
◦ Synonymy
◦ Antonymy
◦ Similarity
◦ Relatedness
◦ Superordinate/subordinate, basic level
◦ ConnotaFon

What do words mean?

Look in a dictionary:

http://www.oed.com/

http://wordnetweb.princeton.edu/perl/webwn

http://www.oed.com/
http://wordnetweb.princeton.edu/perl/webwn

Lemma pepper

Sense 1: spice from pepper plant
Sense 2: the pepper plant itself
Sense 3: another similar plant (Jamaican pepper)

Sense 4: another plant with peppercorns (California pepper)
Sense 5: capsicum (i.e. chili, paprika, bell pepper, etc)

• Words are defined using words which are defined using words which
are defined using words …

• Recursive definition => use recursive algorithms for finding
representations of word meaning?

Vector
Semantics &
Embeddings

Word Meaning

Vector
Semantics &
Embeddings

It's hard to define a concept

But how to define a concept?

Classical (“Aristotelian”) Theory of Concepts
The meaning of a word:
a concept defined by necessary and sufficient conditions
A necessary condition for being an X is a condition C that X must satisfy in order for it to be an X.

◦ If not C, then not X
◦ ”Having four sides” is necessary to be a square.

A sufficient condition for being an X is condition such that if something satisfies condition C, then it
must be an X.

◦ If and only if C, then X
◦ The following necessary conditions, jointly, are sufficient to be a square

◦ x has (exactly) four sides
◦ each of x's sides is straight
◦ x is a closed figure
◦ x lies in a plane
◦ each of x's sides is equal in length to each of the others
◦ each of x's interior angles is equal to the others (right angles)
◦ the sides of x are joined at their ends

Example
from
Norman
Swartz,
SFU

Problem 1: The features are complex & may be context-dependent

William Labov. 1975

What are these?
Cup or bowl?

The category depends on complex features of the
object (diameter, etc)

The category depends on the context!
(If there is food in it, it’s a bowl)

Labov’s definition of cup

2

2.0 Literature Review

The following section will be divided into two sections. The first section will outline some

semantic approaches to explicating the core „cup‟ and „mug‟, and their relation to „cup of [tea]‟

and „mug of [tea]‟. The second will outline corpus linguistics and its contribution to this field

and the approaches that will then be used in the current study.

2.1. Semantic definitions of ‘cup’ and ‘mug’

There have been several attempts within the field of semantics to explicate the features that

differentiate „cup‟ and „mug‟, a distinction of “notorious difficulty” (Carter, 1998, p. 19). One of

the first, and most influential, was Labov‟s (2004) original 1975 experiment in which subjects

were shown pictures of varying indeterminacy (Appendix 1) and asked to label them. From this,

Labov was able to come up with a mathematical definition of „cup‟ as:

Figure 1: Labov’s (2004) definition of ‘cup’

The term cup is used to denote round containers with a ratio of depth to width of 1±r
where r≤rb, and rb = α1 + α2 + …αυ and α1 is a positive quality when the feature i is present
and 0 otherwise.

feature 1 = with one handle
 2 = made of opaque vitreous material
 3 = used for consumption of food
 4 = used for the consumption of liquid food
 5 = used for consumption of hot liquid food
 6 = with a saucer
 7 = tapering
 8 = circular in cross-section

Cup is used variably to denote such containers with ratios width to depth 1±r where rb≤r≤r1
with a probability of r1 - r/rt – rb. The quantity 1±rb expresses the distance from the modal
value of width to height.

 (Labov, 2004, p. 86)

Ludwig Wittgenstein (1889-1951)

Philosopher of language
In his late years, a
proponent of studying
“ordinary language”

Wittgenstein (1945)
Philosophical
Investigations.
Paragraphs 66,67

What is a game?

Wi#genstein’s thought experiment "What is a game”:

PI #66:
"Don’t say “there must be something common, or they would not
be called `games’”—but look and see whether there is anything
common to all"

Is it amusing?
Is there competition?
Is there long-term strategy?
Is skill required?
Must luck play a role?
Are there cards?
Is there a ball?

Family Resemblance

Game 1 Game 2 Game 3 Game 4
ABC BCD ACD ABD

“each item has at least one, and probably several, elements
in common with one or more items, but no, or few, elements
are common to all items” [Rosch and Mervis]

Vector
Semantics &
Embeddings

It's hard to define a concept

Vector
Semantics &
Embeddings

Vector Semantics

How about a radically different approach?

Ludwig Wittgenstein

PI #43:
"The meaning of a word is its use in the language"

Let's define words by their usages

One way to define "usage":
 words are defined by their environments (the words around them)

Zellig Harris (1954):
If A and B have almost identical environments we say that they
are synonyms.

What does recent English borrowing ongchoi mean?

Suppose you see these sentences:
•Ong choi is delicious sautéed with garlic.
•Ong choi is superb over rice
•Ong choi leaves with salty sauces

And you've also seen these:
• …spinach sautéed with garlic over rice
• Chard stems and leaves are delicious
• Collard greens and other salty leafy greens

Conclusion:
◦ Ongchoi is a leafy green like spinach, chard, or collard greens

Ongchoi: Ipomoea aquatica "Water Spinach"

Yamaguchi, Wikimedia Commons, public domain

空心菜
kangkong
rau muống
…

6 CHAPTER 6 • VECTOR SEMANTICS AND EMBEDDINGS

good
nice

bad
worst

not good

wonderful
amazing

terrific

dislike

worse

very good incredibly good
fantastic

incredibly badnow

youi
that

with

byto
’s

are

is

a
than

Figure 6.1 A two-dimensional (t-SNE) projection of embeddings for some words and
phrases, showing that words with similar meanings are nearby in space. The original 60-
dimensional embeddings were trained for sentiment analysis. Simplified from Li et al. (2015)
with colors added for explanation.

The fine-grained model of word similarity of vector semantics offers enormous
power to NLP applications. NLP applications like the sentiment classifiers of Chap-
ter 4 or Chapter 5 depend on the same words appearing in the training and test sets.
But by representing words as embeddings, classifiers can assign sentiment as long as
it sees some words with similar meanings. And as we’ll see, vector semantic models
can be learned automatically from text without supervision.

In this chapter we’ll introduce the two most commonly used models. In the tf-idf
model, an important baseline, the meaning of a word is defined by a simple function
of the counts of nearby words. We will see that this method results in very long
vectors that are sparse, i.e. mostly zeros (since most words simply never occur in
the context of others). We’ll introduce the word2vec model family for construct-
ing short, dense vectors that have useful semantic properties. We’ll also introduce
the cosine, the standard way to use embeddings to compute semantic similarity, be-
tween two words, two sentences, or two documents, an important tool in practical
applications like question answering, summarization, or automatic essay grading.

6.3 Words and Vectors

“The most important attributes of a vector in 3-space are {Location, Location, Location}”
Randall Munroe, https://xkcd.com/2358/

Vector or distributional models of meaning are generally based on a co-occurrence
matrix, a way of representing how often words co-occur. We’ll look at two popular
matrices: the term-document matrix and the term-term matrix.

6.3.1 Vectors and documents
In a term-document matrix, each row represents a word in the vocabulary and eachterm-document

matrix
column represents a document from some collection of documents. Fig. 6.2 shows a
small selection from a term-document matrix showing the occurrence of four words
in four plays by Shakespeare. Each cell in this matrix represents the number of times
a particular word (defined by the row) occurs in a particular document (defined by
the column). Thus fool appeared 58 times in Twelfth Night.

The term-document matrix of Fig. 6.2 was first defined as part of the vector
space model of information retrieval (Salton, 1971). In this model, a document isvector space

model

A new model of meaning focusing on
distributional similarity

Each word = a vector
◦ Not just "word" or word45.
◦ Similar words are "nearby in space"

We define a word as a vector

Called an "embedding" because it's embedded into a
vector space
The standard way to represent meaning in NLP
 Every modern NLP algorithm uses embeddings as

the representation of word meaning
Fine-grained model of meaning for similarity

Intuition: why vectors?
Consider sentiment analysis:

◦ With words, a feature is a word identity
◦ Feature 5: 'The previous word was "terrible"'
◦ requires exact same word to be in training and test

◦ With embeddings:
◦ Feature is a word vector
◦ 'The previous word was vector [35,22,17…]
◦ Now in the test set we might see a similar vector [34,21,14]
◦ We can generalize to similar but unseen words!!!

We'll discuss 2 kinds of embeddings

tf-idf
◦ Information Retrieval workhorse!
◦ A common baseline model
◦ Sparse vectors
◦ Words are represented by (a simple function of) the counts of nearby words

Word2vec
◦ Dense vectors
◦ Representation is created by training a classifier to predict whether a word is

likely to appear nearby
◦ In later chapters we'll discuss extensions called contextual embeddings

Vector
Semantics &
Embeddings

Vector Semantics

Vector
Semantics &
Embeddings

Words and Vectors

Term-document matrix

6.3 • WORDS AND VECTORS 7

As You Like It Twelfth Night Julius Caesar Henry V
battle 1 0 7 13
good 114 80 62 89
fool 36 58 1 4
wit 20 15 2 3

Figure 6.2 The term-document matrix for four words in four Shakespeare plays. Each cell
contains the number of times the (row) word occurs in the (column) document.

represented as a count vector, a column in Fig. 6.3.
To review some basic linear algebra, a vector is, at heart, just a list or array ofvector

numbers. So As You Like It is represented as the list [1,114,36,20] (the first column
vector in Fig. 6.3) and Julius Caesar is represented as the list [7,62,1,2] (the third
column vector). A vector space is a collection of vectors, characterized by theirvector space

dimension. In the example in Fig. 6.3, the document vectors are of dimension 4,dimension
just so they fit on the page; in real term-document matrices, the vectors representing
each document would have dimensionality |V |, the vocabulary size.

The ordering of the numbers in a vector space indicates different meaningful di-
mensions on which documents vary. Thus the first dimension for both these vectors
corresponds to the number of times the word battle occurs, and we can compare
each dimension, noting for example that the vectors for As You Like It and Twelfth
Night have similar values (1 and 0, respectively) for the first dimension.

As You Like It Twelfth Night Julius Caesar Henry V
battle 1 0 7 13
good 114 80 62 89
fool 36 58 1 4
wit 20 15 2 3

Figure 6.3 The term-document matrix for four words in four Shakespeare plays. The red
boxes show that each document is represented as a column vector of length four.

We can think of the vector for a document as a point in |V |-dimensional space;
thus the documents in Fig. 6.3 are points in 4-dimensional space. Since 4-dimensional
spaces are hard to visualize, Fig. 6.4 shows a visualization in two dimensions; we’ve
arbitrarily chosen the dimensions corresponding to the words battle and fool.

5 10 15 20 25 30

5

10

Henry V [4,13]

As You Like It [36,1]

Julius Caesar [1,7]ba
ttl

e

 fool

Twelfth Night [58,0]

15

40

35 40 45 50 55 60

Figure 6.4 A spatial visualization of the document vectors for the four Shakespeare play
documents, showing just two of the dimensions, corresponding to the words battle and fool.
The comedies have high values for the fool dimension and low values for the battle dimension.

Term-document matrices were originally defined as a means of finding similar
documents for the task of document information retrieval. Two documents that are

6.3 • WORDS AND VECTORS 7

As You Like It Twelfth Night Julius Caesar Henry V
battle 1 0 7 13
good 114 80 62 89
fool 36 58 1 4
wit 20 15 2 3

Figure 6.2 The term-document matrix for four words in four Shakespeare plays. Each cell
contains the number of times the (row) word occurs in the (column) document.

represented as a count vector, a column in Fig. 6.3.
To review some basic linear algebra, a vector is, at heart, just a list or array ofvector

numbers. So As You Like It is represented as the list [1,114,36,20] (the first column
vector in Fig. 6.3) and Julius Caesar is represented as the list [7,62,1,2] (the third
column vector). A vector space is a collection of vectors, characterized by theirvector space

dimension. In the example in Fig. 6.3, the document vectors are of dimension 4,dimension
just so they fit on the page; in real term-document matrices, the vectors representing
each document would have dimensionality |V |, the vocabulary size.

The ordering of the numbers in a vector space indicates different meaningful di-
mensions on which documents vary. Thus the first dimension for both these vectors
corresponds to the number of times the word battle occurs, and we can compare
each dimension, noting for example that the vectors for As You Like It and Twelfth
Night have similar values (1 and 0, respectively) for the first dimension.

As You Like It Twelfth Night Julius Caesar Henry V
battle 1 0 7 13
good 114 80 62 89
fool 36 58 1 4
wit 20 15 2 3

Figure 6.3 The term-document matrix for four words in four Shakespeare plays. The red
boxes show that each document is represented as a column vector of length four.

We can think of the vector for a document as a point in |V |-dimensional space;
thus the documents in Fig. 6.3 are points in 4-dimensional space. Since 4-dimensional
spaces are hard to visualize, Fig. 6.4 shows a visualization in two dimensions; we’ve
arbitrarily chosen the dimensions corresponding to the words battle and fool.

5 10 15 20 25 30

5

10

Henry V [4,13]

As You Like It [36,1]

Julius Caesar [1,7]ba
ttl

e

 fool

Twelfth Night [58,0]

15

40

35 40 45 50 55 60

Figure 6.4 A spatial visualization of the document vectors for the four Shakespeare play
documents, showing just two of the dimensions, corresponding to the words battle and fool.
The comedies have high values for the fool dimension and low values for the battle dimension.

Term-document matrices were originally defined as a means of finding similar
documents for the task of document information retrieval. Two documents that are

Each document is represented by a vector of words

Visualizing document vectors

6.3 • WORDS AND VECTORS 7

As You Like It Twelfth Night Julius Caesar Henry V
battle 1 0 7 13
good 114 80 62 89
fool 36 58 1 4
wit 20 15 2 3

Figure 6.2 The term-document matrix for four words in four Shakespeare plays. Each cell
contains the number of times the (row) word occurs in the (column) document.

represented as a count vector, a column in Fig. 6.3.
To review some basic linear algebra, a vector is, at heart, just a list or array ofvector

numbers. So As You Like It is represented as the list [1,114,36,20] (the first column
vector in Fig. 6.3) and Julius Caesar is represented as the list [7,62,1,2] (the third
column vector). A vector space is a collection of vectors, characterized by theirvector space

dimension. In the example in Fig. 6.3, the document vectors are of dimension 4,dimension
just so they fit on the page; in real term-document matrices, the vectors representing
each document would have dimensionality |V |, the vocabulary size.

The ordering of the numbers in a vector space indicates different meaningful di-
mensions on which documents vary. Thus the first dimension for both these vectors
corresponds to the number of times the word battle occurs, and we can compare
each dimension, noting for example that the vectors for As You Like It and Twelfth
Night have similar values (1 and 0, respectively) for the first dimension.

As You Like It Twelfth Night Julius Caesar Henry V
battle 1 0 7 13
good 114 80 62 89
fool 36 58 1 4
wit 20 15 2 3

Figure 6.3 The term-document matrix for four words in four Shakespeare plays. The red
boxes show that each document is represented as a column vector of length four.

We can think of the vector for a document as a point in |V |-dimensional space;
thus the documents in Fig. 6.3 are points in 4-dimensional space. Since 4-dimensional
spaces are hard to visualize, Fig. 6.4 shows a visualization in two dimensions; we’ve
arbitrarily chosen the dimensions corresponding to the words battle and fool.

5 10 15 20 25 30

5

10

Henry V [4,13]

As You Like It [36,1]

Julius Caesar [1,7]ba
ttl

e

 fool

Twelfth Night [58,0]

15

40

35 40 45 50 55 60

Figure 6.4 A spatial visualization of the document vectors for the four Shakespeare play
documents, showing just two of the dimensions, corresponding to the words battle and fool.
The comedies have high values for the fool dimension and low values for the battle dimension.

Term-document matrices were originally defined as a means of finding similar
documents for the task of document information retrieval. Two documents that are

1. How to measure distance or similarity?
• Distance between vectors?

• What if we double the length of Julius C?
• (Cosine) of the angle is better.

Vectors are the basis of information retrieval

6.3 • WORDS AND VECTORS 7

As You Like It Twelfth Night Julius Caesar Henry V
battle 1 0 7 13
good 114 80 62 89
fool 36 58 1 4
wit 20 15 2 3

Figure 6.2 The term-document matrix for four words in four Shakespeare plays. Each cell
contains the number of times the (row) word occurs in the (column) document.

represented as a count vector, a column in Fig. 6.3.
To review some basic linear algebra, a vector is, at heart, just a list or array ofvector

numbers. So As You Like It is represented as the list [1,114,36,20] (the first column
vector in Fig. 6.3) and Julius Caesar is represented as the list [7,62,1,2] (the third
column vector). A vector space is a collection of vectors, characterized by theirvector space

dimension. In the example in Fig. 6.3, the document vectors are of dimension 4,dimension
just so they fit on the page; in real term-document matrices, the vectors representing
each document would have dimensionality |V |, the vocabulary size.

The ordering of the numbers in a vector space indicates different meaningful di-
mensions on which documents vary. Thus the first dimension for both these vectors
corresponds to the number of times the word battle occurs, and we can compare
each dimension, noting for example that the vectors for As You Like It and Twelfth
Night have similar values (1 and 0, respectively) for the first dimension.

As You Like It Twelfth Night Julius Caesar Henry V
battle 1 0 7 13
good 114 80 62 89
fool 36 58 1 4
wit 20 15 2 3

Figure 6.3 The term-document matrix for four words in four Shakespeare plays. The red
boxes show that each document is represented as a column vector of length four.

We can think of the vector for a document as a point in |V |-dimensional space;
thus the documents in Fig. 6.3 are points in 4-dimensional space. Since 4-dimensional
spaces are hard to visualize, Fig. 6.4 shows a visualization in two dimensions; we’ve
arbitrarily chosen the dimensions corresponding to the words battle and fool.

5 10 15 20 25 30

5

10

Henry V [4,13]

As You Like It [36,1]

Julius Caesar [1,7]ba
ttl

e

 fool

Twelfth Night [58,0]

15

40

35 40 45 50 55 60

Figure 6.4 A spatial visualization of the document vectors for the four Shakespeare play
documents, showing just two of the dimensions, corresponding to the words battle and fool.
The comedies have high values for the fool dimension and low values for the battle dimension.

Term-document matrices were originally defined as a means of finding similar
documents for the task of document information retrieval. Two documents that are

Vectors are similar for the two comedies
Different than the history

Comedies have more fools and wit and fewer battles.

Idea for word meaning: Words can be vectors too!!!
6.3 • WORDS AND VECTORS 7

As You Like It Twelfth Night Julius Caesar Henry V
battle 1 0 7 13
good 114 80 62 89
fool 36 58 1 4
wit 20 15 2 3

Figure 6.2 The term-document matrix for four words in four Shakespeare plays. Each cell
contains the number of times the (row) word occurs in the (column) document.

represented as a count vector, a column in Fig. 6.3.
To review some basic linear algebra, a vector is, at heart, just a list or array ofvector

numbers. So As You Like It is represented as the list [1,114,36,20] (the first column
vector in Fig. 6.3) and Julius Caesar is represented as the list [7,62,1,2] (the third
column vector). A vector space is a collection of vectors, characterized by theirvector space

dimension. In the example in Fig. 6.3, the document vectors are of dimension 4,dimension
just so they fit on the page; in real term-document matrices, the vectors representing
each document would have dimensionality |V |, the vocabulary size.

The ordering of the numbers in a vector space indicates different meaningful di-
mensions on which documents vary. Thus the first dimension for both these vectors
corresponds to the number of times the word battle occurs, and we can compare
each dimension, noting for example that the vectors for As You Like It and Twelfth
Night have similar values (1 and 0, respectively) for the first dimension.

As You Like It Twelfth Night Julius Caesar Henry V
battle 1 0 7 13
good 114 80 62 89
fool 36 58 1 4
wit 20 15 2 3

Figure 6.3 The term-document matrix for four words in four Shakespeare plays. The red
boxes show that each document is represented as a column vector of length four.

We can think of the vector for a document as a point in |V |-dimensional space;
thus the documents in Fig. 6.3 are points in 4-dimensional space. Since 4-dimensional
spaces are hard to visualize, Fig. 6.4 shows a visualization in two dimensions; we’ve
arbitrarily chosen the dimensions corresponding to the words battle and fool.

5 10 15 20 25 30

5

10

Henry V [4,13]

As You Like It [36,1]

Julius Caesar [1,7]ba
ttl

e

 fool

Twelfth Night [58,0]

15

40

35 40 45 50 55 60

Figure 6.4 A spatial visualization of the document vectors for the four Shakespeare play
documents, showing just two of the dimensions, corresponding to the words battle and fool.
The comedies have high values for the fool dimension and low values for the battle dimension.

Term-document matrices were originally defined as a means of finding similar
documents for the task of document information retrieval. Two documents that are

battle is "the kind of word that occurs in Julius Caesar and Henry V"

fool is "the kind of word that occurs in comedies, especially Twelfth Night"

8 CHAPTER 6 • VECTOR SEMANTICS AND EMBEDDINGS

similar will tend to have similar words, and if two documents have similar words
their column vectors will tend to be similar. The vectors for the comedies As You
Like It [1,114,36,20] and Twelfth Night [0,80,58,15] look a lot more like each other
(more fools and wit than battles) than they look like Julius Caesar [7,62,1,2] or
Henry V [13,89,4,3]. This is clear with the raw numbers; in the first dimension
(battle) the comedies have low numbers and the others have high numbers, and we
can see it visually in Fig. 6.4; we’ll see very shortly how to quantify this intuition
more formally.

A real term-document matrix, of course, wouldn’t just have 4 rows and columns,
let alone 2. More generally, the term-document matrix has |V | rows (one for each
word type in the vocabulary) and D columns (one for each document in the collec-
tion); as we’ll see, vocabulary sizes are generally in the tens of thousands, and the
number of documents can be enormous (think about all the pages on the web).

Information retrieval (IR) is the task of finding the document d from the Dinformation
retrieval

documents in some collection that best matches a query q. For IR we’ll therefore also
represent a query by a vector, also of length |V |, and we’ll need a way to compare
two vectors to find how similar they are. (Doing IR will also require efficient ways
to store and manipulate these vectors by making use of the convenient fact that these
vectors are sparse, i.e., mostly zeros).

Later in the chapter we’ll introduce some of the components of this vector com-
parison process: the tf-idf term weighting, and the cosine similarity metric.

6.3.2 Words as vectors: document dimensions
We’ve seen that documents can be represented as vectors in a vector space. But
vector semantics can also be used to represent the meaning of words. We do this
by associating each word with a word vector— a row vector rather than a columnrow vector
vector, hence with different dimensions, as shown in Fig. 6.5. The four dimensions
of the vector for fool, [36,58,1,4], correspond to the four Shakespeare plays. Word
counts in the same four dimensions are used to form the vectors for the other 3
words: wit, [20,15,2,3]; battle, [1,0,7,13]; and good [114,80,62,89].

As You Like It Twelfth Night Julius Caesar Henry V
battle 1 0 7 13
good 114 80 62 89
fool 36 58 1 4
wit 20 15 2 3

Figure 6.5 The term-document matrix for four words in four Shakespeare plays. The red
boxes show that each word is represented as a row vector of length four.

For documents, we saw that similar documents had similar vectors, because sim-
ilar documents tend to have similar words. This same principle applies to words:
similar words have similar vectors because they tend to occur in similar documents.
The term-document matrix thus lets us represent the meaning of a word by the doc-
uments it tends to occur in.

6.3.3 Words as vectors: word dimensions
An alternative to using the term-document matrix to represent words as vectors of
document counts, is to use the term-term matrix, also called the word-word ma-
trix or the term-context matrix, in which the columns are labeled by words ratherword-word

matrix
than documents. This matrix is thus of dimensionality |V |⇥ |V | and each cell records

More common: word-word matrix
(or "term-context matrix")

Two words are similar in meaning if their context vectors are similar

6.3 • WORDS AND VECTORS 9

Information retrieval (IR) is the task of finding the document d from the Dinformation
retrieval

documents in some collection that best matches a query q. For IR we’ll therefore also
represent a query by a vector, also of length |V |, and we’ll need a way to compare
two vectors to find how similar they are. (Doing IR will also require efficient ways
to store and manipulate these vectors by making use of the convenient fact that these
vectors are sparse, i.e., mostly zeros).

Later in the chapter we’ll introduce some of the components of this vector com-
parison process: the tf-idf term weighting, and the cosine similarity metric.

6.3.2 Words as vectors
We’ve seen that documents can be represented as vectors in a vector space. But
vector semantics can also be used to represent the meaning of words, by associating
each word with a vector.

The word vector is now a row vector rather than a column vector, and hence therow vector
dimensions of the vector are different. The four dimensions of the vector for fool,
[36,58,1,4], correspond to the four Shakespeare plays. The same four dimensions
are used to form the vectors for the other 3 words: wit, [20,15,2,3]; battle, [1,0,7,13];
and good [114,80,62,89]. Each entry in the vector thus represents the counts of the
word’s occurrence in the document corresponding to that dimension.

For documents, we saw that similar documents had similar vectors, because sim-
ilar documents tend to have similar words. This same principle applies to words:
similar words have similar vectors because they tend to occur in similar documents.
The term-document matrix thus lets us represent the meaning of a word by the doc-
uments it tends to occur in.

However, it is most common to use a different kind of context for the dimensions
of a word’s vector representation. Rather than the term-document matrix we use the
term-term matrix, more commonly called the word-word matrix or the term-word-word

matrix
context matrix, in which the columns are labeled by words rather than documents.
This matrix is thus of dimensionality |V |⇥ |V | and each cell records the number of
times the row (target) word and the column (context) word co-occur in some context
in some training corpus. The context could be the document, in which case the cell
represents the number of times the two words appear in the same document. It is
most common, however, to use smaller contexts, generally a window around the
word, for example of 4 words to the left and 4 words to the right, in which case
the cell represents the number of times (in some training corpus) the column word
occurs in such a ±4 word window around the row word. For example here is one
example each of some words in their windows:

is traditionally followed by cherry pie, a traditional dessert
often mixed, such as strawberry rhubarb pie. Apple pie

computer peripherals and personal digital assistants. These devices usually
a computer. This includes information available on the internet

If we then take every occurrence of each word (say strawberry) and count the con-
text words around it, we get a word-word co-occurrence matrix. Fig. 6.5 shows a
simplified subset of the word-word co-occurrence matrix for these four words com-
puted from the Wikipedia corpus (Davies, 2015).

Note in Fig. 6.5 that the two words cherry and strawberry are more similar to
each other (both pie and sugar tend to occur in their window) than they are to other
words like digital; conversely, digital and information are more similar to each other
than, say, to strawberry. Fig. 6.6 shows a spatial visualization.

6.3 • WORDS AND VECTORS 9

the number of times the row (target) word and the column (context) word co-occur
in some context in some training corpus. The context could be the document, in
which case the cell represents the number of times the two words appear in the same
document. It is most common, however, to use smaller contexts, generally a win-
dow around the word, for example of 4 words to the left and 4 words to the right,
in which case the cell represents the number of times (in some training corpus) the
column word occurs in such a ±4 word window around the row word. For example
here is one example each of some words in their windows:

is traditionally followed by cherry pie, a traditional dessert
often mixed, such as strawberry rhubarb pie. Apple pie

computer peripherals and personal digital assistants. These devices usually
a computer. This includes information available on the internet

If we then take every occurrence of each word (say strawberry) and count the
context words around it, we get a word-word co-occurrence matrix. Fig. 6.6 shows a
simplified subset of the word-word co-occurrence matrix for these four words com-
puted from the Wikipedia corpus (Davies, 2015).

aardvark ... computer data result pie sugar ...
cherry 0 ... 2 8 9 442 25 ...

strawberry 0 ... 0 0 1 60 19 ...
digital 0 ... 1670 1683 85 5 4 ...

information 0 ... 3325 3982 378 5 13 ...
Figure 6.6 Co-occurrence vectors for four words in the Wikipedia corpus, showing six of
the dimensions (hand-picked for pedagogical purposes). The vector for digital is outlined in
red. Note that a real vector would have vastly more dimensions and thus be much sparser.

Note in Fig. 6.6 that the two words cherry and strawberry are more similar to
each other (both pie and sugar tend to occur in their window) than they are to other
words like digital; conversely, digital and information are more similar to each other
than, say, to strawberry. Fig. 6.7 shows a spatial visualization.

1000 2000 3000 4000

1000

2000
digital

 [1683,1670]

co
m

pu
te

r

 data

information
 [3982,3325] 3000

4000

Figure 6.7 A spatial visualization of word vectors for digital and information, showing just
two of the dimensions, corresponding to the words data and computer.

Note that |V |, the length of the vector, is generally the size of the vocabulary, of-
ten between 10,000 and 50,000 words (using the most frequent words in the training
corpus; keeping words after about the most frequent 50,000 or so is generally not
helpful). Since most of these numbers are zero these are sparse vector representa-
tions; there are efficient algorithms for storing and computing with sparse matrices.

Now that we have some intuitions, let’s move on to examine the details of com-
puting word similarity. Afterwards we’ll discuss methods for weighting cells.

10 CHAPTER 6 • VECTOR SEMANTICS AND EMBEDDINGS

aardvark ... computer data result pie sugar ...
cherry 0 ... 2 8 9 442 25

strawberry 0 ... 0 0 1 60 19
digital 0 ... 1670 1683 85 5 4

information 0 ... 3325 3982 378 5 13
Figure 6.5 Co-occurrence vectors for four words in the Wikipedia corpus, showing six of
the dimensions (hand-picked for pedagogical purposes). The vector for digital is outlined in
red. Note that a real vector would have vastly more dimensions and thus be much sparser.

1000 2000 3000 4000

1000

2000
digital

 [1683,1670]
co

m
pu

te
r

 data

information
 [3982,3325] 3000

4000

Figure 6.6 A spatial visualization of word vectors for digital and information, showing just
two of the dimensions, corresponding to the words data and computer.

Note that |V |, the length of the vector, is generally the size of the vocabulary,
usually between 10,000 and 50,000 words (using the most frequent words in the
training corpus; keeping words after about the most frequent 50,000 or so is gener-
ally not helpful). But of course since most of these numbers are zero these are sparse
vector representations, and there are efficient algorithms for storing and computing
with sparse matrices.

Now that we have some intuitions, let’s move on to examine the details of com-
puting word similarity. Afterwards we’ll discuss the tf-idf method of weighting
cells.

6.4 Cosine for measuring similarity

To define similarity between two target words v and w, we need a measure for taking
two such vectors and giving a measure of vector similarity. By far the most common
similarity metric is the cosine of the angle between the vectors.

The cosine—like most measures for vector similarity used in NLP—is based on
the dot product operator from linear algebra, also called the inner product:dot product

inner product

dot product(v,w) = v ·w =
NX

i=1

viwi = v1w1 + v2w2 + ...+ vNwN (6.7)

As we will see, most metrics for similarity between vectors are based on the dot
product. The dot product acts as a similarity metric because it will tend to be high
just when the two vectors have large values in the same dimensions. Alternatively,
vectors that have zeros in different dimensions—orthogonal vectors—will have a
dot product of 0, representing their strong dissimilarity.

Vector
Semantics &
Embeddings

Words and Vectors

Vector
Semantics &
Embeddings

Cosine for computing word
similarity

Dot product and cosine

The dot product between two vectors is a scalar:

The dot product tends to be high when the two
vectors have large values in the same dimensions
Dot product can be a similarity metric between
vectors

10 CHAPTER 6 • VECTOR SEMANTICS AND EMBEDDINGS

6.4 Cosine for measuring similarity

To measure similarity between two target words v and w, we need a metric that
takes two vectors (of the same dimensionality, either both with words as dimensions,
hence of length |V |, or both with documents as dimensions as documents, of length
|D|) and gives a measure of their similarity. By far the most common similarity
metric is the cosine of the angle between the vectors.

The cosine—like most measures for vector similarity used in NLP—is based on
the dot product operator from linear algebra, also called the inner product:dot product

inner product

dot product(v,w) = v ·w =
NX

i=1

viwi = v1w1 + v2w2 + ...+ vNwN (6.7)

As we will see, most metrics for similarity between vectors are based on the dot
product. The dot product acts as a similarity metric because it will tend to be high
just when the two vectors have large values in the same dimensions. Alternatively,
vectors that have zeros in different dimensions—orthogonal vectors—will have a
dot product of 0, representing their strong dissimilarity.

This raw dot product, however, has a problem as a similarity metric: it favors
long vectors. The vector length is defined asvector length

|v| =

vuut
NX

i=1

v2
i (6.8)

The dot product is higher if a vector is longer, with higher values in each dimension.
More frequent words have longer vectors, since they tend to co-occur with more
words and have higher co-occurrence values with each of them. The raw dot product
thus will be higher for frequent words. But this is a problem; we’d like a similarity
metric that tells us how similar two words are regardless of their frequency.

We modify the dot product to normalize for the vector length by dividing the
dot product by the lengths of each of the two vectors. This normalized dot product
turns out to be the same as the cosine of the angle between the two vectors, following
from the definition of the dot product between two vectors a and b:

a ·b = |a||b|cosq
a ·b
|a||b| = cosq (6.9)

The cosine similarity metric between two vectors v and w thus can be computed as:cosine

cosine(v,w) =
v ·w
|v||w| =

NX

i=1

viwi

vuut
NX

i=1

v2
i

vuut
NX

i=1

w2
i

(6.10)

For some applications we pre-normalize each vector, by dividing it by its length,
creating a unit vector of length 1. Thus we could compute a unit vector from a byunit vector
dividing it by |a|. For unit vectors, the dot product is the same as the cosine.

Problem with raw dot-product

Dot product favors long vectors
Dot product is higher if a vector is longer (has higher
values in many dimension)
Vector length:

Frequent words (of, the, you) have long vectors (since
they occur many times with other words).
So dot product overly favors frequent words

10 CHAPTER 6 • VECTOR SEMANTICS AND EMBEDDINGS

6.4 Cosine for measuring similarity

To measure similarity between two target words v and w, we need a metric that
takes two vectors (of the same dimensionality, either both with words as dimensions,
hence of length |V |, or both with documents as dimensions as documents, of length
|D|) and gives a measure of their similarity. By far the most common similarity
metric is the cosine of the angle between the vectors.

The cosine—like most measures for vector similarity used in NLP—is based on
the dot product operator from linear algebra, also called the inner product:dot product

inner product

dot product(v,w) = v ·w =
NX

i=1

viwi = v1w1 + v2w2 + ...+ vNwN (6.7)

As we will see, most metrics for similarity between vectors are based on the dot
product. The dot product acts as a similarity metric because it will tend to be high
just when the two vectors have large values in the same dimensions. Alternatively,
vectors that have zeros in different dimensions—orthogonal vectors—will have a
dot product of 0, representing their strong dissimilarity.

This raw dot product, however, has a problem as a similarity metric: it favors
long vectors. The vector length is defined asvector length

|v| =

vuut
NX

i=1

v2
i (6.8)

The dot product is higher if a vector is longer, with higher values in each dimension.
More frequent words have longer vectors, since they tend to co-occur with more
words and have higher co-occurrence values with each of them. The raw dot product
thus will be higher for frequent words. But this is a problem; we’d like a similarity
metric that tells us how similar two words are regardless of their frequency.

We modify the dot product to normalize for the vector length by dividing the
dot product by the lengths of each of the two vectors. This normalized dot product
turns out to be the same as the cosine of the angle between the two vectors, following
from the definition of the dot product between two vectors a and b:

a ·b = |a||b|cosq
a ·b
|a||b| = cosq (6.9)

The cosine similarity metric between two vectors v and w thus can be computed as:cosine

cosine(v,w) =
v ·w
|v||w| =

NX

i=1

viwi

vuut
NX

i=1

v2
i

vuut
NX

i=1

w2
i

(6.10)

For some applications we pre-normalize each vector, by dividing it by its length,
creating a unit vector of length 1. Thus we could compute a unit vector from a byunit vector
dividing it by |a|. For unit vectors, the dot product is the same as the cosine.

Alternative: cosine for computing word similarity

12 CHAPTER 6 • VECTOR SEMANTICS

~a ·~b = |~a||~b|cosq
~a ·~b
|~a||~b|

= cosq (6.9)

The cosine similarity metric between two vectors~v and ~w thus can be computedcosine

as:

cosine(~v,~w) =
~v ·~w
|~v||~w| =

NX

i=1

viwi

vuut
NX

i=1

v2
i

vuut
NX

i=1

w2
i

(6.10)

For some applications we pre-normalize each vector, by dividing it by its length,
creating a unit vector of length 1. Thus we could compute a unit vector from ~a byunit vector
dividing it by |~a|. For unit vectors, the dot product is the same as the cosine.

The cosine value ranges from 1 for vectors pointing in the same direction, through
0 for vectors that are orthogonal, to -1 for vectors pointing in opposite directions.
But raw frequency values are non-negative, so the cosine for these vectors ranges
from 0–1.

Let’s see how the cosine computes which of the words apricot or digital is closer
in meaning to information, just using raw counts from the following simplified table:

large data computer
apricot 2 0 0
digital 0 1 2

information 1 6 1

cos(apricot, information) =
2+0+0p

4+0+0
p

1+36+1
=

2
2
p

38
= .16

cos(digital, information) =
0+6+2p

0+1+4
p

1+36+1
=

8p
38
p

5
= .58 (6.11)

The model decides that information is closer to digital than it is to apricot, a
result that seems sensible. Fig. 6.7 shows a visualization.

6.5 TF-IDF: Weighing terms in the vector

The co-occurrence matrix in Fig. 6.5 represented each cell by the raw frequency of
the co-occurrence of two words.

It turns out, however, that simple frequency isn’t the best measure of association
between words. One problem is that raw frequency is very skewed and not very
discriminative. If we want to know what kinds of contexts are shared by apricot and
pineapple but not by digital and information, we’re not going to get good discrimi-
nation from words like the, it, or they, which occur frequently with all sorts of words
and aren’t informative about any particular word.

It’s a bit of a paradox. Word that occur nearby frequently (maybe sugar appears
often in our corpus near apricot) are more important than words that only appear

Cosine examples
pie data computer

cherry 442 8 2
digital 5 1683 1670
information 5 3982 3325

74

cos(v, w) =
v • w
v w

=
v
v
•
w
w
=

viwii=1

N
∑
vi
2

i=1

N
∑ wi

2
i=1

N
∑

6.4 • COSINE FOR MEASURING SIMILARITY 11

This raw dot product, however, has a problem as a similarity metric: it favors
long vectors. The vector length is defined asvector length

|v|=

vuut
NX

i=1

v2
i (6.8)

The dot product is higher if a vector is longer, with higher values in each dimension.
More frequent words have longer vectors, since they tend to co-occur with more
words and have higher co-occurrence values with each of them. The raw dot product
thus will be higher for frequent words. But this is a problem; we’d like a similarity
metric that tells us how similar two words are regardless of their frequency.

The simplest way to modify the dot product to normalize for the vector length is
to divide the dot product by the lengths of each of the two vectors. This normalized
dot product turns out to be the same as the cosine of the angle between the two
vectors, following from the definition of the dot product between two vectors a and
b:

a ·b = |a||b|cosq
a ·b
|a||b| = cosq (6.9)

The cosine similarity metric between two vectors v and w thus can be computed as:cosine

cosine(v,w) =
v ·w
|v||w| =

NX

i=1

viwi

vuut
NX

i=1

v2
i

vuut
NX

i=1

w2
i

(6.10)

For some applications we pre-normalize each vector, by dividing it by its length,
creating a unit vector of length 1. Thus we could compute a unit vector from a byunit vector
dividing it by |a|. For unit vectors, the dot product is the same as the cosine.

The cosine value ranges from 1 for vectors pointing in the same direction, through
0 for vectors that are orthogonal, to -1 for vectors pointing in opposite directions.
But raw frequency values are non-negative, so the cosine for these vectors ranges
from 0–1.

Let’s see how the cosine computes which of the words cherry or digital is closer
in meaning to information, just using raw counts from the following shortened table:

pie data computer
cherry 442 8 2
digital 5 1683 1670

information 5 3982 3325

cos(cherry, information) =
442⇤5+8⇤3982+2⇤3325p

4422 +82 +22
p

52 +39822 +33252
= .017

cos(digital, information) =
5⇤5+1683⇤3982+1670⇤3325p

52 +16832 +16702
p

52 +39822 +33252
= .996

The model decides that information is way closer to digital than it is to cherry, a
result that seems sensible. Fig. 6.7 shows a visualization.

6.4 • COSINE FOR MEASURING SIMILARITY 11

This raw dot product, however, has a problem as a similarity metric: it favors
long vectors. The vector length is defined asvector length

|v|=

vuut
NX

i=1

v2
i (6.8)

The dot product is higher if a vector is longer, with higher values in each dimension.
More frequent words have longer vectors, since they tend to co-occur with more
words and have higher co-occurrence values with each of them. The raw dot product
thus will be higher for frequent words. But this is a problem; we’d like a similarity
metric that tells us how similar two words are regardless of their frequency.

The simplest way to modify the dot product to normalize for the vector length is
to divide the dot product by the lengths of each of the two vectors. This normalized
dot product turns out to be the same as the cosine of the angle between the two
vectors, following from the definition of the dot product between two vectors a and
b:

a ·b = |a||b|cosq
a ·b
|a||b| = cosq (6.9)

The cosine similarity metric between two vectors v and w thus can be computed as:cosine

cosine(v,w) =
v ·w
|v||w| =

NX

i=1

viwi

vuut
NX

i=1

v2
i

vuut
NX

i=1

w2
i

(6.10)

For some applications we pre-normalize each vector, by dividing it by its length,
creating a unit vector of length 1. Thus we could compute a unit vector from a byunit vector
dividing it by |a|. For unit vectors, the dot product is the same as the cosine.

The cosine value ranges from 1 for vectors pointing in the same direction, through
0 for vectors that are orthogonal, to -1 for vectors pointing in opposite directions.
But raw frequency values are non-negative, so the cosine for these vectors ranges
from 0–1.

Let’s see how the cosine computes which of the words cherry or digital is closer
in meaning to information, just using raw counts from the following shortened table:

pie data computer
cherry 442 8 2
digital 5 1683 1670

information 5 3982 3325

cos(cherry, information) =
442⇤5+8⇤3982+2⇤3325p

4422 +82 +22
p

52 +39822 +33252
= .017

cos(digital, information) =
5⇤5+1683⇤3982+1670⇤3325p

52 +16832 +16702
p

52 +39822 +33252
= .996

The model decides that information is way closer to digital than it is to cherry, a
result that seems sensible. Fig. 6.7 shows a visualization.

6.4 • COSINE FOR MEASURING SIMILARITY 11

This raw dot product, however, has a problem as a similarity metric: it favors
long vectors. The vector length is defined asvector length

|v|=

vuut
NX

i=1

v2
i (6.8)

The dot product is higher if a vector is longer, with higher values in each dimension.
More frequent words have longer vectors, since they tend to co-occur with more
words and have higher co-occurrence values with each of them. The raw dot product
thus will be higher for frequent words. But this is a problem; we’d like a similarity
metric that tells us how similar two words are regardless of their frequency.

The simplest way to modify the dot product to normalize for the vector length is
to divide the dot product by the lengths of each of the two vectors. This normalized
dot product turns out to be the same as the cosine of the angle between the two
vectors, following from the definition of the dot product between two vectors a and
b:

a ·b = |a||b|cosq
a ·b
|a||b| = cosq (6.9)

The cosine similarity metric between two vectors v and w thus can be computed as:cosine

cosine(v,w) =
v ·w
|v||w| =

NX

i=1

viwi

vuut
NX

i=1

v2
i

vuut
NX

i=1

w2
i

(6.10)

For some applications we pre-normalize each vector, by dividing it by its length,
creating a unit vector of length 1. Thus we could compute a unit vector from a byunit vector
dividing it by |a|. For unit vectors, the dot product is the same as the cosine.

The cosine value ranges from 1 for vectors pointing in the same direction, through
0 for vectors that are orthogonal, to -1 for vectors pointing in opposite directions.
But raw frequency values are non-negative, so the cosine for these vectors ranges
from 0–1.

Let’s see how the cosine computes which of the words cherry or digital is closer
in meaning to information, just using raw counts from the following shortened table:

pie data computer
cherry 442 8 2
digital 5 1683 1670

information 5 3982 3325

cos(cherry, information) =
442⇤5+8⇤3982+2⇤3325p

4422 +82 +22
p

52 +39822 +33252
= .017

cos(digital, information) =
5⇤5+1683⇤3982+1670⇤3325p

52 +16832 +16702
p

52 +39822 +33252
= .996

The model decides that information is way closer to digital than it is to cherry, a
result that seems sensible. Fig. 6.7 shows a visualization.

6.4 • COSINE FOR MEASURING SIMILARITY 11

This raw dot product, however, has a problem as a similarity metric: it favors
long vectors. The vector length is defined asvector length

|v|=

vuut
NX

i=1

v2
i (6.8)

The dot product is higher if a vector is longer, with higher values in each dimension.
More frequent words have longer vectors, since they tend to co-occur with more
words and have higher co-occurrence values with each of them. The raw dot product
thus will be higher for frequent words. But this is a problem; we’d like a similarity
metric that tells us how similar two words are regardless of their frequency.

The simplest way to modify the dot product to normalize for the vector length is
to divide the dot product by the lengths of each of the two vectors. This normalized
dot product turns out to be the same as the cosine of the angle between the two
vectors, following from the definition of the dot product between two vectors a and
b:

a ·b = |a||b|cosq
a ·b
|a||b| = cosq (6.9)

The cosine similarity metric between two vectors v and w thus can be computed as:cosine

cosine(v,w) =
v ·w
|v||w| =

NX

i=1

viwi

vuut
NX

i=1

v2
i

vuut
NX

i=1

w2
i

(6.10)

For some applications we pre-normalize each vector, by dividing it by its length,
creating a unit vector of length 1. Thus we could compute a unit vector from a byunit vector
dividing it by |a|. For unit vectors, the dot product is the same as the cosine.

The cosine value ranges from 1 for vectors pointing in the same direction, through
0 for vectors that are orthogonal, to -1 for vectors pointing in opposite directions.
But raw frequency values are non-negative, so the cosine for these vectors ranges
from 0–1.

Let’s see how the cosine computes which of the words cherry or digital is closer
in meaning to information, just using raw counts from the following shortened table:

pie data computer
cherry 442 8 2
digital 5 1683 1670

information 5 3982 3325

cos(cherry, information) =
442⇤5+8⇤3982+2⇤3325p

4422 +82 +22
p

52 +39822 +33252
= .017

cos(digital, information) =
5⇤5+1683⇤3982+1670⇤3325p

52 +16832 +16702
p

52 +39822 +33252
= .996

The model decides that information is way closer to digital than it is to cherry, a
result that seems sensible. Fig. 6.7 shows a visualization.

Visualizing cosines
(well, angles)12 CHAPTER 6 • VECTOR SEMANTICS AND EMBEDDINGS

500 1000 1500 2000 2500 3000

500

digital
cherry

information

D
im

en
si

on
 1

: ‘
pi

e’

Dimension 2: ‘computer’

Figure 6.7 A (rough) graphical demonstration of cosine similarity, showing vectors for
three words (cherry, digital, and information) in the two dimensional space defined by counts
of the words computer and pie nearby. Note that the angle between digital and information is
smaller than the angle between cherry and information. When two vectors are more similar,
the cosine is larger but the angle is smaller; the cosine has its maximum (1) when the angle
between two vectors is smallest (0�); the cosine of all other angles is less than 1.

6.5 TF-IDF: Weighing terms in the vector

The co-occurrence matrix in Fig. 6.5 represented each cell by the raw frequency of
the co-occurrence of two words.

It turns out, however, that simple frequency isn’t the best measure of association
between words. One problem is that raw frequency is very skewed and not very
discriminative. If we want to know what kinds of contexts are shared by cherry and
strawberry but not by digital and information, we’re not going to get good discrimi-
nation from words like the, it, or they, which occur frequently with all sorts of words
and aren’t informative about any particular word. We saw this also in Fig. 6.3 for
the Shakespeare corpus; the dimension for the word good is not very discrimina-
tive between plays; good is simply a frequent word and has roughly equivalent high
frequencies in each of the plays.

It’s a bit of a paradox. Words that occur nearby frequently (maybe pie nearby
cherry) are more important than words that only appear once or twice. Yet words
that are too frequent—ubiquitous, like the or good— are unimportant. How can we
balance these two conflicting constraints?

The tf-idf algorithm (the ‘-’ here is a hyphen, not a minus sign) is the product
of two terms, each term capturing one of these two intuitions:

The first is the term frequency (Luhn, 1957): the frequency of the word t in theterm frequency

document d. We can just use the raw count as the term frequency:

tft,d = count(t,d) (6.11)

Alternatively we can squash the raw frequency a bit, by using the log10 of the fre-
quency instead. The intuition is that a word appearing 100 times in a document
doesn’t make that word 100 times more likely to be relevant to the meaning of the
document. Because we can’t take the log of 0, we normally add 1 to the count:3

tft,d = log10(count(t,d)+1) (6.12)

If we use log weighting, terms which occur 10 times in a document would have a
tf=2, 100 times in a document tf=3, 1000 times tf=4, and so on.

3 Or we can use this alternative: tft,d =

⇢
1+ log10 count(t,d) if count(t,d)> 0
0 otherwise

Vector
Semantics &
Embeddings

Cosine for computing word
similarity

Vector
Semantics &
Embeddings

TF-IDF

But raw frequency is a bad representa[on

• Frequency is clearly useful; if sugar appears a lot near
apricot, that's useful information.

• But overly frequent words like the, it, or they are not very
informative about the context

• Need a function that resolves this frequency paradox!

Two common solutions for word weighting

tf-idf: tf-idf value for word t in document d:

PMI: (Pointwise mutual information)
◦ PMI 𝒘𝟏, 𝒘𝟐 = 𝒍𝒐𝒈 𝒑(𝒘𝟏,𝒘𝟐)

𝒑 𝒘𝟏 𝒑(𝒘𝟐)

14 CHAPTER 6 • VECTOR SEMANTICS

Collection Frequency Document Frequency
Romeo 113 1
action 113 31

We assign importance to these more discriminative words like Romeo via
the inverse document frequency or idf term weight (Sparck Jones, 1972).idf
The idf is defined using the fraction N/dft , where N is the total number of
documents in the collection, and dft is the number of documents in which
term t occurs. The fewer documents in which a term occurs, the higher this
weight. The lowest weight of 1 is assigned to terms that occur in all the
documents. It’s usually clear what counts as a document: in Shakespeare
we would use a play; when processing a collection of encyclopedia articles
like Wikipedia, the document is a Wikipedia page; in processing newspaper
articles, the document is a single article. Occasionally your corpus might
not have appropriate document divisions and you might need to break up the
corpus into documents yourself for the purposes of computing idf.

Because of the large number of documents in many collections, this mea-
sure is usually squashed with a log function. The resulting definition for in-
verse document frequency (idf) is thus

idft = log10

✓
N
dft

◆
(6.12)

Here are some idf values for some words in the Shakespeare corpus, ranging
from extremely informative words which occur in only one play like Romeo, to
those that occur in a few like salad or Falstaff, to those which are very common like
fool or so common as to be completely non-discriminative since they occur in all 37
plays like good or sweet.3

Word df idf
Romeo 1 1.57
salad 2 1.27
Falstaff 4 0.967
forest 12 0.489
battle 21 0.074
fool 36 0.012
good 37 0
sweet 37 0

The tf-idf weighting of the value for word t in document d, wt,d thus combinestf-idf
term frequency with idf:

wt,d = tft,d ⇥ idft (6.13)

Fig. 6.8 applies tf-idf weighting to the Shakespeare term-document matrix in Fig. 6.2.
Note that the tf-idf values for the dimension corresponding to the word good have
now all become 0; since this word appears in every document, the tf-idf algorithm
leads it to be ignored in any comparison of the plays. Similarly, the word fool, which
appears in 36 out of the 37 plays, has a much lower weight.

The tf-idf weighting is by far the dominant way of weighting co-occurrence ma-
trices in information retrieval, but also plays a role in many other aspects of natural

3 Sweet was one of Shakespeare’s favorite adjectives, a fact probably related to the increased use of
sugar in European recipes around the turn of the 16th century (Jurafsky, 2014, p. 175).

Words like "the" or "good" have very low idf

See if words like "good" appear more often with "great" than
we would expect by chance

Term frequency (tf)

tft,d = count(t,d)

Instead of using raw count, we can squash a bit:

tft,d = log10(count(t,d)+1)

Document frequency (df)

dft is the number of documents t occurs in.
• Note this is not collection frequency, i.e. total count across all

documents.

"Romeo" is very distinctive for one Shakespeare play:

Important: documents can be anything; we can call
each paragraph a document

12 CHAPTER 6 • VECTOR SEMANTICS AND EMBEDDINGS

that are too frequent—ubiquitous, like the or good— are unimportant. How can we
balance these two conflicting constraints?

There are two common solutions to this problem: in this section we’ll describe
the tf-idf algorithm, usually used when the dimensions are documents. In the next
we introduce the PPMI algorithm (usually used when the dimensions are words).

The tf-idf algorithm (the ‘-’ here is a hyphen, not a minus sign) is the product
of two terms, each term capturing one of these two intuitions:

The first is the term frequency (Luhn, 1957): the frequency of the word t in theterm frequency

document d. We can just use the raw count as the term frequency:

tft,d = count(t,d) (6.11)

More commonly we squash the raw frequency a bit, by using the log10 of the fre-
quency instead. The intuition is that a word appearing 100 times in a document
doesn’t make that word 100 times more likely to be relevant to the meaning of the
document. Because we can’t take the log of 0, we normally add 1 to the count:2

tft,d = log10(count(t,d)+1) (6.12)

If we use log weighting, terms which occur 0 times in a document would have
tf = log10(1) = 0, 10 times in a document tf = log10(11) = 1.4, 100 times tf =
log10(101) = 2.004, 1000 times tf = 3.00044, and so on.

The second factor in tf-idf is used to give a higher weight to words that occur
only in a few documents. Terms that are limited to a few documents are useful
for discriminating those documents from the rest of the collection; terms that occur
frequently across the entire collection aren’t as helpful. The document frequencydocument

frequency
dft of a term t is the number of documents it occurs in. Document frequency is
not the same as the collection frequency of a term, which is the total number of
times the word appears in the whole collection in any document. Consider in the
collection of Shakespeare’s 37 plays the two words Romeo and action. The words
have identical collection frequencies (they both occur 113 times in all the plays) but
very different document frequencies, since Romeo only occurs in a single play. If
our goal is to find documents about the romantic tribulations of Romeo, the word
Romeo should be highly weighted, but not action:

Collection Frequency Document Frequency
Romeo 113 1
action 113 31

We emphasize discriminative words like Romeo via the inverse document fre-
quency or idf term weight (Sparck Jones, 1972). The idf is defined using the frac-idf
tion N/dft , where N is the total number of documents in the collection, and dft is
the number of documents in which term t occurs. The fewer documents in which a
term occurs, the higher this weight. The lowest weight of 1 is assigned to terms that
occur in all the documents. It’s usually clear what counts as a document: in Shake-
speare we would use a play; when processing a collection of encyclopedia articles
like Wikipedia, the document is a Wikipedia page; in processing newspaper articles,
the document is a single article. Occasionally your corpus might not have appropri-
ate document divisions and you might need to break up the corpus into documents
yourself for the purposes of computing idf.

2 Or we can use this alternative: tft,d =

⇢
1+ log10 count(t,d) if count(t,d)> 0
0 otherwise

Inverse document frequency (idf)

6.5 • TF-IDF: WEIGHING TERMS IN THE VECTOR 13

Because of the large number of documents in many collections, this measure
too is usually squashed with a log function. The resulting definition for inverse
document frequency (idf) is thus

idft = log10

✓
N
dft

◆
(6.13)

Here are some idf values for some words in the Shakespeare corpus, ranging from
extremely informative words which occur in only one play like Romeo, to those that
occur in a few like salad or Falstaff, to those which are very common like fool or so
common as to be completely non-discriminative since they occur in all 37 plays like
good or sweet.3

Word df idf
Romeo 1 1.57
salad 2 1.27
Falstaff 4 0.967
forest 12 0.489
battle 21 0.246
wit 34 0.037
fool 36 0.012
good 37 0
sweet 37 0

The tf-idf weighted value wt,d for word t in document d thus combines termtf-idf
frequency tft,d (defined either by Eq. 6.11 or by Eq. 6.12) with idf from Eq. 6.13:

wt,d = tft,d ⇥ idft (6.14)

Fig. 6.9 applies tf-idf weighting to the Shakespeare term-document matrix in Fig. 6.2,
using the tf equation Eq. 6.12. Note that the tf-idf values for the dimension corre-
sponding to the word good have now all become 0; since this word appears in every
document, the tf-idf algorithm leads it to be ignored. Similarly, the word fool, which
appears in 36 out of the 37 plays, has a much lower weight.

As You Like It Twelfth Night Julius Caesar Henry V
battle 0.074 0 0.22 0.28
good 0 0 0 0
fool 0.019 0.021 0.0036 0.0083
wit 0.049 0.044 0.018 0.022

Figure 6.9 A tf-idf weighted term-document matrix for four words in four Shakespeare
plays, using the counts in Fig. 6.2. For example the 0.049 value for wit in As You Like It is
the product of tf = log10(20+ 1) = 1.322 and idf = .037. Note that the idf weighting has
eliminated the importance of the ubiquitous word good and vastly reduced the impact of the
almost-ubiquitous word fool.

The tf-idf weighting is the way for weighting co-occurrence matrices in infor-
mation retrieval, but also plays a role in many other aspects of natural language
processing. It’s also a great baseline, the simple thing to try first. We’ll look at other
weightings like PPMI (Positive Pointwise Mutual Information) in Section 6.6.

3 Sweet was one of Shakespeare’s favorite adjectives, a fact probably related to the increased use of
sugar in European recipes around the turn of the 16th century (Jurafsky, 2014, p. 175).

6.5 • TF-IDF: WEIGHING TERMS IN THE VECTOR 13

Because of the large number of documents in many collections, this measure
too is usually squashed with a log function. The resulting definition for inverse
document frequency (idf) is thus

idft = log10

✓
N
dft

◆
(6.13)

Here are some idf values for some words in the Shakespeare corpus, ranging from
extremely informative words which occur in only one play like Romeo, to those that
occur in a few like salad or Falstaff, to those which are very common like fool or so
common as to be completely non-discriminative since they occur in all 37 plays like
good or sweet.3

Word df idf
Romeo 1 1.57
salad 2 1.27
Falstaff 4 0.967
forest 12 0.489
battle 21 0.246
wit 34 0.037
fool 36 0.012
good 37 0
sweet 37 0

The tf-idf weighted value wt,d for word t in document d thus combines termtf-idf
frequency tft,d (defined either by Eq. 6.11 or by Eq. 6.12) with idf from Eq. 6.13:

wt,d = tft,d ⇥ idft (6.14)

Fig. 6.9 applies tf-idf weighting to the Shakespeare term-document matrix in Fig. 6.2,
using the tf equation Eq. 6.12. Note that the tf-idf values for the dimension corre-
sponding to the word good have now all become 0; since this word appears in every
document, the tf-idf algorithm leads it to be ignored. Similarly, the word fool, which
appears in 36 out of the 37 plays, has a much lower weight.

As You Like It Twelfth Night Julius Caesar Henry V
battle 0.074 0 0.22 0.28
good 0 0 0 0
fool 0.019 0.021 0.0036 0.0083
wit 0.049 0.044 0.018 0.022

Figure 6.9 A tf-idf weighted term-document matrix for four words in four Shakespeare
plays, using the counts in Fig. 6.2. For example the 0.049 value for wit in As You Like It is
the product of tf = log10(20+ 1) = 1.322 and idf = .037. Note that the idf weighting has
eliminated the importance of the ubiquitous word good and vastly reduced the impact of the
almost-ubiquitous word fool.

The tf-idf weighting is the way for weighting co-occurrence matrices in infor-
mation retrieval, but also plays a role in many other aspects of natural language
processing. It’s also a great baseline, the simple thing to try first. We’ll look at other
weightings like PPMI (Positive Pointwise Mutual Information) in Section 6.6.

3 Sweet was one of Shakespeare’s favorite adjectives, a fact probably related to the increased use of
sugar in European recipes around the turn of the 16th century (Jurafsky, 2014, p. 175).

N is the total number of documents
in the collection (37 docs)

Final tf-idf weighted value for a word

Raw counts:

Tf-idf:

6.5 • TF-IDF: WEIGHING TERMS IN THE VECTOR 13

Because of the large number of documents in many collections, this measure
too is usually squashed with a log function. The resulting definition for inverse
document frequency (idf) is thus

idft = log10

✓
N
dft

◆
(6.13)

Here are some idf values for some words in the Shakespeare corpus, ranging from
extremely informative words which occur in only one play like Romeo, to those that
occur in a few like salad or Falstaff, to those which are very common like fool or so
common as to be completely non-discriminative since they occur in all 37 plays like
good or sweet.3

Word df idf
Romeo 1 1.57
salad 2 1.27
Falstaff 4 0.967
forest 12 0.489
battle 21 0.246
wit 34 0.037
fool 36 0.012
good 37 0
sweet 37 0

The tf-idf weighted value wt,d for word t in document d thus combines termtf-idf
frequency tft,d (defined either by Eq. 6.11 or by Eq. 6.12) with idf from Eq. 6.13:

wt,d = tft,d ⇥ idft (6.14)

Fig. 6.9 applies tf-idf weighting to the Shakespeare term-document matrix in Fig. 6.2,
using the tf equation Eq. 6.12. Note that the tf-idf values for the dimension corre-
sponding to the word good have now all become 0; since this word appears in every
document, the tf-idf algorithm leads it to be ignored. Similarly, the word fool, which
appears in 36 out of the 37 plays, has a much lower weight.

As You Like It Twelfth Night Julius Caesar Henry V
battle 0.074 0 0.22 0.28
good 0 0 0 0
fool 0.019 0.021 0.0036 0.0083
wit 0.049 0.044 0.018 0.022

Figure 6.9 A tf-idf weighted term-document matrix for four words in four Shakespeare
plays, using the counts in Fig. 6.2. For example the 0.049 value for wit in As You Like It is
the product of tf = log10(20+ 1) = 1.322 and idf = .037. Note that the idf weighting has
eliminated the importance of the ubiquitous word good and vastly reduced the impact of the
almost-ubiquitous word fool.

The tf-idf weighting is the way for weighting co-occurrence matrices in infor-
mation retrieval, but also plays a role in many other aspects of natural language
processing. It’s also a great baseline, the simple thing to try first. We’ll look at other
weightings like PPMI (Positive Pointwise Mutual Information) in Section 6.6.

3 Sweet was one of Shakespeare’s favorite adjectives, a fact probably related to the increased use of
sugar in European recipes around the turn of the 16th century (Jurafsky, 2014, p. 175).

6.3 • WORDS AND VECTORS 7

As You Like It Twelfth Night Julius Caesar Henry V
battle 1 0 7 13
good 114 80 62 89
fool 36 58 1 4
wit 20 15 2 3

Figure 6.2 The term-document matrix for four words in four Shakespeare plays. Each cell
contains the number of times the (row) word occurs in the (column) document.

represented as a count vector, a column in Fig. 6.3.
To review some basic linear algebra, a vector is, at heart, just a list or array ofvector

numbers. So As You Like It is represented as the list [1,114,36,20] (the first column
vector in Fig. 6.3) and Julius Caesar is represented as the list [7,62,1,2] (the third
column vector). A vector space is a collection of vectors, characterized by theirvector space

dimension. In the example in Fig. 6.3, the document vectors are of dimension 4,dimension
just so they fit on the page; in real term-document matrices, the vectors representing
each document would have dimensionality |V |, the vocabulary size.

The ordering of the numbers in a vector space indicates different meaningful di-
mensions on which documents vary. Thus the first dimension for both these vectors
corresponds to the number of times the word battle occurs, and we can compare
each dimension, noting for example that the vectors for As You Like It and Twelfth
Night have similar values (1 and 0, respectively) for the first dimension.

As You Like It Twelfth Night Julius Caesar Henry V
battle 1 0 7 13
good 114 80 62 89
fool 36 58 1 4
wit 20 15 2 3

Figure 6.3 The term-document matrix for four words in four Shakespeare plays. The red
boxes show that each document is represented as a column vector of length four.

We can think of the vector for a document as a point in |V |-dimensional space;
thus the documents in Fig. 6.3 are points in 4-dimensional space. Since 4-dimensional
spaces are hard to visualize, Fig. 6.4 shows a visualization in two dimensions; we’ve
arbitrarily chosen the dimensions corresponding to the words battle and fool.

5 10 15 20 25 30

5

10

Henry V [4,13]

As You Like It [36,1]

Julius Caesar [1,7]ba
ttl

e

 fool

Twelfth Night [58,0]

15

40

35 40 45 50 55 60

Figure 6.4 A spatial visualization of the document vectors for the four Shakespeare play
documents, showing just two of the dimensions, corresponding to the words battle and fool.
The comedies have high values for the fool dimension and low values for the battle dimension.

Term-document matrices were originally defined as a means of finding similar
documents for the task of document information retrieval. Two documents that are

6.5 • TF-IDF: WEIGHING TERMS IN THE VECTOR 13

Because of the large number of documents in many collections, this measure
too is usually squashed with a log function. The resulting definition for inverse
document frequency (idf) is thus

idft = log10

✓
N
dft

◆
(6.13)

Here are some idf values for some words in the Shakespeare corpus, ranging from
extremely informative words which occur in only one play like Romeo, to those that
occur in a few like salad or Falstaff, to those which are very common like fool or so
common as to be completely non-discriminative since they occur in all 37 plays like
good or sweet.3

Word df idf
Romeo 1 1.57
salad 2 1.27
Falstaff 4 0.967
forest 12 0.489
battle 21 0.246
wit 34 0.037
fool 36 0.012
good 37 0
sweet 37 0

The tf-idf weighted value wt,d for word t in document d thus combines termtf-idf
frequency tft,d (defined either by Eq. 6.11 or by Eq. 6.12) with idf from Eq. 6.13:

wt,d = tft,d ⇥ idft (6.14)

Fig. 6.9 applies tf-idf weighting to the Shakespeare term-document matrix in Fig. 6.2,
using the tf equation Eq. 6.12. Note that the tf-idf values for the dimension corre-
sponding to the word good have now all become 0; since this word appears in every
document, the tf-idf algorithm leads it to be ignored. Similarly, the word fool, which
appears in 36 out of the 37 plays, has a much lower weight.

As You Like It Twelfth Night Julius Caesar Henry V
battle 0.074 0 0.22 0.28
good 0 0 0 0
fool 0.019 0.021 0.0036 0.0083
wit 0.049 0.044 0.018 0.022

Figure 6.9 A tf-idf weighted term-document matrix for four words in four Shakespeare
plays, using the counts in Fig. 6.2. For example the 0.049 value for wit in As You Like It is
the product of tf = log10(20+ 1) = 1.322 and idf = .037. Note that the idf weighting has
eliminated the importance of the ubiquitous word good and vastly reduced the impact of the
almost-ubiquitous word fool.

The tf-idf weighting is the way for weighting co-occurrence matrices in infor-
mation retrieval, but also plays a role in many other aspects of natural language
processing. It’s also a great baseline, the simple thing to try first. We’ll look at other
weightings like PPMI (Positive Pointwise Mutual Information) in Section 6.6.

3 Sweet was one of Shakespeare’s favorite adjectives, a fact probably related to the increased use of
sugar in European recipes around the turn of the 16th century (Jurafsky, 2014, p. 175).

Vector
Semantics &
Embeddings

TF-IDF

Vector
Semantics &
Embeddings

PPMI

Pointwise Mutual Information

Pointwise mutual information:
Do events x and y co-occur more than if they were independent?

PMI between two words: (Church & Hanks 1989)
 Do words x and y co-occur more than if they were independent?

PMI 𝑤𝑜𝑟𝑑!, 𝑤𝑜𝑟𝑑" = log"
𝑃(𝑤𝑜𝑟𝑑!, 𝑤𝑜𝑟𝑑")
𝑃 𝑤𝑜𝑟𝑑! 𝑃(𝑤𝑜𝑟𝑑")

PMI(X,Y) = log2
P(x,y)
P(x)P(y)

Positive Pointwise Mutual Information
◦ PMI ranges from −∞	 to	 + ∞
◦ But the negaFve values are problemaFc

◦ Things are co-occurring less than we expect by chance
◦ Unreliable without enormous corpora

◦ Imagine w1 and w2 whose probability is each 10-6

◦ Hard to be sure p(w1,w2) is significantly different than 10-12
◦ Plus it’s not clear people are good at “unrelatedness”

◦ So we just replace negaFve PMI values by 0
◦ PosiFve PMI (PPMI) between word1 and word2:

PPMI 𝑤𝑜𝑟𝑑!, 𝑤𝑜𝑟𝑑" = max log"
𝑃(𝑤𝑜𝑟𝑑!, 𝑤𝑜𝑟𝑑")
𝑃 𝑤𝑜𝑟𝑑! 𝑃(𝑤𝑜𝑟𝑑")

, 0

Computing PPMI on a term-context matrix

Matrix F with W rows (words) and C columns (contexts)
fij is # of times wi occurs in context (of) cj

88

6.6 • POINTWISE MUTUAL INFORMATION (PMI) 15

context c j. This can be turned into a PPMI matrix where ppmii j gives the PPMI
value of word wi with context c j as follows:

pi j =
fi jPW

i=1
PC

j=1 fi j
pi⇤ =

PC
j=1 fi jPW

i=1
PC

j=1 fi j
p⇤ j =

PW
i=1 fi jPW

i=1
PC

j=1 fi j
(6.19)

PPMIi j = max(log2
pi j

pi⇤p⇤ j
,0) (6.20)

Let’s see some PPMI calculations. We’ll use Fig. 6.10, which repeats Fig. 6.6 plus
all the count marginals, and let’s pretend for ease of calculation that these are the
only words/contexts that matter.

computer data result pie sugar count(w)
cherry 2 8 9 442 25 486

strawberry 0 0 1 60 19 80
digital 1670 1683 85 5 4 3447

information 3325 3982 378 5 13 7703

count(context) 4997 5673 473 512 61 11716
Figure 6.10 Co-occurrence counts for four words in 5 contexts in the Wikipedia corpus,
together with the marginals, pretending for the purpose of this calculation that no other
words/contexts matter.

Thus for example we could compute PPMI(w=information,c=data), assuming
we pretended that Fig. 6.6 encompassed all the relevant word contexts/dimensions,
as follows:

P(w=information,c=data) =
3982
11716

= .3399

P(w=information) =
7703
11716

= .6575

P(c=data) =
5673
11716

= .4842

ppmi(information,data) = log2(.3399/(.6575⇤ .4842)) = .0944

Fig. 6.11 shows the joint probabilities computed from the counts in Fig. 6.10, and
Fig. 6.12 shows the PPMI values. Not surprisingly, cherry and strawberry are highly
associated with both pie and sugar, and data is mildly associated with information.

p(w,context) p(w)
computer data result pie sugar p(w)

cherry 0.0002 0.0007 0.0008 0.0377 0.0021 0.0415
strawberry 0.0000 0.0000 0.0001 0.0051 0.0016 0.0068

digital 0.1425 0.1436 0.0073 0.0004 0.0003 0.2942
information 0.2838 0.3399 0.0323 0.0004 0.0011 0.6575

p(context) 0.4265 0.4842 0.0404 0.0437 0.0052
Figure 6.11 Replacing the counts in Fig. 6.6 with joint probabilities, showing the marginals
around the outside.

PMI has the problem of being biased toward infrequent events; very rare words
tend to have very high PMI values. One way to reduce this bias toward low frequency

pij =
fij

fij
j=1

C

∑
i=1

W

∑
pi* =

fij
j=1

C

∑

fij
j=1

C

∑
i=1

W

∑
p* j =

fij
i=1

W

∑

fij
j=1

C

∑
i=1

W

∑

pmiij = log2
pij

pi*p* j
ppmiij =

pmiij if pmiij > 0

0 otherwise

!
"
#

$#

p(w = information, c = data) =
p(w = information) =
p(c = data) =

89

= .33993982/11716

7703/11716 = .6575

5673/11716 = .4842

pij =
fij

fij
j=1

C

∑
i=1

W

∑

p(wi) =
fij

j=1

C

∑

N
p(cj) =

fij
i=1

W

∑

N

6.6 • POINTWISE MUTUAL INFORMATION (PMI) 15

context c j. This can be turned into a PPMI matrix where ppmii j gives the PPMI
value of word wi with context c j as follows:

pi j =
fi jPW

i=1
PC

j=1 fi j
pi⇤ =

PC
j=1 fi jPW

i=1
PC

j=1 fi j
p⇤ j =

PW
i=1 fi jPW

i=1
PC

j=1 fi j
(6.19)

PPMIi j = max(log2
pi j

pi⇤p⇤ j
,0) (6.20)

Let’s see some PPMI calculations. We’ll use Fig. 6.10, which repeats Fig. 6.6 plus
all the count marginals, and let’s pretend for ease of calculation that these are the
only words/contexts that matter.

computer data result pie sugar count(w)
cherry 2 8 9 442 25 486

strawberry 0 0 1 60 19 80
digital 1670 1683 85 5 4 3447

information 3325 3982 378 5 13 7703

count(context) 4997 5673 473 512 61 11716
Figure 6.10 Co-occurrence counts for four words in 5 contexts in the Wikipedia corpus,
together with the marginals, pretending for the purpose of this calculation that no other
words/contexts matter.

Thus for example we could compute PPMI(w=information,c=data), assuming
we pretended that Fig. 6.6 encompassed all the relevant word contexts/dimensions,
as follows:

P(w=information,c=data) =
3982
11716

= .3399

P(w=information) =
7703
11716

= .6575

P(c=data) =
5673
11716

= .4842

ppmi(information,data) = log2(.3399/(.6575⇤ .4842)) = .0944

Fig. 6.11 shows the joint probabilities computed from the counts in Fig. 6.10, and
Fig. 6.12 shows the PPMI values. Not surprisingly, cherry and strawberry are highly
associated with both pie and sugar, and data is mildly associated with information.

p(w,context) p(w)
computer data result pie sugar p(w)

cherry 0.0002 0.0007 0.0008 0.0377 0.0021 0.0415
strawberry 0.0000 0.0000 0.0001 0.0051 0.0016 0.0068

digital 0.1425 0.1436 0.0073 0.0004 0.0003 0.2942
information 0.2838 0.3399 0.0323 0.0004 0.0011 0.6575

p(context) 0.4265 0.4842 0.0404 0.0437 0.0052
Figure 6.11 Replacing the counts in Fig. 6.6 with joint probabilities, showing the marginals
around the outside.

PMI has the problem of being biased toward infrequent events; very rare words
tend to have very high PMI values. One way to reduce this bias toward low frequency

6.6 • POINTWISE MUTUAL INFORMATION (PMI) 15

context c j. This can be turned into a PPMI matrix where ppmii j gives the PPMI
value of word wi with context c j as follows:

pi j =
fi jPW

i=1
PC

j=1 fi j
pi⇤ =

PC
j=1 fi jPW

i=1
PC

j=1 fi j
p⇤ j =

PW
i=1 fi jPW

i=1
PC

j=1 fi j
(6.19)

PPMIi j = max(log2
pi j

pi⇤p⇤ j
,0) (6.20)

Let’s see some PPMI calculations. We’ll use Fig. 6.10, which repeats Fig. 6.6 plus
all the count marginals, and let’s pretend for ease of calculation that these are the
only words/contexts that matter.

computer data result pie sugar count(w)
cherry 2 8 9 442 25 486

strawberry 0 0 1 60 19 80
digital 1670 1683 85 5 4 3447

information 3325 3982 378 5 13 7703

count(context) 4997 5673 473 512 61 11716
Figure 6.10 Co-occurrence counts for four words in 5 contexts in the Wikipedia corpus,
together with the marginals, pretending for the purpose of this calculation that no other
words/contexts matter.

Thus for example we could compute PPMI(w=information,c=data), assuming
we pretended that Fig. 6.6 encompassed all the relevant word contexts/dimensions,
as follows:

P(w=information,c=data) =
3982
11716

= .3399

P(w=information) =
7703
11716

= .6575

P(c=data) =
5673
11716

= .4842

ppmi(information,data) = log2(.3399/(.6575⇤ .4842)) = .0944

Fig. 6.11 shows the joint probabilities computed from the counts in Fig. 6.10, and
Fig. 6.12 shows the PPMI values. Not surprisingly, cherry and strawberry are highly
associated with both pie and sugar, and data is mildly associated with information.

p(w,context) p(w)
computer data result pie sugar p(w)

cherry 0.0002 0.0007 0.0008 0.0377 0.0021 0.0415
strawberry 0.0000 0.0000 0.0001 0.0051 0.0016 0.0068

digital 0.1425 0.1436 0.0073 0.0004 0.0003 0.2942
information 0.2838 0.3399 0.0323 0.0004 0.0011 0.6575

p(context) 0.4265 0.4842 0.0404 0.0437 0.0052
Figure 6.11 Replacing the counts in Fig. 6.6 with joint probabilities, showing the marginals
around the outside.

PMI has the problem of being biased toward infrequent events; very rare words
tend to have very high PMI values. One way to reduce this bias toward low frequency

90

pmiij = log2
pij

pi*p* j

pmi(information, data) = log2 (.3399 / (.6575*.4842)) = .0944

6.6 • POINTWISE MUTUAL INFORMATION (PMI) 15

context c j. This can be turned into a PPMI matrix where ppmii j gives the PPMI
value of word wi with context c j as follows:

pi j =
fi jPW

i=1
PC

j=1 fi j
pi⇤ =

PC
j=1 fi jPW

i=1
PC

j=1 fi j
p⇤ j =

PW
i=1 fi jPW

i=1
PC

j=1 fi j
(6.19)

PPMIi j = max(log2
pi j

pi⇤p⇤ j
,0) (6.20)

Let’s see some PPMI calculations. We’ll use Fig. 6.10, which repeats Fig. 6.6 plus
all the count marginals, and let’s pretend for ease of calculation that these are the
only words/contexts that matter.

computer data result pie sugar count(w)
cherry 2 8 9 442 25 486

strawberry 0 0 1 60 19 80
digital 1670 1683 85 5 4 3447

information 3325 3982 378 5 13 7703

count(context) 4997 5673 473 512 61 11716
Figure 6.10 Co-occurrence counts for four words in 5 contexts in the Wikipedia corpus,
together with the marginals, pretending for the purpose of this calculation that no other
words/contexts matter.

Thus for example we could compute PPMI(w=information,c=data), assuming
we pretended that Fig. 6.6 encompassed all the relevant word contexts/dimensions,
as follows:

P(w=information,c=data) =
3982
11716

= .3399

P(w=information) =
7703
11716

= .6575

P(c=data) =
5673
11716

= .4842

ppmi(information,data) = log2(.3399/(.6575⇤ .4842)) = .0944

Fig. 6.11 shows the joint probabilities computed from the counts in Fig. 6.10, and
Fig. 6.12 shows the PPMI values. Not surprisingly, cherry and strawberry are highly
associated with both pie and sugar, and data is mildly associated with information.

p(w,context) p(w)
computer data result pie sugar p(w)

cherry 0.0002 0.0007 0.0008 0.0377 0.0021 0.0415
strawberry 0.0000 0.0000 0.0001 0.0051 0.0016 0.0068

digital 0.1425 0.1436 0.0073 0.0004 0.0003 0.2942
information 0.2838 0.3399 0.0323 0.0004 0.0011 0.6575

p(context) 0.4265 0.4842 0.0404 0.0437 0.0052
Figure 6.11 Replacing the counts in Fig. 6.6 with joint probabilities, showing the marginals
around the outside.

PMI has the problem of being biased toward infrequent events; very rare words
tend to have very high PMI values. One way to reduce this bias toward low frequency

16 CHAPTER 6 • VECTOR SEMANTICS AND EMBEDDINGS

computer data result pie sugar
cherry 0 0 0 4.38 3.30

strawberry 0 0 0 4.10 5.51
digital 0.18 0.01 0 0 0

information 0.02 0.09 0.28 0 0
Figure 6.12 The PPMI matrix showing the association between words and context words,
computed from the counts in Fig. 6.11. Note that most of the 0 PPMI values are ones that had
a negative PMI; for example PMI(cherry,computer) = -6.7, meaning that cherry and computer
co-occur on Wikipedia less often than we would expect by chance, and with PPMI we replace
negative values by zero.

events is to slightly change the computation for P(c), using a different function Pa(c)
that raises the probability of the context word to the power of a:

PPMIa(w,c) = max(log2
P(w,c)

P(w)Pa(c)
,0) (6.21)

Pa(c) =
count(c)a

P
c count(c)a (6.22)

Levy et al. (2015) found that a setting of a = 0.75 improved performance of
embeddings on a wide range of tasks (drawing on a similar weighting used for skip-
grams described below in Eq. 6.32). This works because raising the count to a =
0.75 increases the probability assigned to rare contexts, and hence lowers their PMI
(Pa(c)> P(c) when c is rare).

Another possible solution is Laplace smoothing: Before computing PMI, a small
constant k (values of 0.1-3 are common) is added to each of the counts, shrinking
(discounting) all the non-zero values. The larger the k, the more the non-zero counts
are discounted.

6.7 Applications of the tf-idf or PPMI vector models

In summary, the vector semantics model we’ve described so far represents a target
word as a vector with dimensions corresponding either to to the documents in a large
collection (the term-document matrix) or to the counts of words in some neighboring
window (the term-term matrix). The values in each dimension are counts, weighted
by tf-idf (for term-document matrices) or PPMI (for term-term matrices), and the
vectors are sparse (since most values are zero).

The model computes the similarity between two words x and y by taking the
cosine of their tf-idf or PPMI vectors; high cosine, high similarity. This entire model
is sometimes referred to as the tf-idf model or the PPMI model, after the weighting
function.

The tf-idf model of meaning is often used for document functions like deciding
if two documents are similar. We represent a document by taking the vectors of
all the words in the document, and computing the centroid of all those vectors.centroid
The centroid is the multidimensional version of the mean; the centroid of a set of
vectors is a single vector that has the minimum sum of squared distances to each of
the vectors in the set. Given k word vectors w1,w2, ...,wk, the centroid document
vector d is:document

vector

d =
w1 +w2 + ...+wk

k
(6.23)

Resulting PPMI matrix (negatives replaced by 0)

Weighting PMI

PMI is biased toward infrequent events
◦ Very rare words have very high PMI values

Two solutions:
◦ Give rare context words slightly higher probabilities
◦ Use add-one smoothing (which has a similar effect)

91

Weighting PMI: Giving rare context words slightly
higher probability

Raise the context probabilities to 𝛼 = 0.75:

This helps because 𝑃# 𝑐 > 𝑃 𝑐 for rare c
Consider two events, P(a) = .99 and P(b)=.01

	 𝑃# 𝑎 = .%%."#

.%%."#&.'!."#
= .97 𝑃# 𝑏 = .'!."#

.'!."#&.'!."#
= .03

92

6 CHAPTER 19 • VECTOR SEMANTICS

p(w,context) p(w)
computer data pinch result sugar p(w)

apricot 0 0 0.5 0 0.5 0.11
pineapple 0 0 0.5 0 0.5 0.11

digital 0.11 0.5 0 0.5 0 0.21
information 0.5 .32 0 0.21 0 0.58

p(context) 0.16 0.37 0.11 0.26 0.11
Figure 19.3 Replacing the counts in Fig. 17.2 with joint probabilities, showing the
marginals around the outside.

computer data pinch result sugar
apricot 0 0 2.25 0 2.25

pineapple 0 0 2.25 0 2.25
digital 1.66 0 0 0 0

information 0 0.57 0 0.47 0
Figure 19.4 The PPMI matrix showing the association between words and context words,
computed from the counts in Fig. 17.2 again showing six dimensions.

PMI has the problem of being biased toward infrequent events; very rare words
tend to have very high PMI values. One way to reduce this bias toward low frequency
events is to slightly change the computation for P(c), using a different function Pa(c)
that raises contexts to the power of a (Levy et al., 2015):

PPMIa(w,c) = max(log2
P(w,c)

P(w)Pa(c)
,0) (19.8)

Pa(c) =
count(c)a

P
c count(c)a (19.9)

Levy et al. (2015) found that a setting of a = 0.75 improved performance of
embeddings on a wide range of tasks (drawing on a similar weighting used for skip-
grams (Mikolov et al., 2013a) and GloVe (Pennington et al., 2014)). This works
because raising the probability to a = 0.75 increases the probability assigned to rare
contexts, and hence lowers their PMI (Pa(c) > P(c) when c is rare).

Another possible solution is Laplace smoothing: Before computing PMI, a small
constant k (values of 0.1-3 are common) is added to each of the counts, shrinking
(discounting) all the non-zero values. The larger the k, the more the non-zero counts
are discounted.

computer data pinch result sugar
apricot 2 2 3 2 3

pineapple 2 2 3 2 3
digital 4 3 2 3 2

information 3 8 2 6 2
Figure 19.5 Laplace (add-2) smoothing of the counts in Fig. 17.2.

19.2.1 Measuring similarity: the cosine
To define similarity between two target words v and w, we need a measure for taking
two such vectors and giving a measure of vector similarity. By far the most common
similarity metric is the cosine of the angle between the vectors. In this section we’ll
motivate and introduce this important measure.

Vector
Seman3cs &
Embeddings

Dense vectors

Sparse versus dense vectors

tf-idf vectors are
◦ long (length |V|= 20,000 to 50,000)
◦ sparse (most elements are zero)

Alternative: learn vectors which are
◦ short (length 50-1000)
◦ dense (most elements are non-zero)

Sparse versus dense vectors

Why dense vectors?
◦ Short vectors may be easier to use as features in machine

learning (fewer weights to tune)
◦ Dense vectors may generalize better than explicit counts
◦ They may do better at capturing synonymy:

◦ car and automobile are synonyms; but are distinct dimensions
◦ a word with car as a neighbor and a word with automobile as a

neighbor should be similar, but aren't
◦ In practice, they work better95

Common methods for getting short dense vectors

“Neural Language Model”-inspired models
◦ Word2vec (skipgram, CBOW), Glove

Singular Value DecomposiKon (SVD)
◦ A special case of this is called LSA – Latent Semanac Analysis

AlternaKve to these "staKc embeddings":
• Contextual Embeddings (ELMo, BERT)
• Compute disanct embeddings for a word in its context
• Separate embeddings for each token of a word
• We'll return to this in a later chapter

Vector
Semantics &
Embeddings

Dense vectors

Vector
Semantics &
Embeddings

Word2vec: The classifier

Embeddings you can download!

Word2vec (Mikolov et al)
https://code.google.com/archive/p/word2vec/

Glove (Pennington, Socher, Manning)
http://nlp.stanford.edu/projects/glove/

https://code.google.com/archive/p/word2vec/
http://nlp.stanford.edu/projects/glove/

Word2vec

Popular embedding method
Very fast to train
Code available on the web
Idea: predict rather than count

Word2vec
Instead of counting how often each word w occurs near "apricot"

◦ Train a classifier on a binary prediction task:
◦ Is w likely to show up near "apricot"?

We don’t actually care about this task
◦ But we'll take the learned classifier weights as the word embeddings

Big idea is self-supervision:
◦ A word c that occurs near apricot in the corpus asks as the gold "correct

answer" for supervised learning
◦ No need for human labels
◦ Bengio et al. (2003); Collobert et al. (2011)

Word2Vec: Skip-Gram Task

Word2vec provides a variety of options. We'll do:

 Skip-gram with negative sampling (SGNS)

Approach: predict if candidate word c is a "neighbor"

1. Treat the target word t and a neighboring context word c
as positive examples.

2. Randomly sample other words in the lexicon to get
negative examples

3. Use logistic regression to train a classifier to distinguish
those two cases

4. Use the learned weights as the embeddings

Skip-Gram Training Data

Assume a +/- 2 word window, given training sentence:

…lemon, a [tablespoon of apricot jam, a] pinch…
 c1 c2 [target] c3 c4

Skip-Gram Classifier
(assuming a +/- 2 word window)

…lemon, a [tablespoon of apricot jam, a] pinch…
 c1 c2 [target] c3 c4

Goal: train a classifier that is given a candidate (word, context) pair
 (apricot, tablespoon) --> positive
 (apricot, aardvark) --> negative
 …
And assigns each pair a probability:
 P(+|w, c)

Similarity is computed from dot product

Remember: two vectors are similar if they have a high
dot product
◦ Cosine is just a normalized dot product

So:
◦ Similarity(w,c) ∝ w · c

We’ll need to normalize to get a probability
◦ (cosine isn't a probability either)

106

Turning dot products into probabilities

Sim(w,c) ≈ w · c
To turn this into a probability
We'll use the sigmoid from logistic regression:

6.8 • WORD2VEC 19

We model the probability that word c is a real context word for target word w as:

P(+|w,c) = s(c ·w) = 1
1+ exp(�c ·w) (6.28)

The sigmoid function returns a number between 0 and 1, but to make it a probability
we’ll also need the total probability of the two possible events (c is a context word,
and c isn’t a context word) to sum to 1. We thus estimate the probability that word c
is not a real context word for w as:

P(�|w,c) = 1�P(+|w,c)

= s(�c ·w) = 1
1+ exp(c ·w) (6.29)

Equation 6.28 gives us the probability for one word, but there are many context
words in the window. Skip-gram makes the simplifying assumption that all context
words are independent, allowing us to just multiply their probabilities:

P(+|w,c1:L) =
LY

i=1

s(�ci ·w) (6.30)

logP(+|w,c1:L) =
LX

i=1

logs(�ci ·w) (6.31)

In summary, skip-gram trains a probabilistic classifier that, given a test target word
w and its context window of L words c1:L, assigns a probability based on how similar
this context window is to the target word. The probability is based on applying the
logistic (sigmoid) function to the dot product of the embeddings of the target word
with each context word. To compute this probability, we just need embeddings for
each target word and context word in the vocabulary.

1

W

C

aardvark

zebra

zebra
aardvark

apricot

apricot

|V|
|V|+1

2V

& =
target words

context & noise
words

…

…

1..d

…

…

Figure 6.13 The embeddings learned by the skipgram model. The algorithm stores two
embeddings for each word, the target embedding (sometimes called the input embedding)
and the context embedding (sometimes called the output embedding). The parameter q that
the algorithm learns is thus a matrix of 2|V | vectors, each of dimension d, formed by concate-
nating two matrices, the target embeddings W and the context+noise embeddings C.

Fig. 6.13 shows the intuition of the parameters we’ll need. Skip-gram actually
stores two embeddings for each word, one for the word as a target, and one for the

6.8 • WORD2VEC 19

We model the probability that word c is a real context word for target word w as:

P(+|w,c) = s(c ·w) = 1
1+ exp(�c ·w) (6.28)

The sigmoid function returns a number between 0 and 1, but to make it a probability
we’ll also need the total probability of the two possible events (c is a context word,
and c isn’t a context word) to sum to 1. We thus estimate the probability that word c
is not a real context word for w as:

P(�|w,c) = 1�P(+|w,c)

= s(�c ·w) = 1
1+ exp(c ·w) (6.29)

Equation 6.28 gives us the probability for one word, but there are many context
words in the window. Skip-gram makes the simplifying assumption that all context
words are independent, allowing us to just multiply their probabilities:

P(+|w,c1:L) =
LY

i=1

s(�ci ·w) (6.30)

logP(+|w,c1:L) =
LX

i=1

logs(�ci ·w) (6.31)

In summary, skip-gram trains a probabilistic classifier that, given a test target word
w and its context window of L words c1:L, assigns a probability based on how similar
this context window is to the target word. The probability is based on applying the
logistic (sigmoid) function to the dot product of the embeddings of the target word
with each context word. To compute this probability, we just need embeddings for
each target word and context word in the vocabulary.

1

W

C

aardvark

zebra

zebra
aardvark

apricot

apricot

|V|
|V|+1

2V

& =
target words

context & noise
words

…

…

1..d

…

…

Figure 6.13 The embeddings learned by the skipgram model. The algorithm stores two
embeddings for each word, the target embedding (sometimes called the input embedding)
and the context embedding (sometimes called the output embedding). The parameter q that
the algorithm learns is thus a matrix of 2|V | vectors, each of dimension d, formed by concate-
nating two matrices, the target embeddings W and the context+noise embeddings C.

Fig. 6.13 shows the intuition of the parameters we’ll need. Skip-gram actually
stores two embeddings for each word, one for the word as a target, and one for the

How Skip-Gram Classifier computes P(+|w, c)

This is for one context word, but we have lots of context words.
We'll assume independence and just multiply them:

6.8 • WORD2VEC 19

We model the probability that word c is a real context word for target word w as:

P(+|w,c) = s(c ·w) = 1
1+ exp(�c ·w) (6.28)

The sigmoid function returns a number between 0 and 1, but to make it a probability
we’ll also need the total probability of the two possible events (c is a context word,
and c isn’t a context word) to sum to 1. We thus estimate the probability that word c
is not a real context word for w as:

P(�|w,c) = 1�P(+|w,c)

= s(�c ·w) = 1
1+ exp(c ·w) (6.29)

Equation 6.28 gives us the probability for one word, but there are many context
words in the window. Skip-gram makes the simplifying assumption that all context
words are independent, allowing us to just multiply their probabilities:

P(+|w,c1:L) =
LY

i=1

s(�ci ·w) (6.30)

logP(+|w,c1:L) =
LX

i=1

logs(�ci ·w) (6.31)

In summary, skip-gram trains a probabilistic classifier that, given a test target word
w and its context window of L words c1:L, assigns a probability based on how similar
this context window is to the target word. The probability is based on applying the
logistic (sigmoid) function to the dot product of the embeddings of the target word
with each context word. To compute this probability, we just need embeddings for
each target word and context word in the vocabulary.

1

W

C

aardvark

zebra

zebra
aardvark

apricot

apricot

|V|
|V|+1

2V

& =
target words

context & noise
words

…

…

1..d

…

…

Figure 6.13 The embeddings learned by the skipgram model. The algorithm stores two
embeddings for each word, the target embedding (sometimes called the input embedding)
and the context embedding (sometimes called the output embedding). The parameter q that
the algorithm learns is thus a matrix of 2|V | vectors, each of dimension d, formed by concate-
nating two matrices, the target embeddings W and the context+noise embeddings C.

Fig. 6.13 shows the intuition of the parameters we’ll need. Skip-gram actually
stores two embeddings for each word, one for the word as a target, and one for the

6.8 • WORD2VEC 19

We model the probability that word c is a real context word for target word w as:

P(+|w,c) = s(c ·w) = 1
1+ exp(�c ·w) (6.28)

The sigmoid function returns a number between 0 and 1, but to make it a probability
we’ll also need the total probability of the two possible events (c is a context word,
and c isn’t a context word) to sum to 1. We thus estimate the probability that word c
is not a real context word for w as:

P(�|w,c) = 1�P(+|w,c)

= s(�c ·w) = 1
1+ exp(c ·w) (6.29)

Equation 6.28 gives us the probability for one word, but there are many context
words in the window. Skip-gram makes the simplifying assumption that all context
words are independent, allowing us to just multiply their probabilities:

P(+|w,c1:L) =
LY

i=1

s(ci ·w) (6.30)

logP(+|w,c1:L) =
LX

i=1

logs(ci ·w) (6.31)

In summary, skip-gram trains a probabilistic classifier that, given a test target word
w and its context window of L words c1:L, assigns a probability based on how similar
this context window is to the target word. The probability is based on applying the
logistic (sigmoid) function to the dot product of the embeddings of the target word
with each context word. To compute this probability, we just need embeddings for
each target word and context word in the vocabulary.

1

W

C

aardvark

zebra

zebra
aardvark

apricot

apricot

|V|
|V|+1

2V

& =
target words

context & noise
words

…

…

1..d

…

…

Figure 6.13 The embeddings learned by the skipgram model. The algorithm stores two
embeddings for each word, the target embedding (sometimes called the input embedding)
and the context embedding (sometimes called the output embedding). The parameter q that
the algorithm learns is thus a matrix of 2|V | vectors, each of dimension d, formed by concate-
nating two matrices, the target embeddings W and the context+noise embeddings C.

Fig. 6.13 shows the intuition of the parameters we’ll need. Skip-gram actually
stores two embeddings for each word, one for the word as a target, and one for the

Skip-gram classifier: summary

A probabilistic classifier that,
• given a test target word w
• its context window of L words c1:L,
assigns a probability that w occurs in this window.

To compute this probability, we just need classifier
weights = embeddings for all the words.

These embeddings we'll need: a set for w, a set for c

1

W

C

aardvark

zebra

zebra
aardvark

apricot

apricot

|V|
|V|+1

2V

& =
target words

context & noise
words

…

…

1..d

…

…

Vector
Semantics &
Embeddings

Word2vec: The classifier

Vector
Semantics &
Embeddings

Word2vec: Learning the
embeddings

Skip-Gram Training data

…lemon, a [tablespoon of apricot jam, a] pinch…
 c1 c2 [target] c3 c4

113

20 CHAPTER 6 • VECTOR SEMANTICS AND EMBEDDINGS

this context window is to the target word. The probability is based on applying the
logistic (sigmoid) function to the dot product of the embeddings of the target word
with each context word. We could thus compute this probability if only we had
embeddings for each target word and context word in the vocabulary. Let’s now turn
to learning these embeddings (which is the real goal of training this classifier in the
first place).

6.8.2 Learning skip-gram embeddings
Word2vec learns embeddings by starting with an initial set of embedding vectors
and then iteratively shifting the embedding of each word w to be more like the em-
beddings of words that occur nearby in texts, and less like the embeddings of words
that don’t occur nearby. Let’s start by considering a single piece of training data:

... lemon, a [tablespoon of apricot jam, a] pinch ...

c1 c2 t c3 c4

This example has a target word t (apricot), and 4 context words in the L = ±2
window, resulting in 4 positive training instances (on the left below):

positive examples +
t c
apricot tablespoon
apricot of
apricot jam
apricot a

negative examples -
t c t c
apricot aardvark apricot seven
apricot my apricot forever
apricot where apricot dear
apricot coaxial apricot if

For training a binary classifier we also need negative examples. In fact skip-
gram uses more negative examples than positive examples (with the ratio between
them set by a parameter k). So for each of these (t,c) training instances we’ll create
k negative samples, each consisting of the target t plus a ‘noise word’. A noise word
is a random word from the lexicon, constrained not to be the target word t. The
right above shows the setting where k = 2, so we’ll have 2 negative examples in the
negative training set � for each positive example t,c.

The noise words are chosen according to their weighted unigram frequency
pa(w), where a is a weight. If we were sampling according to unweighted fre-
quency p(w), it would mean that with unigram probability p(“the”) we would choose
the word the as a noise word, with unigram probability p(“aardvark”) we would
choose aardvark, and so on. But in practice it is common to set a = .75, i.e. use the
weighting p

3
4 (w):

Pa(w) =
count(w)a

P
w0 count(w0)a (6.32)

Setting a = .75 gives better performance because it gives rare noise words slightly
higher probability: for rare words, Pa(w) > P(w). To visualize this intuition, it
might help to work out the probabilities for an example with two events, P(a) = .99
and P(b) = .01:

Pa(a) =
.99.75

.99.75 + .01.75 = .97

Pa(b) =
.01.75

.99.75 + .01.75 = .03 (6.33)

Skip-Gram Training data

…lemon, a [tablespoon of apricot jam, a] pinch…
 c1 c2 [target] c3 c4

114

For each positive
example we'll grab k
negative examples,
sampling by frequency

20 CHAPTER 6 • VECTOR SEMANTICS AND EMBEDDINGS

this context window is to the target word. The probability is based on applying the
logistic (sigmoid) function to the dot product of the embeddings of the target word
with each context word. We could thus compute this probability if only we had
embeddings for each target word and context word in the vocabulary. Let’s now turn
to learning these embeddings (which is the real goal of training this classifier in the
first place).

6.8.2 Learning skip-gram embeddings
Word2vec learns embeddings by starting with an initial set of embedding vectors
and then iteratively shifting the embedding of each word w to be more like the em-
beddings of words that occur nearby in texts, and less like the embeddings of words
that don’t occur nearby. Let’s start by considering a single piece of training data:

... lemon, a [tablespoon of apricot jam, a] pinch ...

c1 c2 t c3 c4

This example has a target word t (apricot), and 4 context words in the L = ±2
window, resulting in 4 positive training instances (on the left below):

positive examples +
t c
apricot tablespoon
apricot of
apricot jam
apricot a

negative examples -
t c t c
apricot aardvark apricot seven
apricot my apricot forever
apricot where apricot dear
apricot coaxial apricot if

For training a binary classifier we also need negative examples. In fact skip-
gram uses more negative examples than positive examples (with the ratio between
them set by a parameter k). So for each of these (t,c) training instances we’ll create
k negative samples, each consisting of the target t plus a ‘noise word’. A noise word
is a random word from the lexicon, constrained not to be the target word t. The
right above shows the setting where k = 2, so we’ll have 2 negative examples in the
negative training set � for each positive example t,c.

The noise words are chosen according to their weighted unigram frequency
pa(w), where a is a weight. If we were sampling according to unweighted fre-
quency p(w), it would mean that with unigram probability p(“the”) we would choose
the word the as a noise word, with unigram probability p(“aardvark”) we would
choose aardvark, and so on. But in practice it is common to set a = .75, i.e. use the
weighting p

3
4 (w):

Pa(w) =
count(w)a

P
w0 count(w0)a (6.32)

Setting a = .75 gives better performance because it gives rare noise words slightly
higher probability: for rare words, Pa(w) > P(w). To visualize this intuition, it
might help to work out the probabilities for an example with two events, P(a) = .99
and P(b) = .01:

Pa(a) =
.99.75

.99.75 + .01.75 = .97

Pa(b) =
.01.75

.99.75 + .01.75 = .03 (6.33)

Skip-Gram Training data

…lemon, a [tablespoon of apricot jam, a] pinch…
 c1 c2 [target] c3 c4

115

20 CHAPTER 6 • VECTOR SEMANTICS AND EMBEDDINGS

this context window is to the target word. The probability is based on applying the
logistic (sigmoid) function to the dot product of the embeddings of the target word
with each context word. We could thus compute this probability if only we had
embeddings for each target word and context word in the vocabulary. Let’s now turn
to learning these embeddings (which is the real goal of training this classifier in the
first place).

6.8.2 Learning skip-gram embeddings
Word2vec learns embeddings by starting with an initial set of embedding vectors
and then iteratively shifting the embedding of each word w to be more like the em-
beddings of words that occur nearby in texts, and less like the embeddings of words
that don’t occur nearby. Let’s start by considering a single piece of training data:

... lemon, a [tablespoon of apricot jam, a] pinch ...

c1 c2 t c3 c4

This example has a target word t (apricot), and 4 context words in the L = ±2
window, resulting in 4 positive training instances (on the left below):

positive examples +
t c
apricot tablespoon
apricot of
apricot jam
apricot a

negative examples -
t c t c
apricot aardvark apricot seven
apricot my apricot forever
apricot where apricot dear
apricot coaxial apricot if

For training a binary classifier we also need negative examples. In fact skip-
gram uses more negative examples than positive examples (with the ratio between
them set by a parameter k). So for each of these (t,c) training instances we’ll create
k negative samples, each consisting of the target t plus a ‘noise word’. A noise word
is a random word from the lexicon, constrained not to be the target word t. The
right above shows the setting where k = 2, so we’ll have 2 negative examples in the
negative training set � for each positive example t,c.

The noise words are chosen according to their weighted unigram frequency
pa(w), where a is a weight. If we were sampling according to unweighted fre-
quency p(w), it would mean that with unigram probability p(“the”) we would choose
the word the as a noise word, with unigram probability p(“aardvark”) we would
choose aardvark, and so on. But in practice it is common to set a = .75, i.e. use the
weighting p

3
4 (w):

Pa(w) =
count(w)a

P
w0 count(w0)a (6.32)

Setting a = .75 gives better performance because it gives rare noise words slightly
higher probability: for rare words, Pa(w) > P(w). To visualize this intuition, it
might help to work out the probabilities for an example with two events, P(a) = .99
and P(b) = .01:

Pa(a) =
.99.75

.99.75 + .01.75 = .97

Pa(b) =
.01.75

.99.75 + .01.75 = .03 (6.33)

20 CHAPTER 6 • VECTOR SEMANTICS AND EMBEDDINGS

this context window is to the target word. The probability is based on applying the
logistic (sigmoid) function to the dot product of the embeddings of the target word
with each context word. We could thus compute this probability if only we had
embeddings for each target word and context word in the vocabulary. Let’s now turn
to learning these embeddings (which is the real goal of training this classifier in the
first place).

6.8.2 Learning skip-gram embeddings
Word2vec learns embeddings by starting with an initial set of embedding vectors
and then iteratively shifting the embedding of each word w to be more like the em-
beddings of words that occur nearby in texts, and less like the embeddings of words
that don’t occur nearby. Let’s start by considering a single piece of training data:

... lemon, a [tablespoon of apricot jam, a] pinch ...

c1 c2 t c3 c4

This example has a target word t (apricot), and 4 context words in the L = ±2
window, resulting in 4 positive training instances (on the left below):

positive examples +
t c
apricot tablespoon
apricot of
apricot jam
apricot a

negative examples -
t c t c
apricot aardvark apricot seven
apricot my apricot forever
apricot where apricot dear
apricot coaxial apricot if

For training a binary classifier we also need negative examples. In fact skip-
gram uses more negative examples than positive examples (with the ratio between
them set by a parameter k). So for each of these (t,c) training instances we’ll create
k negative samples, each consisting of the target t plus a ‘noise word’. A noise word
is a random word from the lexicon, constrained not to be the target word t. The
right above shows the setting where k = 2, so we’ll have 2 negative examples in the
negative training set � for each positive example t,c.

The noise words are chosen according to their weighted unigram frequency
pa(w), where a is a weight. If we were sampling according to unweighted fre-
quency p(w), it would mean that with unigram probability p(“the”) we would choose
the word the as a noise word, with unigram probability p(“aardvark”) we would
choose aardvark, and so on. But in practice it is common to set a = .75, i.e. use the
weighting p

3
4 (w):

Pa(w) =
count(w)a

P
w0 count(w0)a (6.32)

Setting a = .75 gives better performance because it gives rare noise words slightly
higher probability: for rare words, Pa(w) > P(w). To visualize this intuition, it
might help to work out the probabilities for an example with two events, P(a) = .99
and P(b) = .01:

Pa(a) =
.99.75

.99.75 + .01.75 = .97

Pa(b) =
.01.75

.99.75 + .01.75 = .03 (6.33)

Word2vec: how to learn vectors

Given the set of positive and negative training instances,
and an initial set of embedding vectors
The goal of learning is to adjust those word vectors such
that we:

◦ Maximize the similarity of the target word, context word pairs
(w , cpos) drawn from the positive data

◦ Minimize the similarity of the (w , cneg) pairs drawn from the
negative data.

4/4/24 116

Loss function for one w with cpos , cneg1 ...cnegk
Maximize the dot product of the word with the actual context words,
and minimize the dot products of the word with the k negaFve
sampled non-neighbor words.

6.8 • WORD2VEC 21

Given the set of positive and negative training instances, and an initial set of embed-
dings, the goal of the learning algorithm is to adjust those embeddings to

• Maximize the similarity of the target word, context word pairs (w,cpos) drawn
from the positive examples

• Minimize the similarity of the (w,cneg) pairs from the negative examples.
If we consider one word/context pair (w,cpos) with its k noise words cneg1 ...cnegk ,

we can express these two goals as the following loss function L to be minimized
(hence the �); here the first term expresses that we want the classifier to assign the
real context word cpos a high probability of being a neighbor, and the second term
expresses that we want to assign each of the noise words cnegi a high probability of
being a non-neighbor, all multiplied because we assume independence:

LCE = � log

"
P(+|w,cpos)

kY

i=1

P(�|w,cnegi)

#

= �
"

logP(+|w,cpos)+
kX

i=1

logP(�|w,cnegi)

#

= �
"

logP(+|w,cpos)+
kX

i=1

log
�
1�P(+|w,cnegi)

�
#

= �
"

logs(cpos ·w)+
kX

i=1

logs(�cnegi ·w)
#

(6.34)

That is, we want to maximize the dot product of the word with the actual context
words, and minimize the dot products of the word with the k negative sampled non-
neighbor words.

We minimize this loss function using stochastic gradient descent. Fig. 6.14
shows the intuition of one step of learning.

W

C

move apricot and jam closer,
increasing cpos z w

aardvark

move apricot and matrix apart
decreasing cneg1 z w

“…apricot jam…”

w

zebra

zebra

aardvark

jam

apricot

cpos

matrix

Tolstoy move apricot and Tolstoy apart
decreasing cneg2 z w

!
cneg1
cneg2

k=2

Figure 6.14 Intuition of one step of gradient descent. The skip-gram model tries to shift
embeddings so the target embeddings (here for apricot) are closer to (have a higher dot prod-
uct with) context embeddings for nearby words (here jam) and further from (lower dot product
with) context embeddings for noise words that don’t occur nearby (here Tolstoy and matrix).

To get the gradient, we need to take the derivative of Eq. 6.34 with respect to
the different embeddings. It turns out the derivatives are the following (we leave the

Learning the classifier

How to learn?
◦ Stochastic gradient descent!

We’ll adjust the word weights to
◦ make the positive pairs more likely
◦ and the negative pairs less likely,
◦ over the entire training set.

Intuition of one step of gradient descent

W

C

move apricot and jam closer,
increasing cpos z w

aardvark

move apricot and matrix apart
decreasing cneg1 z w

“…apricot jam…”

w

zebra

zebra

aardvark

jam

apricot

cpos

matrix

Tolstoy move apricot and Tolstoy apart
decreasing cneg2 z w

!
cneg1
cneg2

k=2

The derivatives of the loss function22 CHAPTER 6 • VECTOR SEMANTICS AND EMBEDDINGS

proof as an exercise at the end of the chapter):

∂LCE

∂cpos
= [s(cpos ·w)�1]w (6.35)

∂LCE

∂cneg
= [s(cneg ·w)]w (6.36)

∂LCE

∂w
= [s(cpos ·w)�1]cpos +

kX

i=1

[s(cnegi ·w)]cnegi (6.37)

The update equations going from time step t to t + 1 in stochastic gradient descent
are thus:

ct+1
pos = ct

pos �h [s(ct
pos ·w)�1]w (6.38)

ct+1
neg = ct

neg �h [s(ct
neg ·w)]w (6.39)

wt+1 = wt �h [s(cpos ·wt)�1]cpos +
kX

i=1

[s(cnegi ·w
t)]cnegi (6.40)

Just as in logistic regression, then, the learning algorithm starts with randomly ini-
tialized W and C matrices, and then walks through the training corpus using gradient
descent to move W and C so as to maximize the objective in Eq. 6.34 by making the
updates in (Eq. 6.39)-(Eq. 6.40).

Recall that the skip-gram model learns two separate embeddings for each word i:
the target embedding wi and the context embedding ci, stored in two matrices, thetarget

embedding
context

embedding target matrix W and the context matrix C. It’s common to just add them together,
representing word i with the vector wi + ci. Alternatively we can throw away the C
matrix and just represent each word i by the vector wi.

As with the simple count-based methods like tf-idf, the context window size L
affects the performance of skip-gram embeddings, and experiments often tune the
parameter L on a devset.

6.8.3 Other kinds of static embeddings
There are many kinds of static embeddings. An extension of word2vec, fasttextfasttext
(Bojanowski et al., 2017), deals with unknown words and sparsity in languages with
rich morphology, by using subword models. Each word in fasttext is represented as
itself plus a bag of constituent n-grams, with special boundary symbols < and >
added to each word. For example, with n = 3 the word where would be represented
by the sequence <where> plus the character n-grams:

<wh, whe, her, ere, re>

Then a skipgram embedding is learned for each constituent n-gram, and the word
where is represented by the sum of all of the embeddings of its constituent n-grams.
A fasttext open-source library, including pretrained embeddings for 157 languages,
is available at https://fasttext.cc.

The most widely used static embedding model besides word2vec is GloVe (Pen-
nington et al., 2014), short for Global Vectors, because the model is based on cap-
turing global corpus statistics. GloVe is based on ratios of probabilities from the
word-word co-occurrence matrix, combining the intuitions of count-based models
like PPMI while also capturing the linear structures used by methods like word2vec.

6.8 • WORD2VEC 21

Given the set of positive and negative training instances, and an initial set of embed-
dings, the goal of the learning algorithm is to adjust those embeddings to

• Maximize the similarity of the target word, context word pairs (w,cpos) drawn
from the positive examples

• Minimize the similarity of the (w,cneg) pairs from the negative examples.
If we consider one word/context pair (w,cpos) with its k noise words cneg1 ...cnegk ,

we can express these two goals as the following loss function L to be minimized
(hence the �); here the first term expresses that we want the classifier to assign the
real context word cpos a high probability of being a neighbor, and the second term
expresses that we want to assign each of the noise words cnegi a high probability of
being a non-neighbor, all multiplied because we assume independence:

LCE = � log

"
P(+|w,cpos)

kY

i=1

P(�|w,cnegi)

#

= �
"

logP(+|w,cpos)+
kX

i=1

logP(�|w,cnegi)

#

= �
"

logP(+|w,cpos)+
kX

i=1

log
�
1�P(+|w,cnegi)

�
#

= �
"

logs(cpos ·w)+
kX

i=1

logs(�cnegi ·w)
#

(6.34)

That is, we want to maximize the dot product of the word with the actual context
words, and minimize the dot products of the word with the k negative sampled non-
neighbor words.

We minimize this loss function using stochastic gradient descent. Fig. 6.14
shows the intuition of one step of learning.

W

C

move apricot and jam closer,
increasing cpos z w

aardvark

move apricot and matrix apart
decreasing cneg1 z w

“…apricot jam…”

w

zebra

zebra

aardvark

jam

apricot

cpos

matrix

Tolstoy move apricot and Tolstoy apart
decreasing cneg2 z w

!
cneg1
cneg2

k=2

Figure 6.14 Intuition of one step of gradient descent. The skip-gram model tries to shift
embeddings so the target embeddings (here for apricot) are closer to (have a higher dot prod-
uct with) context embeddings for nearby words (here jam) and further from (lower dot product
with) context embeddings for noise words that don’t occur nearby (here Tolstoy and matrix).

To get the gradient, we need to take the derivative of Eq. 6.34 with respect to
the different embeddings. It turns out the derivatives are the following (we leave the

6.8 • WORD2VEC 21

Given the set of positive and negative training instances, and an initial set of embed-
dings, the goal of the learning algorithm is to adjust those embeddings to

• Maximize the similarity of the target word, context word pairs (w,cpos) drawn
from the positive examples

• Minimize the similarity of the (w,cneg) pairs from the negative examples.
If we consider one word/context pair (w,cpos) with its k noise words cneg1 ...cnegk ,

we can express these two goals as the following loss function L to be minimized
(hence the �); here the first term expresses that we want the classifier to assign the
real context word cpos a high probability of being a neighbor, and the second term
expresses that we want to assign each of the noise words cnegi a high probability of
being a non-neighbor, all multiplied because we assume independence:

LCE = � log

"
P(+|w,cpos)

kY

i=1

P(�|w,cnegi)

#

= �
"

logP(+|w,cpos)+
kX

i=1

logP(�|w,cnegi)

#

= �
"

logP(+|w,cpos)+
kX

i=1

log
�
1�P(+|w,cnegi)

�
#

= �
"

logs(cpos ·w)+
kX

i=1

logs(�cnegi ·w)
#

(6.34)

That is, we want to maximize the dot product of the word with the actual context
words, and minimize the dot products of the word with the k negative sampled non-
neighbor words.

We minimize this loss function using stochastic gradient descent. Fig. 6.14
shows the intuition of one step of learning.

W

C

move apricot and jam closer,
increasing cpos z w

aardvark

move apricot and matrix apart
decreasing cneg1 z w

“…apricot jam…”

w

zebra

zebra

aardvark

jam

apricot

cpos

matrix

Tolstoy move apricot and Tolstoy apart
decreasing cneg2 z w

!
cneg1
cneg2

k=2

Figure 6.14 Intuition of one step of gradient descent. The skip-gram model tries to shift
embeddings so the target embeddings (here for apricot) are closer to (have a higher dot prod-
uct with) context embeddings for nearby words (here jam) and further from (lower dot product
with) context embeddings for noise words that don’t occur nearby (here Tolstoy and matrix).

To get the gradient, we need to take the derivative of Eq. 6.34 with respect to
the different embeddings. It turns out the derivatives are the following (we leave the

Update equation in SGD

22 CHAPTER 6 • VECTOR SEMANTICS AND EMBEDDINGS

proof as an exercise at the end of the chapter):

∂LCE

∂cpos
= [s(cpos ·w)�1]w (6.35)

∂LCE

∂cneg
= [s(cneg ·w)]w (6.36)

∂LCE

∂w
= [s(cpos ·w)�1]cpos +

kX

i=1

[s(cnegi ·w)]cnegi (6.37)

The update equations going from time step t to t + 1 in stochastic gradient descent
are thus:

ct+1
pos = ct

pos �h [s(ct
pos ·w)�1]w (6.38)

ct+1
neg = ct

neg �h [s(ct
neg ·w)]w (6.39)

wt+1 = wt �h [s(cpos ·wt)�1]cpos +
kX

i=1

[s(cnegi ·w
t)]cnegi (6.40)

Just as in logistic regression, then, the learning algorithm starts with randomly ini-
tialized W and C matrices, and then walks through the training corpus using gradient
descent to move W and C so as to maximize the objective in Eq. 6.34 by making the
updates in (Eq. 6.39)-(Eq. 6.40).

Recall that the skip-gram model learns two separate embeddings for each word i:
the target embedding wi and the context embedding ci, stored in two matrices, thetarget

embedding
context

embedding target matrix W and the context matrix C. It’s common to just add them together,
representing word i with the vector wi + ci. Alternatively we can throw away the C
matrix and just represent each word i by the vector wi.

As with the simple count-based methods like tf-idf, the context window size L
affects the performance of skip-gram embeddings, and experiments often tune the
parameter L on a devset.

6.8.3 Other kinds of static embeddings
There are many kinds of static embeddings. An extension of word2vec, fasttextfasttext
(Bojanowski et al., 2017), deals with unknown words and sparsity in languages with
rich morphology, by using subword models. Each word in fasttext is represented as
itself plus a bag of constituent n-grams, with special boundary symbols < and >
added to each word. For example, with n = 3 the word where would be represented
by the sequence <where> plus the character n-grams:

<wh, whe, her, ere, re>

Then a skipgram embedding is learned for each constituent n-gram, and the word
where is represented by the sum of all of the embeddings of its constituent n-grams.
A fasttext open-source library, including pretrained embeddings for 157 languages,
is available at https://fasttext.cc.

The most widely used static embedding model besides word2vec is GloVe (Pen-
nington et al., 2014), short for Global Vectors, because the model is based on cap-
turing global corpus statistics. GloVe is based on ratios of probabilities from the
word-word co-occurrence matrix, combining the intuitions of count-based models
like PPMI while also capturing the linear structures used by methods like word2vec.

Start with randomly initiatlzed C and W matrices, then incrementally do updates

Two sets of embeddings

SGNS learns two sets of embeddings
 Target embeddings matrix W
 Context embedding matrix C

It's common to just add them together, represenVng
word i as the vector wi + ci

Summary: How to learn word2vec (skip-gram)
embeddings
Start with V random d-dimentional vectors as initial embeddings

Train a classifier based on embedding similarity
◦ Take a corpus and take pairs of words that co-occur as positive examples
◦ Take pairs of words that don't co-occur as negative examples
◦ Train the classifier to distinguish these by slowly adjusting all the

embeddings to improve the classifier performance
◦ Throw away the classifier code and keep the embeddings.

Vector
Semantics &
Embeddings

Word2vec: Learning the
embeddings

Vector
Semantics &
Embeddings

Properties of Embeddings

The kinds of neighbors depend on window size

Large windows (C= +/- 5) : nearest words are related
words in same seman7c field

◦Hogwarts nearest neighbors are Harry Poier world:
◦Dumbledore, Half-blood, Malfoy

Small windows (C= +/- 2) : nearest words are similar
nouns, words in same taxonomy

◦Hogwarts nearest neighbors are other ficXonal schools
◦Sunnydale, Evernight, Blandings

24 CHAPTER 6 • VECTOR SEMANTICS AND EMBEDDINGS

For example Levy and Goldberg (2014a) showed that using skip-gram with a
window of ±2, the most similar words to the word Hogwarts (from the Harry Potter
series) were names of other fictional schools: Sunnydale (from Buffy the Vampire
Slayer) or Evernight (from a vampire series). With a window of ±5, the most similar
words to Hogwarts were other words topically related to the Harry Potter series:
Dumbledore, Malfoy, and half-blood.

It’s also often useful to distinguish two kinds of similarity or association between
words (Schütze and Pedersen, 1993). Two words have first-order co-occurrencefirst-order

co-occurrence
(sometimes called syntagmatic association) if they are typically nearby each other.
Thus wrote is a first-order associate of book or poem. Two words have second-order
co-occurrence (sometimes called paradigmatic association) if they have similarsecond-order

co-occurrence
neighbors. Thus wrote is a second-order associate of words like said or remarked.

Analogy/Relational Similarity: Another semantic property of embeddings is their
ability to capture relational meanings. In an important early vector space model of
cognition, Rumelhart and Abrahamson (1973) proposed the parallelogram modelparallelogram

model
for solving simple analogy problems of the form a is to b as a* is to what?. In such
problems, a system given a problem like apple:tree::grape:?, i.e., apple is to tree as
grape is to , and must fill in the word vine. In the parallelogram model, illus-
trated in Fig. 6.15, the vector from the word apple to the word tree (=

»
apple� # »tree)

is added to the vector for grape (# »grape); the nearest word to that point is returned.

tree

apple

grape
vine

Figure 6.15 The parallelogram model for analogy problems (Rumelhart and Abrahamson,
1973): the location of

»
vine can be found by subtracting # »tree from

»
apple and adding # »grape.

In early work with sparse embeddings, scholars showed that sparse vector mod-
els of meaning could solve such analogy problems (Turney and Littman, 2005), but
the parallelogram method received more modern attention because of its success
with word2vec or GloVe vectors (Mikolov et al. 2013b, Levy and Goldberg 2014b,
Pennington et al. 2014). For example, the result of the expression (

»
king)� # »man+

»woman is a vector close to # »queen. Similarly,
»
Paris� # »

France+
»
Italy) results in a

vector that is close to
»
Rome. The embedding model thus seems to be extracting rep-

resentations of relations like MALE-FEMALE, or CAPITAL-CITY-OF, or even COM-
PARATIVE/SUPERLATIVE, as shown in Fig. 6.16 from GloVe.

For a a:b::a*:b* problem, meaning the algorithm is given a, b, and a* and must
find b*, the parallelogram method is thus:

b̂⇤ = argmax
x

distance(x,a⇤ �a+b) (6.41)

with the distance function defined either as cosine or as Euclidean distance.
There are some caveats. For example, the closest value returned by the paral-

lelogram algorithm in word2vec or GloVe embedding spaces is usually not in fact
b* but one of the 3 input words or their morphological variants (i.e., cherry:red ::

Analogical relations
The classic parallelogram model of analogical reasoning
(Rumelhart and Abrahamson 1973)

To solve: "apple is to tree as grape is to _____"
Add apple – tree to grape to get vine

Analogical relations via parallelogram

The parallelogram method can solve analogies with
both sparse and dense embeddings (Turney and
Littman 2005, Mikolov et al. 2013b)
 king – man + woman is close to queen
 Paris – France + Italy is close to Rome
For a problem a:a*::b:b*, the parallelogram method is:

24 CHAPTER 6 • VECTOR SEMANTICS AND EMBEDDINGS

For example Levy and Goldberg (2014a) showed that using skip-gram with a
window of ±2, the most similar words to the word Hogwarts (from the Harry Potter
series) were names of other fictional schools: Sunnydale (from Buffy the Vampire
Slayer) or Evernight (from a vampire series). With a window of ±5, the most similar
words to Hogwarts were other words topically related to the Harry Potter series:
Dumbledore, Malfoy, and half-blood.

It’s also often useful to distinguish two kinds of similarity or association between
words (Schütze and Pedersen, 1993). Two words have first-order co-occurrencefirst-order

co-occurrence
(sometimes called syntagmatic association) if they are typically nearby each other.
Thus wrote is a first-order associate of book or poem. Two words have second-order
co-occurrence (sometimes called paradigmatic association) if they have similarsecond-order

co-occurrence
neighbors. Thus wrote is a second-order associate of words like said or remarked.

Analogy/Relational Similarity: Another semantic property of embeddings is their
ability to capture relational meanings. In an important early vector space model of
cognition, Rumelhart and Abrahamson (1973) proposed the parallelogram modelparallelogram

model
for solving simple analogy problems of the form a is to b as a* is to what?. In such
problems, a system given a problem like apple:tree::grape:?, i.e., apple is to tree as
grape is to , and must fill in the word vine. In the parallelogram model, illus-
trated in Fig. 6.15, the vector from the word apple to the word tree (=

»
apple� # »tree)

is added to the vector for grape (# »grape); the nearest word to that point is returned.

tree

apple

grape
vine

Figure 6.15 The parallelogram model for analogy problems (Rumelhart and Abrahamson,
1973): the location of

»
vine can be found by subtracting # »tree from

»
apple and adding # »grape.

In early work with sparse embeddings, scholars showed that sparse vector mod-
els of meaning could solve such analogy problems (Turney and Littman, 2005), but
the parallelogram method received more modern attention because of its success
with word2vec or GloVe vectors (Mikolov et al. 2013b, Levy and Goldberg 2014b,
Pennington et al. 2014). For example, the result of the expression (

»
king)� # »man+

»woman is a vector close to # »queen. Similarly,
»
Paris� # »

France+
»
Italy) results in a

vector that is close to
»
Rome. The embedding model thus seems to be extracting rep-

resentations of relations like MALE-FEMALE, or CAPITAL-CITY-OF, or even COM-
PARATIVE/SUPERLATIVE, as shown in Fig. 6.16 from GloVe.

For a a:b::a*:b* problem, meaning the algorithm is given a, b, and a* and must
find b*, the parallelogram method is thus:

b̂⇤ = argmax
x

distance(x,a⇤ �a+b) (6.41)

with the distance function defined either as cosine or as Euclidean distance.
There are some caveats. For example, the closest value returned by the paral-

lelogram algorithm in word2vec or GloVe embedding spaces is usually not in fact
b* but one of the 3 input words or their morphological variants (i.e., cherry:red ::

argmin

Structure in GloVE Embedding space

Caveats with the parallelogram method

It only seems to work for frequent words, small
distances and certain relaVons (relaVng countries to
capitals, or parts of speech), but not others. (Linzen
2016, Gladkova et al. 2016, Ethayarajh et al. 2019a)

Understanding analogy is an open area of research
(Peterson et al. 2020)

Train embeddings on different decades of historical text to see meanings shift
~30 million books, 1850-1990, Google Books data

Embeddings as a window onto historical semantics

William L. Hamilton, Jure Leskovec, and Dan Jurafsky. 2016. Diachronic Word Embeddings Reveal
Statistical Laws of Semantic Change. Proceedings of ACL.

Embeddings reflect cultural bias!

Ask “Paris : France :: Tokyo : x”
◦ x = Japan

Ask “father : doctor :: mother : x”
◦ x = nurse

Ask “man : computer programmer :: woman : x”
◦ x = homemaker

Bolukbasi, Tolga, Kai-Wei Chang, James Y. Zou, Venkatesh Saligrama, and Adam T. Kalai. "Man is to computer
programmer as woman is to homemaker? debiasing word embeddings." In NeurIPS, pp. 4349-4357. 2016.

Algorithms that use embeddings as part of e.g., hiring searches for
programmers, might lead to bias in hiring

Historical embedding as a tool to study cultural biases

• Compute a gender or ethnic bias for each adjective: e.g., how
much closer the adjective is to "woman" synonyms than
"man" synonyms, or names of particular ethnicities
• Embeddings for competence adjective (smart, wise,

brilliant, resourceful, thoughtful, logical) are biased toward
men, a bias slowly decreasing 1960-1990

• Embeddings for dehumanizing adjectives (barbaric,
monstrous, bizarre) were biased toward Asians in the
1930s, bias decreasing over the 20th century.

• These match the results of old surveys done in the 1930s.

Garg, N., Schiebinger, L., Jurafsky, D., and Zou, J. (2018). Word embeddings quantify 100 years of gender and ethnic stereotypes.
Proceedings of the National Academy of Sciences 115(16), E3635–E3644.

Vector
Semantics &
Embeddings

Supplementary Readings

1. Chapter 6 in J&M.
2. Chapter 14 in Eisenstein.

