One-Hot Vector Representations

Sparse vector representation:

- V is the vocabulary
- Each word w is mapped to a unique id(w) between 1 and |V|. - i.e. the position of the word in the vocabulary.
- Represent a word w using a "one-hot" vector w of length |V|:
- $w[i]=1$, if $i=i d(w)$.
- w[i] = 0, otherwise

Example:

- Suppose id(ocean) $=2$ and id(water) $=4$ and id(laptop) $=5$. Then:

```
- w(ocean) = [0, 1, 0, 0, 0, ..., 0]
```

- $w($ water $)=[0,0,0,1,0, \ldots, 0]$
- \mathbf{w} (laptop $)=[0,0,0,0,1, \ldots, 0]$

Sparse Representations of Words are Problematic for Machine Learning in NLP

1. Document classification:

- Bag-of-words representation:
- each document is the sum of the vectors of all the words in the document, normalized to unit length.
- Suppose we use softmax regression to classify into classes in C.
- A parameter is needed for each (word, class) pair:
- $\quad=>|V| \times|C|$ parameters $=>100 \mathrm{~K} \times 10=>1 \mathrm{M}$ parameters.
- The number of labeled documents needed to train these many parameters may be unfeasible to obtain.
- If voleyball does not appear in the training documents, but is mentioned in the test document, it will be completely ignored:
- Even though voleyball is semantically close to basketball, which appeared many times in training documents from the Sports category.

Vector Semantics \& Embeddings

Word Meaning

What do words mean?

Introductory logic classes:

- The meaning of "dog" is DOG; cat is CAT

$$
\forall x \operatorname{DOG}(x) \longrightarrow \operatorname{MAMMAL}(x)
$$

Old joke by Barbara Partee:

- Q: What's the meaning of life?
- A: LIFE

That seems unsatisfactory!

What do words mean?

Next thought: look in a dictionary

http://www.oed.com/

http://wordnetweb.princeton.edu/perl/webwn

Words, Lemmas, Senses, Definitions

pepper, n.

Pronumctation: bitt. /'pepə/, U.S. /'pepər/
Etymology: A borrowing from Latin. Ekymon: Latin piper
< classical Latin piper, a loanwont < Indo-Aryan (as is ancient freek π / $\tau \varepsilon \rho$)); compare Sar
I. The spice or the plant.
$1<$
a. A hot pungent spice derived from the prepared fruits (peppercorns) of the pepper plant, Piper nigrum coe sense 2a), used from early times to season food, either whole or oround to porder (often in association with salt). Also (locally, chiefly rith distinguishing word): a similar spice derived from the fruity fertain oth species of the genus Piper; the fruits themselves.

The ground spich rom Piper nigrum cones in two forms, the more pungent black pepper, produced
from black pppercorns, and the mild for white pepper, produced from white peppercorns: see black adj. and.Special uses 5a, pepperchkn n. 1a, and white adj. and $n .{ }^{1}$ Special uses $7 \mathrm{~b}(\mathrm{a})$.

a. The plant Piper nifrum (family Piperaceae), a climbing shrub indigenous to Sout/ Asia and also cultivated elsewhere in the tropics, which has altery te stalked entire leaves, with pendulous spikes of small green flowers pposite the leaves, succeeded by small berries turning red when ripe. Also more widely: any plant of the genus Piper or the family Piperaceqe.
(b. Usu. with distinguishing word: any of numerous plants of other tamilies having hot pungent fruits or leaves which resemble pepper (1a) in taste and in some cases are used as a substitute for it.

definition

Forms: OE peopor (rare), OE pipcer (transmission erren), oe pipor, ofpiphe (rare. 1 C. U.S. The California pepper tree, Schinus molle. Cf. PEPPER TREE n. 3
3. Any of various forms of capsicum, esp. Capsicum annuum var. annuum. Originally (chiefly with distinguishing word): any variety of the C. annuum Longum group, with elongated fruits having a hot, pungent taste, the source of cayenne, chilli powder, paprika, etc., or of the perennial C. frutescens, the source of Tabasco sauce. Now frequently (more fully sweet pepper): any variety of the C. annuum Grossum group, with large, bell-shaped or apple-shaped, mild-flavoured fruits, usually ripening to red, orange, or yellow and eaten raw in salads or cooked as a vegetable. Also: the fruit of any of these capsicums.

Sweet peppers are often used in their green immature state (more fully green pepper), but some new varieties remain green when ripe.

Lemma pepper

Sense 1: spice from pepper plant
Sense 2: the pepper plant itself
Sense 3: another similar plant (Jamaican pepper)
Sense 4: another plant with peppercorns (California pepper)
Sense 5: capsicum (i.e. chili, paprika, bell pepper, etc)

A sense or "concept" is the meaning component of a word

Word Sense Disambiguation (WSD)

WSD = mapping a word in context to its correct sense in a dictionary.
I like to season my fries with ground pepper.

1. Sense 1: spice from pepper plant
2. Sense 2: the pepper plant itself
3. Sense 3: another similar plant (Jamaican pepper)
4. Sense 4: another plant with peppercorns (California pepper)
5. Sense 5: capsicum (i.e. chili, paprika, bell pepper, etc)

Word Sense Disambiguation (WSD)

WSD = mapping a word in context to its correct sense in a dictionary.
I like to season my fries with ground pepper.

1. Sense 1: spice from pepper plant
2. Sense 2: the pepper plant itself
3. Sense 3: another similar plant (Jamaican pepper)
4. Sense 4: another plant with peppercorns (California pepper)
5. Sense 5: capsicum (i.e. chili, paprika, bell pepper, etc)

Word Sense Disambiguation (WSD)

WSD = mapping a word in context to its correct sense in a dictionary.
I like to season my fries with ground pepper.

1. Sense 1: spice from pepper plant:

- A hot pungent spice derived from the prepared fruits (peppercorns) of the pepper plant, Piper nigrum (see sense 2a), used from early times to season food, either whole or ground to powder (often in association with salt).

Word Sense Disambiguation (WSD)

WSD = mapping a word in context to its correct sense in a dictionary.
I like to season my fries with ground pepper.

1. Sense 1: spice from pepper plant:

- A hot pungent spice derived from the prepared fruits (peppercorns) of the pepper plant, Piper nigrum (see sense 2a), used from early times to season food, either whole or ground to powder (often in association with salt).

Word Sense Disambiguation (WSD)

- S: (n) french fries, french-fried potatoes fries, chips (strips of potato fried in deep fat)
- direct hypernym / inherited hypernym / sister term
- $\underline{\mathrm{S}}$: (n) potato, white potato, Irish potato, murphy, spud, tater (an edible tuber native to South America; a staple food of Ireland)
- S: (n) root vegetable (any of various fleshy edible underground roots or tubers)
- $\underline{\text { S: }}$ (n) vegetable, veggie, veg (edible seeds or roots or stems or leaves or bulbs or tubers or nonsweet fruits of any of numerous herbaceous plant)
- $\underline{\text { S: }}(\mathrm{n})$ produce, green goods, green groceries, garden truck (fresh fruits and vegetable grown for the market)
- $\underline{\text { S: }}(\mathrm{n}) \underline{\text { food, solid food (any solid substance (as }}$ opposed'to liquid) that is used as a source of nourishment) "food and drink"
- S: (n) solid (matter that is solid at room temperature and pressure)
- $\underline{\text { S: }}(\mathrm{n})$ matter (that which has mass and occupies space) "physicists study both the nature of matter and the forces which govern it"
- S: (n) physical entity (an entity that has physical existence)
- $\underline{\text { S: }}$ (n) entity (that which is

Word Sense Disambiguation (WSD)

- S: (n) salt, table salt, common salt (white crystalline form of especially sodium chloride used to season and preserve food)
- direct hypernym / inherited hypernym / sister term
- $\underline{\text { S: }} \mathrm{n}$) flavorer, flavourer, flavoring, flavouring, seasoner, seasoning (something added to food primarily for the savor it imparts)
- \underline{S} : (n) ingredient, fixings (food that is a component of a mixture in cooking) "the recipe lists all the fixings for a salad"
- S: (n) foodstuff, food product (a substance that can be used or prepared for use as food)
- S: (nffood, nutrient (any substance that can be metabolized by an animal to give energy and build tissue)
- S: (n) substance (a particular kind or species of matter with uniform properties) "shigella is one of the most toxic substances known to man"
- $\underline{\text { S: }}$ (n) matter (that which has mass and occupies space) "physicists study both the nature of matter and the forces which govern it"
- $\underline{\text { S: }}$ (n) physical entity (an entity that has physical existence)
- S: (n) entity (that which is

Relations between senses: Synonymy

Synonyms have the same meaning in some or all contexts.

- filbert / hazelnut
- couch / sofa
- big / large
- automobile / car
- vomit / throw up
- water / $\mathrm{H}_{2} \mathrm{O}$

Relation: Synonymy

Note that there are probably no examples of perfect synonymy.

- Even if many aspects of meaning are identical
- Still may not preserve the acceptability based on notions of politeness, slang, register, genre, etc.

Relation: Synonymy?

water / $\mathrm{H}_{2} \mathrm{O}$
big / large
brave / courageous
strong / powerful

The Linguistic Principle of Contrast

Difference in form => difference in meaning

Abbé Gabriel Girard 1718

LA' JUSTESSE
 DE LA

LANGUE FRANÇOISE,
$\circ v$
LES DIfFERENTES SIGNIFICATIONS
DESMOTS QUIPASSENT
POUR
SYNONIMES:
ParM.l'Abbé GIRARD C.D.M.D.D.B.

A. PARIS,

Chez Laurent d'Houry, Imprimeur-
L-braire, au bas de ta rue dela Harpe, vis. à vis la rue S . Scverini, au Saint Efprir.

M DCC. XVIII.
Aves Approbatuon in Erivilegs $d_{2 s}$ Roy.

Relation: Similarity

Words with similar meanings. Not synonyms, but sharing some element of meaning
car, bicycle
cow, horse

Ask humans how similar 2 words are

word1	word2	similarity
vanish	disappear	9.8
behave	obey	7.3
belief	impression	5.95
muscle	bone	3.65
modest	flexible	0.98
hole	agreement	0.3

Relation: Word relatedness

Also called "word association".
Words can be related in any way, perhaps via a semantic frame or field:

- car, bicycle: similar
- car, gasoline: related, not similar
- See also FrameNet:
- https://framenet.icsi.berkeley.edu/
- https://en.wikipedia.org/wiki/FrameNet

Semantic field

Words that:

- cover a particular semantic domain.
- bear structured relations with each other.

hospitals

surgeon, scalpel, nurse, anaesthetic, hospital restaurants
waiter, menu, plate, food, menu, chef
houses
door, roof, kitchen, family, bed

Relation: Antonymy

Senses that are opposites with respect to only one feature of meaning.

Otherwise, they are very similar!
dark/light short/long fast/slow rise/fall
hot/cold up/down in/out

More formally: antonyms can

- define a binary opposition or be at opposite ends of a scale
- long/short, fast/slow
- Be reversives:

```
- rise/fall, up/down
```


Relation: Superordinate/ subordinate

One sense is a subordinate of another if the first sense is more specific, denoting a subclass of the other

- car is a subordinate of vehicle
- mango is a subordinate of fruit

Conversely superordinate

- vehicle is a superordinate of car
- fruit is a subodinate of mango

Superordinate	vehicle	fruit	furniture
Subordinate	car	mango	chair

These levels are not symmetric

- Subordinate is the antonym (reverse) of superordinate.
- They lead to a tree of senses.

One categorization level is distinguished from the others:

- The basic level.

An animal sleeps on the couch.

A cat sleeps on the couch.

A white Persian cat sleeps on the couch.

A cat sleeps on the piece of furniture.
A cat sleeps on the couch.

A cat sleeps on the white leather couch.

Name these items

Superordinate Basic Subordinate

Cluster of Interactional Properties

Basic level things are "human-sized"
Consider chairs

- We know how to interact with a chair (sit)
- Not so clear for superordinate categories like furniture
- "Imagine a furniture without thinking of a bed/table/chair/specific basic-level category"

The basic level

Distinctive actions
Learned earliest in childhood
Names are shortest
Names are most frequent

Connotation (sentiment)

Words have affective meanings:

- positive connotations (happy)
- negative connotations (sad)
- positive evaluation (great, love)
- negative evaluation (terrible, hate).

Connotation

[Osgood et al. (1957)]
Words seem to vary along 3 affective dimensions:

- valence: the pleasantness of the stimulus (e.g.: unhappy vs. happy)
- arousal: the intensity of emotion provoked by the stimulus (excited vs. calm)
- dominance: the degree of control exerted by the stimulus (controlling vs. awed)

	Valence	Arousal	Dominance
courageous	8.05	5.5	7.38
music	7.67	5.57	6.5
heartbreak	2.45	5.65	3.58
cub	6.71	3.95	4.24

So far

Concepts or word senses

- Have a complex many-to-many association with words (homonymy, multiple senses)
Have relations with each other
- Synonymy
- Antonymy
- Similarity
- Relatedness
- Superordinate/subordinate, basic level
- Connotation

What do words mean?

Look in a dictionary:
http://www.oed.com/
http://wordnetweb.princeton.edu/perl/webwn

Lemma pepper

Sense 1: spice from pepper plant
Sense 2: the pepper plant itself
Sense 3: another similar plant (Jamaican pepper)
Sense 4: another plant with peppercorns (California pepper)
Sense 5: capsicum (i.e. chili, paprika, bell pepper, etc)

- Words are defined using words which are defined using words which are defined using words ...
- Recursive definition => use recursive algorithms for finding representations of word meaning?

Vector Semantics \& Embeddings

Word Meaning

Vector Semantics \& Embeddings

It's hard to define a concept

But how to define a concept?

Classical ("Aristotelian") Theory of Concepts

The meaning of a word:
a concept defined by necessary and sufficient conditions
A necessary condition for being an X is a condition C that X must satisfy in order for it to be an X .

- If not C, then not X
- "Having four sides" is necessary to be a square.

A sufficient condition for being an X is condition such that if something satisfies condition C , then it must be an X .

- If and only if C, then X
- The following necessary conditions, jointly, are sufficient to be a square - x has (exactly) four sides
- each of x 's sides is straight
- x is a closed figure

Example

- x lies in a plane
- each of x 's sides is equal in length to each of the others from
- each of x 's interior angles is equal to the others (right angles)
- the sides of x are joined at their ends

Problem 1: The features are complex \& may be context-dependent

William Labov. 1975

What are these?
Cup or bowl?

The category depends on complex features of the object (diameter, etc)

The category depends on the context!
(If there is food in it, it's a bowl)

Labov's definition of cup

The term cup is used to denote round containers with a ratio of depth to width of $1 \pm \mathrm{r}$ where $\mathrm{r} \leq \mathrm{r}_{\mathrm{b}}$, and $\mathrm{r}_{\mathrm{b}}=\alpha_{1}+\alpha_{2}+\ldots \alpha_{0}$ and α_{1} is a positive quality when the feature i is present and 0 otherwise.

```
feature 1 = with one handle
    2= made of opaque vitreous material
    3 = used for consumption of food
    4 used for the consumption of liquid food
    5 used for consumption of hot liquid food
    6 = with a saucer
    7 = tapering
    8= circular in cross-section
```

Cup is used variably to denote such containers with ratios width to depth $1 \pm \mathrm{r}$ where $\mathrm{r}_{\mathrm{b}} \leq \mathrm{r} \leq \mathrm{r}_{1}$ with a probability of $r_{1}-\mathrm{r} / \mathrm{r}_{\mathrm{t}}-\mathrm{r}_{\mathrm{b}}$. The quantity $1 \pm \mathrm{r}_{\mathrm{b}}$ expresses the distance from the modal value of width to height.

Ludwig Wittgenstein (1889-1951)

Philosopher of language
In his late years, a proponent of studying "ordinary language"

Wittgenstein (1945) Philosophical Investigations. Paragraphs 66,67

66. Consider for example the proceedings that we call "games". I mean board-games, card-games, ball-games, Olympic games, and so on. What is common to them all?-Don't say: "There must be something common, or they would not be called 'games' "-but look and see whether there is anything common to all.-For if you look at them you will not see something that is common to all, but similarities, relationships, and a whole series of them at that. To repeat: don't think, but look!-Look for example at board-games, with their multifarious relationships. Now pass to card-games; here you find many correspondences with the first group, but many common features drop out, and others appear. When we pass next to ballgames, much that is common is retained, but much is lost.-Are they all 'amusing'? Compare chess with noughts and crosses. Or is there always winning and losing, or competition between players? Think of patience. In ball games there is winning and losing; but when a child throws his ball at the wall and catches it again, this feature has disappeared. Look at the parts played by skill and luck; and at the difference between skill in chess and skill in tennis. Think now of games like ting-a-ring-a-roses; here is the element of amusement, but how many other characteristic features have disappeared! And we can go through the many, many other groups of games in the same way; can see how similarities crop up and disappear.
And the result of this examination is: we see a complicated network of similarities overlapping and criss-crossing: sometimes overall similarities, sometimes similarities of detail
67. I can think of no better expression to characterize these similarities than "family resemblances"; for the various resemblance between members of a family: build, features, colour of eyes, gait, temperament, etc. etc. overlap and criss-cross in the same way.And I shall say: 'games' form a family.
And for instance the kinds of number form a family in the same way. Why do we call something a "number"? Well, perhaps because it has a-direct-relationship with several things that have hitherto been called number; and this can be said to give it an indirect relationship to other things we call the same name. And we extend our concept of number as in spinning a thread we twist fibre on fibre. And the strength of the thread does not reside in the fact that some one fibre runs through its whole length, but in the overlapping of many fibres.
But if someone wished to say: "There is something common to all these constructions-namely the disjunction of all their common properties"-I should reply: Now you are only playing with words. One might as well say: "Something runs through the whole threadnamely the continuous overlapping of those fibres"

What is a game?

Wittgenstein's thought experiment "What is a game":

PI \#66:

"Don't say "there must be something common, or they would not be called `games'" -but look and see whether there is anything common to all"

Is it amusing?
Is there competition?
Is there long-term strategy?
Is skill required?
Must luck play a role?
Are there cards?
Is there a ball?

Family Resemblance

Game 1 Game 2 Game 3 Game 4 $A B C$ BCD ACD ABD

"each item has at least one, and probably several, elements in common with one or more items, but no, or few, elements are common to all items" [Rosch and Mervis]

Vector Semantics \& Embeddings

It's hard to define a concept

Vector Semantics

Vector Semantics \& Embeddings

How about a radically different approach?

Ludwig Wittgenstein

PI \#43:
"The meaning of a word is its use in the language"

Let's define words by their usages

One way to define "usage":
words are defined by their environments (the words around them)

Zellig Harris (1954):
If A and B have almost identical environments we say that they are synonyms.

What does recent English borrowing ongchoi mean?

Suppose you see these sentences:

- Ong choi is delicious sautéed with garlic.
- Ong choi is superb over rice
- Ong choi leaves with salty sauces

And you've also seen these:

- ...spinach sautéed with garlic over rice
- Chard stems and leaves are delicious
- Collard greens and other salty leafy greens

Conclusion:

- Ongchoi is a leafy green like spinach, chard, or collard greens

Ongchoi：Ipomoea aquatica＂Water Spinach＂

> 空心菜
> kangkong
> rau muống

Yamaguchi，Wikimedia Commons，public domain

A new model of meaning focusing on distributional similarity

Each word = a vector

- Not just "word" or word45.
- Similar words are "nearby in space"

We define a word as a vector

Called an "embedding" because it's embedded into a vector space
The standard way to represent meaning in NLP
Every modern NLP algorithm uses embeddings as the representation of word meaning
Fine-grained model of meaning for similarity

Intuition: why vectors?

Consider sentiment analysis:

- With words, a feature is a word identity
- Feature 5: 'The previous word was "terrible"'
- requires exact same word to be in training and test
- With embeddings:
- Feature is a word vector
- 'The previous word was vector [35,22,17...]
- Now in the test set we might see a similar vector $[34,21,14]$
- We can generalize to similar but unseen words!!!

We'll discuss 2 kinds of embeddings

tf-idf

- Information Retrieval workhorse!
- A common baseline model
- Sparse vectors
- Words are represented by (a simple function of) the counts of nearby words

Word2vec

- Dense vectors
- Representation is created by training a classifier to predict whether a word is likely to appear nearby
- In later chapters we'll discuss extensions called contextual embeddings

Vector Semantics

Vector Semantics \& Embeddings

Words and Vectors

Vector Semantics \& Embeddings

Term-document matrix

Each document is represented by a vector of words

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle good fool wit	$\left[\begin{array}{l}1 \\ 14 \\ 36 \\ 20\end{array}\right.$	$\left(\begin{array}{c}0 \\ \hline\end{array}\right.$	7 58	15

Visualizing document vectors

Vectors are the basis of information retrieval

$\left.\begin{array}{ccccc}\hline & \text { As You Like It } & \text { Twelfth Night } & \text { Julius Caesar } & \text { Henry V } \\ \hline \begin{array}{c}\text { battle } \\ \text { good } \\ \text { fool } \\ \text { wit }\end{array} & {\left[\begin{array}{l}1 \\ 14 \\ \hline\end{array}\right.} & 36 \\ 20\end{array}\right]$

Vectors are similar for the two comedies Different than the history

Comedies have more fools and wit and fewer battles.

Idea for word meaning: Words can be vectors too!!!

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle good fool	1	0	7	13
wit	114	80	62	89

battle is "the kind of word that occurs in Julius Caesar and Henry V"
fool is "the kind of word that occurs in comedies, especially Twelfth Night"

More common: word-word matrix (or "term-context matrix")

Two words are similar in meaning if their context vectors are similar

is traditionally followed by cherry pie, a traditional dessert often mixed, such as strawberry rhubarb pie. Apple pie computer peripherals and personal digital assistants. These devices usually a computer. This includes information available on the internet

	aardvark	\ldots	computer	data	result	pie	sugar	\ldots
cherry	0	\ldots	2	8	9	442	25	\ldots
strawberry	0	\ldots	0	0	1	60	19	\ldots
digital	0	\ldots	1670	1683	85	5	4	\ldots
information	0	\ldots	3325	3982	378	5	13	\ldots

Words and Vectors

Vector Semantics \& Embeddings

Vector Semantics \& Embeddings

Cosine for computing word similarity

Dot product and cosine

The dot product between two vectors is a scalar:

$$
\operatorname{dot} \operatorname{product}(\mathbf{v}, \mathbf{w})=\mathbf{v} \cdot \mathbf{w}=\sum_{i=1}^{N} v_{i} w_{i}=v_{1} w_{1}+v_{2} w_{2}+\ldots+v_{N} w_{N}
$$

The dot product tends to be high when the two vectors have large values in the same dimensions
Dot product can be a similarity metric between vectors

Problem with raw dot-product

Dot product favors long vectors
Dot product is higher if a vector is longer (has higher values in many dimension)
Vector length:

$$
|\mathbf{v}|=\sqrt{\sum_{i=1}^{N} v_{i}^{2}}
$$

Frequent words (of, the, you) have long vectors (since they occur many times with other words).
So dot product overly favors frequent words

Alternative: cosine for computing word similarity

$$
\operatorname{cosine(\vec {r},\vec {w})=\frac {\nabla \cdot 𠃌\cdot |\vec {w}}{|\vec {v}|\vec {w}|}=\frac {\sum _{i=1}^{N}v_{i}w_{i}}{\sqrt {\sum _{i=1}^{N}v_{i}^{2}}\sqrt {\sum _{i=1}^{N}w_{i}^{2}}}}
$$

Cosine examples

$$
\cos (\text { cherry }, \text { information })=
$$

$$
\frac{442 * 5+8 * 3982+2 * 3325}{\sqrt{442^{2}+8^{2}+2^{2}} \sqrt{5^{2}+3982^{2}+3325^{2}}}=.017
$$

$\cos ($ digital, information $)=$

$$
\frac{5 * 5+1683 * 3982+1670 * 3325}{\sqrt{5^{2}+1683^{2}+1670^{2}} \sqrt{5^{2}+3982^{2}+3325^{2}}}=.996
$$

Visualizing cosines (well, angles)

\uparrow cherry

Dimension 2: ‘computer’

Vector Semantics \& Embeddings

Cosine for computing word similarity

TF-IDF

Vector Semantics \& Embeddings

But raw frequency is a bad representation

- Frequency is clearly useful; if sugar appears a lot near apricot, that's useful information.
- But overly frequent words like the, it, or they are not very informative about the context
- Need a function that resolves this frequency paradox!

Two common solutions for word weighting

tf-idf: tf-idf value for word t in document d :

$$
w_{t, d}=\mathrm{tf}_{t, d} \times \mathrm{idf}_{t}
$$

Words like "the" or "good" have very low idf
PMI: (Pointwise mutual information)
。 $\operatorname{PMI}\left(w_{1}, w_{2}\right)=\log \frac{p\left(w_{1}, w_{2}\right)}{p\left(w_{1}\right) p\left(w_{2}\right)}$
See if words like "good" appear more often with "great" than we would expect by chance

Term frequency (tf)

$\mathrm{tf}_{t, d}=\operatorname{count}(t, d)$

Instead of using raw count, we can squash a bit:

$$
\mathrm{tf}_{t, d}=\log _{10}(\operatorname{count}(t, d)+1)
$$

Document frequency (df)

df_{t} is the number of documents t occurs in.

- Note this is not collection frequency, i.e. total count across all documents.
"Romeo" is very distinctive for one Shakespeare play:

	Collection Frequency	Document Frequency
Romeo	113	1
action	113	31

Important: documents can be anything; we can call each paragraph a document

Inverse document frequency (idf)

$\operatorname{idf}_{t}=\log _{10}\left(\frac{N}{\mathrm{df}_{t}}\right)$

N is the total number of documents in the collection (37 docs)

Word	df	idf
Romeo	1	1.57
salad	2	1.27
Falstaff	4	0.967
forest	12	0.489
battle	21	0.246
wit	34	0.037
fool	36	0.012
good	37	0
sweet	37	0

Final tf-idf weighted value for a word $w_{t, d}=\operatorname{tf}_{t, d} \times \operatorname{idf}_{t}$

Raw counts:

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	1	0	7	13
good	114	80	62	89
fool	36	58	1	4
wit	20	15	2	3

Tf-idf:

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	0.074	0	0.22	0.28
good	0	0	0	0
fool	0.019	0.021	0.0036	0.0083
wit	0.049	0.044	0.018	0.022

TF-IDF

Vector Semantics \& Embeddings

PPMI

Vector Semantics \& Embeddings

Pointwise Mutual Information

Pointwise mutual information:

Do events x and y co-occur more than if they were independent?

$$
\operatorname{PMI}(X, Y)=\log _{2} \frac{P(x, y)}{P(x) P(y)}
$$

PMI between two words: (Church \& Hanks 1989)
Do words x and y co-occur more than if they were independent?

$$
\operatorname{PMI}\left(\text { word }_{1}, \text { word }_{2}\right)=\log _{2} \frac{P\left(\text { word }_{1}, \text { word }_{2}\right)}{P\left(\text { word }_{1}\right) P\left(\text { word }_{2}\right)}
$$

Positive Pointwise Mutual Information

- PMI ranges from $-\infty$ to $+\infty$
- But the negative values are problematic
- Things are co-occurring less than we expect by chance
- Unreliable without enormous corpora
- Imagine w_{1} and w_{2} whose probability is each 10^{-6}
- Hard to be sure $\mathrm{p}\left(\mathrm{w}_{1}, \mathrm{w}_{2}\right)$ is significantly different than 10^{-12}
- Plus it's not clear people are good at "unrelatedness"
- So we just replace negative PMI values by 0
- Positive PMI (PPMI) between word1 and word2:

$$
\operatorname{PPMI}\left(\text { word }_{1}, \text { word }_{2}\right)=\max \left(\log _{2} \frac{P\left(\text { word }_{1}, \text { word }_{2}\right)}{P\left(\text { word }_{1}\right) P\left(\text { word }_{2}\right)}, 0\right)
$$

Computing PPMI on a term-context matrix

Matrix F with W rows (words) and C columns (contexts)

 f_{ij} is \# of times w_{i} occurs in context (of) $\mathrm{c}_{\mathrm{j}}$$$
\begin{aligned}
& p m i_{i j}=\log _{2} \frac{p_{i j}}{p_{i^{*}} p_{*_{j}}} \quad \text { ppmi } i_{i j}=\left\{\begin{array}{cc}
p m i_{i j} & \text { if } p m i_{i j}>0 \\
0 & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

	computer	data	result	pie	sugar	count(w)
cherry	2	8	9	442	25	486
strawberry	0	0	1	60	19	80
digital	1670	1683	85	5	4	3447
information	3325	3982	378	5	13	7703
count(context)	4997	5673	473	512	61	11716

$$
p_{i j}=\frac{f_{i j}}{\sum_{i=1}^{W} \sum_{j=1}^{C} f_{i j}}
$$

	computer	data	result	pie	sugar	count(w)
cherry	2	8	9	442	25	486
strawberry	0	0	1	60	19	80
digital	1670	1683	85	5	4	3447
information	3325	3982	378	5	13	7703
count(context)	4997	5673	473	512	61	1176

$$
\begin{aligned}
& \mathrm{p}(w=\text { information }, c=\text { data })=3982 / 11716=.3399 \\
& \mathrm{p}(w=\text { information })=7703 / 11716=.6575 \\
& \mathrm{p}(c=\text { data })=5673 / 11716=.4842
\end{aligned}
$$

$$
p\left(w_{i}\right)=\frac{\sum_{j=1}^{C} f_{i j}}{N} \quad p\left(c_{j}\right)=\frac{\sum_{i=1}^{W} f_{i j}}{N}
$$

	$\mathbf{p (w , c o n t e x t)}$					
	computer	data	result	pie	sugar	$\mathbf{p (w)}$
cherry	0.0002	0.0007	0.0008	0.0377	0.0021	0.0415
strawberry	0.0000	0.0000	0.0001	0.0051	0.0016	0.0068
digital	0.1425	0.1436	0.0073	0.0004	0.0003	0.2942
information	0.2838	0.3399	0.0323	0.0004	0.0011	0.6575
p(context)	0.4265	0.4842	0.0404	0.0437	0.0052	

$$
p m i_{i j}=\log _{2} \frac{p_{i j}}{p_{i^{*}} p_{*_{j}}}
$$

p(w,context)						p(w)
	computer	data	result	pie	sugar	p(w)
cherry	0.0002	0.0007	0.0008	0.0377	0.0021	0.0415
strawberry	0.0000	0.0000	0.0001	0.0051	0.0016	0.0068
digital	0.1425	0.1436	0.0073	0.0004	0.0003	0.2942
information	0.2838	0.3399	0.0323	0.0004	0.0011	0.6575
p(context)	0.4265	0.4842	0.0404	0.0437	0.0052	

$p m i($ information, data $)=\log _{2}\left(.3399 /\left(.6575^{*} .4842\right)\right)=.0944$
Resulting PPMI matrix (negatives replaced by 0)

	computer	data	result	pie	sugar
cherry	0	0	0	4.38	3.30
strawberry	0	0	0	4.10	5.51
digital	0.18	0.01	0	0	0
information	0.02	0.09	0.28	0	0

Weighting PMI

PMI is biased toward infrequent events

- Very rare words have very high PMI values

Two solutions:

- Give rare context words slightly higher probabilities
- Use add-one smoothing (which has a similar effect)

Weighting PMI: Giving rare context words slightly higher probability

Raise the context probabilities to $\alpha=0.75$:

$$
\begin{aligned}
\operatorname{PPMI}_{\alpha}(w, c) & =\max \left(\log _{2} \frac{P(w, c)}{P(w) P_{\alpha}(c)}, 0\right) \\
P_{\alpha}(c) & =\frac{\operatorname{count}(c)^{\alpha}}{\sum_{c} \operatorname{count}(c)^{\alpha}}
\end{aligned}
$$

This helps because $P_{\alpha}(c)>P(c)$ for rare c
Consider two events, $\mathrm{P}(\mathrm{a})=.99$ and $\mathrm{P}(\mathrm{b})=.01$

$$
P_{\alpha}(a)=\frac{.99^{.75}}{.99^{.75}+.01^{.75}}=.97 P_{\alpha}(b)=\frac{.01^{.75}}{.01^{.75}+.01^{.75}}=.03
$$

Dense vectors

Vector Semantics \& Embeddings

Sparse versus dense vectors

$t f$-idf vectors are

- long (length $|\mathrm{V}|=20,000$ to 50,000)
- sparse (most elements are zero)

Alternative: learn vectors which are

- short (length 50-1000)
- dense (most elements are non-zero)

Sparse versus dense vectors

Why dense vectors?

- Short vectors may be easier to use as features in machine learning (fewer weights to tune)
- Dense vectors may generalize better than explicit counts
- They may do better at capturing synonymy:
- car and automobile are synonyms; but are distinct dimensions
- a word with car as a neighbor and a word with automobile as a neighbor should be similar, but aren't
- In practice, they work better

Common methods for getting short dense vectors
"Neural Language Model"-inspired models

- Word2vec (skipgram, CBOW), Glove

Singular Value Decomposition (SVD)

- A special case of this is called LSA - Latent Semantic Analysis

Alternative to these "static embeddings":

- Contextual Embeddings (ELMo, BERT)
- Compute distinct embeddings for a word in its context
- Separate embeddings for each token of a word
- We'll return to this in a later chapter

Dense vectors

Vector Semantics \& Embeddings

Word2vec: The classifier

Vector Semantics \& Embeddings

Embeddings you can download!

Word2vec (Mikolov et al)
https://code.google.com/archive/p/word2vec/

Glove (Pennington, Socher, Manning)
http://nlp.stanford.edu/projects/glove/

Word2vec
Popular embedding method
Very fast to train
Code available on the web
Idea: predict rather than count

Word2vec

Instead of counting how often each word w occurs near "apricot"

- Train a classifier on a binary prediction task:
- Is w likely to show up near "apricot"?

We don't actually care about this task

- But we'll take the learned classifier weights as the word embeddings

Big idea is self-supervision:

- A word c that occurs near apricot in the corpus asks as the gold "correct answer" for supervised learning
- No need for human labels
- Bengio et al. (2003); Collobert et al. (2011)

Word2Vec: Skip-Gram Task

Word2vec provides a variety of options. We'll do:
Skip-gram with negative sampling (SGNS)

Approach: predict if candidate word c is a "neighbor"

1. Treat the target word t and a neighboring context word c as positive examples.
2. Randomly sample other words in the lexicon to get negative examples
3. Use logistic regression to train a classifier to distinguish those two cases
4. Use the learned weights as the embeddings

Skip-Gram Training Data

Assume a +/- 2 word window, given training sentence:
...lemon, a [tablespoon of apricot jam, a] pinch...
c1 c2 [target] c3 c4

Skip-Gram Classifier

(assuming $a+/-2$ word window)
...lemon, a [tablespoon of apricot jam, a] pinch...
c1 c2 [target] c3 c4
Goal: train a classifier that is given a candidate (word, context) pair (apricot, tablespoon) --> positive (apricot, aardvark) --> negative

And assigns each pair a probability:

$$
P(+\mid w, c)
$$

Similarity is computed from dot product

Remember: two vectors are similar if they have a high dot product

- Cosine is just a normalized dot product

So:

- Similarity (w,c) \propto w•c

We'll need to normalize to get a probability

- (cosine isn't a probability either)

Turning dot products into probabilities

$\operatorname{Sim}(\mathrm{w}, \mathrm{c}) \approx \mathrm{w} \cdot \mathrm{c}$
To turn this into a probability
We'll use the sigmoid from logistic regression:

$$
\begin{aligned}
P(+\mid w, c) & =\sigma(c \cdot w)=\frac{1}{1+\exp (-c \cdot w)} \\
P(-\mid w, c) & =1-P(+\mid w, c) \\
& =\sigma(-c \cdot w)=\frac{1}{1+\exp (c \cdot w)}
\end{aligned}
$$

How Skip-Gram Classifier computes $P(+\mid w, c)$

$$
P(+\mid w, c)=\sigma(c \cdot w)=\frac{1}{1+\exp (-c \cdot w)}
$$

This is for one context word, but we have lots of context words. We'll assume independence and just multiply them:

$$
\begin{aligned}
P\left(+\mid w, c_{1: L}\right) & =\prod_{i=1}^{L} \sigma\left(c_{i} \cdot w\right) \\
\log P\left(+\mid w, c_{1: L}\right) & =\sum_{i=1}^{L} \log \sigma\left(c_{i} \cdot w\right)
\end{aligned}
$$

Skip-gram classifier: summary

A probabilistic classifier that,

- given a test target word w
- its context window of L words $c_{1: L}$,
assigns a probability that w occurs in this window.

To compute this probability, we just need classifier weights = embeddings for all the words.

These embeddings we'll need: a set for w, a set for c

Word2vec: The classifier

Vector Semantics \& Embeddings

Vector Semantics \& Embeddings

Word2vec: Learning the embeddings

Skip-Gram Training data

...lemon, a [tablespoon of apricot jam, a] pinch... c1 c2 [target] c3 c4
positive examples +
t c
apricot tablespoon
apricot of
apricot jam
apricot a

Skip-Gram Training data

...lemon, a [tablespoon of apricot jam, a] pinch... c1 c2 [target] c3 c4
positive examples +
t
apricot tablespoon
apricot of
apricot jam
apricot a

For each positive example we'll grab k negative examples, sampling by frequency

Skip-Gram Training data

...lemon, a [tablespoon of apricot jam, a] pinch... c1 c2 [target] c3 c4
positive examples +

$\mathrm{t} \quad \mathrm{c}$
apricot tablespoon
apricot of
apricot jam
apricot a

negative examples -

t	c	t	c
apricot	aardvark	apricot	seven

apricot my
apricot where apricot dear apricot coaxial apricot if

Word2vec: how to learn vectors

Given the set of positive and negative training instances, and an initial set of embedding vectors
The goal of learning is to adjust those word vectors such that we:

- Maximize the similarity of the target word, context word pairs ($w, c_{\text {pos }}$) drawn from the positive data
- Minimize the similarity of the ($w, c_{\text {neg }}$) pairs drawn from the negative data.

Loss function for one w with $c_{\text {pos }}, C_{\text {neg1 }} \ldots C_{\text {negk }}$

Maximize the dot product of the word with the actual context words, and minimize the dot products of the word with the k negative sampled non-neighbor words.

$$
\begin{aligned}
L_{\mathrm{C} E} & =-\log \left[P\left(+\mid w, c_{p o s}\right) \prod_{i=1}^{k} P\left(-\mid w, c_{\text {neg }_{i}}\right)\right] \\
& =-\left[\log P\left(+\mid w, c_{p o s}\right)+\sum_{i=1}^{k} \log P\left(-\mid w, c_{n e g_{i}}\right)\right] \\
& =-\left[\log P\left(+\mid w, c_{p o s}\right)+\sum_{i=1}^{k} \log \left(1-P\left(+\mid w, c_{n e g_{i}}\right)\right)\right] \\
& =-\left[\log \sigma\left(c_{p o s} \cdot w\right)+\sum_{i=1}^{k} \log \sigma\left(-c_{n e g_{i}} \cdot w\right)\right]
\end{aligned}
$$

Learning the classifier

How to learn?

- Stochastic gradient descent!

We'll adjust the word weights to

- make the positive pairs more likely
- and the negative pairs less likely,
- over the entire training set.

Intuition of one step of gradient descent

The derivatives of the loss function

$$
\begin{aligned}
& L_{\text {CE }}=-\left[\log \sigma\left(c_{\text {pos }} \cdot w\right)+\sum_{i=1}^{k} \log \sigma\left(-c_{\text {neg }_{i}} \cdot w\right)\right] \\
& \frac{\partial L_{C E}}{\partial c_{\text {pos }}}=\left[\sigma\left(c_{\text {pos }} \cdot w\right)-1\right] w \\
& \frac{\partial L_{C E}}{\partial c_{\text {neg }}}=\left[\sigma\left(c_{\text {neg }} \cdot w\right)\right] w \\
& \frac{\partial L_{C E}}{\partial w}=\left[\sigma\left(c_{\text {pos }} \cdot w\right)-1\right] c_{\text {pos }}+\sum_{i=1}^{k}\left[\sigma\left(c_{\text {neg }_{i}} \cdot w\right)\right] c_{\text {neg }}^{i} \text { }
\end{aligned}
$$

Update equation in SGD

Start with randomly initiatlzed C and W matrices, then incrementally do updates

$$
\begin{aligned}
c_{\text {pos }}^{t+1} & =c_{\text {pos }}^{t}-\eta\left[\sigma\left(c_{\text {pos }}^{t} \cdot w\right)-1\right] w \\
c_{n e g}^{t+1} & =c_{n e g}^{t}-\eta\left[\sigma\left(c_{n e g}^{t} \cdot w\right)\right] w \\
w^{t+1} & =w^{t}-\eta\left[\sigma\left(c_{p o s} \cdot w^{t}\right)-1\right] c_{p o s}+\sum_{i=1}^{k}\left[\sigma\left(c_{n e g_{i}} \cdot w^{t}\right)\right] c_{n e g_{i}}
\end{aligned}
$$

Two sets of embeddings

SGNS learns two sets of embeddings
Target embeddings matrix W
Context embedding matrix C

It's common to just add them together, representing word i as the vector $\mathrm{w}_{\mathrm{i}}+\mathrm{c}_{\mathrm{i}}$

Summary: How to learn word2vec (skip-gram) embeddings

Start with V random d-dimentional vectors as initial embeddings

Train a classifier based on embedding similarity

- Take a corpus and take pairs of words that co-occur as positive examples
- Take pairs of words that don't co-occur as negative examples
- Train the classifier to distinguish these by slowly adjusting all the embeddings to improve the classifier performance
- Throw away the classifier code and keep the embeddings.

Vector Semantics \& Embeddings

Word2vec: Learning the embeddings

Properties of Embeddings

Vector Semantics \& Embeddings

The kinds of neighbors depend on window size

Large windows ($\mathrm{C}=+/-5$) : nearest words are related words in same semantic field
-Hogwarts nearest neighbors are Harry Potter world:

- Dumbledore, Half-blood, Malfoy

Small windows ($\mathrm{C}=+/-2$) : nearest words are similar nouns, words in same taxonomy

- Hogwarts nearest neighbors are other fictional schools
- Sunnydale, Evernight, Blandings

Analogical relations

The classic parallelogram model of analogical reasoning (Rumelhart and Abrahamson 1973)
To solve: "apple is to tree as grape is to
Add $\overrightarrow{a p p l e}-\overrightarrow{\text { tree }}$ to $\overrightarrow{\text { grape }}$ to get $\overrightarrow{v i n e}$ tree

Analogical relations via parallelogram

The parallelogram method can solve analogies with both sparse and dense embeddings (Turney and Littman 2005, Mikolov et al. 2013b)

$$
\begin{aligned}
& \overrightarrow{\text { king }}-\overrightarrow{m a n}+\overrightarrow{\text { woman }} \text { is close to } \overrightarrow{\text { queen }} \\
& \overrightarrow{\text { Paris }}-\overrightarrow{\text { France }}+\overrightarrow{\text { Italy }} \text { is close to } \overrightarrow{\text { Rome }}
\end{aligned}
$$

For a problem a:a*::b:b*, the parallelogram method is:

$$
\hat{b}^{*}=\underset{x}{\operatorname{argmin}} \operatorname{distance}\left(x, a^{*}-a+b\right)
$$

Structure in GloVE Embedding space

Caveats with the parallelogram method

It only seems to work for frequent words, small distances and certain relations (relating countries to capitals, or parts of speech), but not others. (Linzen 2016, Gladkova et al. 2016, Ethayarajh et al. 2019a)

Understanding analogy is an open area of research (Peterson et al. 2020)

Embeddings as a window onto historical semantics

Train embeddings on different decades of historical text to see meanings shift
~30 million books, 1850-1990, Google Books data

William L. Hamilton, Jure Leskovec, and Dan Jurafsky. 2016. Diachronic Word Embeddings Reveal Statistical Laws of Semantic Change. Proceedings of ACL.

Embeddings reflect cultural bias!

Bolukbasi, Tolga, Kai-Wei Chang, James Y. Zou, Venkatesh Saligrama, and Adam T. Kalai. "Man is to computer programmer as woman is to homemaker? debiasing word embeddings." In NeurIPS, pp. 4349-4357. 2016.

Ask "Paris : France :: Tokyo : x"
 - x = Japan

Ask "father : doctor :: mother : x"

- x = nurse

Ask "man : computer programmer :: woman : x"

- x = homemaker

Algorithms that use embeddings as part of e.g., hiring searches for programmers, might lead to bias in hiring

Historical embedding as a tool to study cultural biases

Garg, N., Schiebinger, L., Jurafsky, D., and Zou, J. (2018). Word embeddings quantify 100 years of gender and ethnic stereotypes. Proceedings of the National Academy of Sciences 115(16), E3635-E3644.

- Compute a gender or ethnic bias for each adjective: e.g., how much closer the adjective is to "woman" synonyms than "man" synonyms, or names of particular ethnicities
- Embeddings for competence adjective (smart, wise, brilliant, resourceful, thoughtful, logical) are biased toward men, a bias slowly decreasing 1960-1990
- Embeddings for dehumanizing adjectives (barbaric, monstrous, bizarre) were biased toward Asians in the 1930 s, bias decreasing over the $20^{\text {th }}$ century.
- These match the results of old surveys done in the 1930s.

Supplementary Readings

Vector

 Semantics \& Embeddings1. Chapter 6 in J\&M.
2. Chapter 14 in Eisenstein.
