
Basic Text
Processing

Regular Expressions
Slides from Jurafsky & Martin

 edited by RB with Sed and Python

Regular expressions

A formal language for specifying text strings
How can we search for any of these?
◦ woodchuck
◦ woodchucks
◦ Woodchuck
◦ Woodchucks

Regular Expressions: Disjunctions

Letters inside square brackets []

Ranges [A-Z]

Pattern Matches
[wW]oodchuck Woodchuck, woodchuck
[1234567890] Any digit

Pattern Matches
[A-Z] An upper case letter Drenched Blossoms

[a-z] A lower case letter my beans were impatient

[0-9] A single digit Chapter 1: Down the Rabbit Hole

Special character classes in Python
https://docs.python.org/3/howto/regex.html

https://docs.python.org/3/howto/regex.html

Regular Expressions: Negation in Disjunction

Negations [^Ss]
◦ Carat means negation only when first in []

Pattern Matches
[^A-Z] Not an upper case

letter
Oyfn pripetchik

[^Ss] Neither ‘S’ nor ‘s’ I have no exquisite reason”

[^e^] Neither e nor ^ Look here

a^b The pattern a carat b Look up a^b now

Regular Expressions: More Disjunction
Woodchuck is another name for groundhog!
Use the pipe | for disjunction

Pattern Matches
groundhog|woodchuck woodchuck

yours|mine yours

a|b|c = [abc]
[gG]roundhog|[Ww]oodchuck Woodchuck

p = re.compile('[Ww]oodchucks?|[Gg]roundhogs?’)
p.findall('Woodchucks, by any other name, such as groundhog, '

 'wouldchuck the same.')

Regular Expressions: ? *+.

Stephen C Kleene

Pattern Matches
colou?r Optional

previous char
color colour

oo*h! 0 or more of
previous char

oh! ooh! oooh! ooooh!

o+h! 1 or more of
previous char

oh! ooh! oooh! ooooh!

baa+ baa baaa baaaa baaaaa

beg.n begin begun begun beg3n

Kleene *, Kleene +

Regular Expressions: Anchors ^ $

Pattern Matches
^[A-Z] Palo Alto

^[^A-Za-z] 1 “Hello”

\.$ The end.

.$ The end? The end!

Python RE: Finding matches

•match(): Determine if the RE matches at the beginning of the string.
• Returns a match object.

• search(): Scan through a string, looking for any location matching the RE.
• Returns a match object.

• findall(): Find all substrings where the RE matches.
• Returns them as a list.

• finditer(): Find all substrings where the RE matches.
• Returns them as an iterator.

Python RE: Match Objects

Match objects have 4 main methods:
• group():

• start():

• end():

• span()

Example

Find me all instances of the word “the” in a text.
the

Misses capitalized examples
[tT]he

Incorrectly returns other or theology
[^a-zA-Z][tT]he[^a-zA-Z]

Example in Python

o Without grouping:
◦ >>> p = re.compile('[^a-zA-Z] [Tt]he [^a-zA-Z]’, re.VERBOSE)
◦ >>> m = p.findall('Yes. The cat chases the dogs that bathe.')
◦ >>> print(m) => [' The ', ' the ']

o With grouping:
◦ >>> p = re.compile('[^a-zA-Z] ([Tt]he) [^a-zA-Z]’, re.VERBOSE)
◦ >>> m = p.findall('Yes. The cat chases the dogs that bathe.')
◦ >>> print(m) => ['The', 'the']

Errors

The process we just went through was based on
fixing two kinds of errors:

1. Matching strings that we should not have matched
(there, then, other)

False positives (Type I errors)

2. Not matching things that we should have matched (The)
False negatives (Type II errors)

Errors cont.

In NLP we are always dealing with these kinds of
errors.
Reducing the error rate for an application often
involves two antagonistic efforts:

◦ Increasing accuracy or precision (minimizing false
positives)

◦ Increasing coverage or recall (minimizing false negatives).

Substitutions

Substitution in UNIX commands and Python:
s/regexp1/pattern/g

Unix:
sed ‘s/colour/color/g’ <file.txt>

Python:
p = re.compile(‘colour’)
p.sub(‘color’, <string>)

Capture Groups

• Say we want to put angles around all numbers:
the 35 boxes à the <35> extra boxes

• Use parens () to "capture" a pattern into a numbered register (1, 2, 3…)
• Use \1 to refer to the contents of the register

Unix:
sed –E ‘s/([0-9]+)/<\1> extra/g’

Python:
p = re.compile('([0-9]+)', re.VERBOSE)
p.sub(r'<\1> extra’, ‘the 35 boxes')

Capture groups: multiple registers
s/the (.*)er they (.*), the \1er we \2/g

Matches ‘the faster they ran, the faster we ran‘
But not ‘the faster they ran, the faster we ate’

Python:
p = re.compile(r'the (.*)er they (.*), r'the \1er we \2 ')
m = p.match('the faster they ran, the faster we ran’)
m.span() => (0, 38) m.group() => 'the faster they ran, the faster we ran’

m = p.match('the faster they ran, the faster we ate’)
print(m) => None

Capture groups: multiple registers
s/the (.*)er they (.*)/the \1er we \2/g

Substitutions:

the faster they ran => the faster we ran

the slower they wrote => the slower we wrote

Python:
p = re.compile(r'the (.*)er they (.*)')
p.sub(r'the \1er we \2', 'the faster they ran’) => the faster we ran
p.sub(r'the \1er we \2', 'the slower they wrote’) => the slower we wrote

But suppose we don't want to capture?

Parentheses have a double function: grouping terms and capturing.
Non-capturing groups: add a ?: after parenthesis:
/(?:some|a few) (people|cats) like some \1/

matches some cats like some cats
but not some cats like some a few

Python:
p = p = re.compile(r'(?:some|a few) (people|cats) like some \1')
m = p.match('some cats like some cats’)
m.group() => 'some cats like some cats’
m = p.match('some cats like some people’)
print(m) => None

Lookahead and Lookbehind assertions

(?= pattern) is true if pattern matches ahead, but is zero-
width; doesn't advance character pointer

◦ Isaac (?=Asimov) will match 'Isaac ' only if it’s followed by 'Asimov’.

(?! pattern) true if a pattern does not match
◦ Isaac (?!Asimov) will match 'Isaac ' only if it’s not followed by 'Asimov’.

(?<= pattern) is true if pattern matches behind, but is
zero-width; doesn't advance character pointer

◦ (?<=Isaac) Asimov will match ’ Asimov' only if it’s preceded by ’Isaac'.

Simple Application: ELIZA
Early NLP system that imitated a Rogerian
psychotherapist (Weizenbaum, 1966).

Uses pattern matching to match, e.g.,:
◦ “I need X”

and translates them into, e.g.
◦ “What would it mean to you if you got X?

Simple Application: ELIZA
Men are all alike.
IN WHAT WAY
They're always bugging us about something or other.
CAN YOU THINK OF A SPECIFIC EXAMPLE
Well, my boyfriend made me come here.
YOUR BOYFRIEND MADE YOU COME HERE
He says I'm depressed much of the time.
I AM SORRY TO HEAR YOU ARE DEPRESSED

How ELIZA works

s/.* I’M (depressed|sad) .*/I AM SORRY TO HEAR YOU ARE \1/
s/.* I AM (depressed|sad) .*/WHY DO YOU THINK YOU ARE \1/
s/.* all .*/IN WHAT WAY?/
s/.* always .*/CAN YOU THINK OF A SPECIFIC EXAMPLE?/

Summary

Regular expressions play a surprisingly large role:
◦ Sophisticated sequences of regular expressions are often

the first model for any text processing text.

For hard tasks, we use machine learning classifiers:
◦ But regular expressions are still used for pre-processing,

or as features in the classifiers.
◦ Can be very useful in capturing generalizations.

24

Supplemental readings

1. Chapter 2 in Jurafsky & Martin
◦ https://web.stanford.edu/~jurafsky/slp3/2.pdf

2. Regular expressions in Python:
◦ https://docs.python.org/3/howto/regex.html
◦ https://docs.python.org/3/library/re.html

3. Regular expressions with Sed:
◦ https://www.tutorialspoint.com/unix/unix-regular-

expressions.htm

https://web.stanford.edu/~jurafsky/slp3/2.pdf
https://docs.python.org/3/howto/regex.html
https://docs.python.org/3/library/re.html
https://www.tutorialspoint.com/unix/unix-regular-expressions.htm
https://www.tutorialspoint.com/unix/unix-regular-expressions.htm

