
Machine Learning
ITCS 4156

Gradient Descent

Razvan C. Bunescu

Department of Computer Science @ CCI

rbunescu@uncc.edu

mailto:rbunescu@uncc.edu

Machine Learning is Optimization

• Parametric ML involves minimizing an objective function
J(w):
– Also called cost function, loss function, or error function.
– Want to find !𝐰 = argmin

𝐰
𝐽(𝐰)

• Numerical optimization procedure:
1. Start with some guess for w0, set 𝜏 = 0.
2. Update w𝜏 to w𝜏+1 such that J(w𝜏+1) ≤ J(w𝜏).
3. Increment 𝜏 = 𝜏 + 1.
4. Repeat from 2 until J cannot be improved anymore.

2

Gradient-based Optimization

• How to update w𝜏 to w𝜏+1 such that J(w𝜏+1) ≤ J(w𝜏)?

• Move w in the direction of steepest descent:
𝐰!"# =𝐰! + 𝜂𝐠

– g is the direction of steepest descent, i.e. direction along which J
decreases the most.

– 𝜂 is the learning rate and controls the magnitude of the change.

3

Gradient-based Optimization

• Move w in the direction of steepest descent:
𝐰!"# =𝐰! + 𝜂𝐠

• What is the direction of steepest descent of J(w) at w𝜏?
– The gradient ∇J(w) is in the direction of steepest ascent.
– Set g = −∇J(w) => the gradient descent update:

𝐰!"# =𝐰! − 𝜂𝛻𝐽(𝐰!)

4

Gradient Descent Algorithm

• Want to minimize a function J : Rn® R.
– J is differentiable and convex.
– compute gradient of J i.e. direction of steepest increase:

1. Set learning rate 𝜂 = 0.001 (or other small value).
2. Start with some guess for w0, set 𝜏 = 0.
3. Repeat for epochs E or until J does not improve:
4. 𝜏 = 𝜏 + 1.
5. 𝐰!"# =𝐰! − 𝜂𝛻𝐽 𝐰!

5

𝛻𝐽 𝐰 =
𝜕𝐽
𝜕𝑤#

,
𝜕𝐽
𝜕𝑤$

, … ,
𝜕𝐽
𝜕𝑤%

Gradient Descent: Large Updates

6

Gradient Descent: Small Updates

7https://www.safaribooksonline.com/library/view/hands-on-machine-learning

The Learning Rate

1. Set learning rate 𝜂 = 0.001 (or other small value).
2. Start with some guess for w0, set 𝜏 = 0.
3. Repeat for epochs E or until J does not improve:
4. 𝜏 = 𝜏 + 1.
5. 𝐰!"# =𝐰! − 𝜂𝛻𝐽 𝐰!

§ How big should the learning rate be?
o If learning rate too small => slow convergence.
o If learning rate too big => oscillating behavior => may not even

converge.

8

Learning Rate too Small

9

Learning Rate too Large

10

Learning Rates vs. GD Behavior

11

http://scs.ryerson.ca/~aharley/neural-networks/

The Learning Rate

• How big should the learning rate be?
– If learning rate too big => oscillating behavior.
– If learning rate too small => hinders convergence.

o Use line search (backtracking line search, conjugate gradient, …).
o Use second order methods (Newton’s method, L-BFGS, ...).

• Requires computing or estimating the Hessian.
o Use a simple learning rate annealing schedule:

– Start with a relatively large value for the learning rate.
– Decrease the learning rate as a function of the number of epochs or

as a function of the improvement in the objective.
o Use adaptive learning rates:

• Adagrad, Adadelta, RMSProp, Adam.
12

Gradient Descent: Nonconvex Objective

13

Saddle point

Convex Multivariate Objective

14

w0
w1

Gradient Step and Contour Lines

15

w0
w1

Gradient Descent: Nonconvex Objectives

16

Gradient Descent & Plateaus

17

Gradient Descent & Saddle Points

18

Gradient Descent & Ravines

19

Gradient Descent & Ravines

• Ravines are areas where the surface curves much more
steeply in one dimension than another.
– Common around local optima.
– GD oscillates across the slopes of the ravines, making slow progress

towards the local optimum along the bottom.

• Use momentum to help accelerate GD in the relevant
directions and dampen oscillations:
– Add a fraction of the past update vector to the current update vector.

• The momentum term increases for dimensions whose previous
gradients point in the same direction.

• It reduces updates for dimensions whose gradients change sign.
• Also reduces the risk of getting stuck in local minima.

20

Gradient Descent & Momentum

21

Vanilla Gradient Descent:

𝐯!"# = 𝜂𝛻𝐽(𝐰!)

𝐰!"# =𝐰! − 𝐯!"#

Gradient Descent w/ Momentum:

𝐯!"# = 𝛾𝐯! + 𝜂𝛻𝐽(𝐰!)

𝐰!"# =𝐰! − 𝐯!"#

𝛾 is usually set to 0.9 or similar.

The momentum term increases for dimensions whose gradients point in the
same directions and reduces updates for dimensions whose gradients change
directions.

Momentum & Nesterov Accelerated Gradient

22

GD with Momentum:

𝐯!"# = 𝛾𝐯! + 𝜂𝛻𝐽(𝐰!)

𝐰!"# =𝐰! − 𝐯!"#

Nesterov Accelerated Gradient:

𝐯!"# = 𝛾𝐯! + 𝜂𝛻𝐽(𝐰!− 𝛾𝐯!)

𝐰!"# =𝐰! − 𝐯!"#

By making an anticipatory update, NAGs prevents GD from going too fast
=> significant improvements when training RNNs.

𝜂𝛻𝐽(𝐰")

𝛾𝐯"

𝜂𝛻𝐽(𝐰!− 𝛾𝐯!)
𝛾𝐯"

Variants of Gradient Descent

𝐰!"# =𝐰! − 𝜂 𝛻𝐽 𝐰!

• Depending on how much data is used to compute the
gradient at each step:
– Batch gradient descent:

• Use all the training examples.
– Stochastic gradient descent (SGD).

• Use one training example, update after each.
– Minibatch gradient descent.

• Use a constant number of training examples (minibatch).

23

Batch Gradient Descent: Linear Regression

• Sum-of-squares error:

24

𝐽 𝐰 =
1
2𝑁

/
,-#

.

ℎ𝐰(𝐱(,)) − 𝑡𝑛
/

𝐰!"# =𝐰! − 𝜂 𝛻𝐽 𝐰!

𝐰!"# =𝐰! − 𝜂
1
𝑁
/
,-#

.

ℎ𝐰(𝐱(,)) − 𝑡𝑛 𝐱(,)

ℎ𝐰(𝐱(%)) = 𝐰(𝐱(%)

Stochastic Gradient Descent: Linear
Regression

• Sum-of-squares error:

• Update parameters w after each example, sequentially:
=> the least-mean-square (LMS) algorithm.

25

𝐽 𝐰 =
1
2𝑁

/
,-#

.

ℎ𝐰(𝐱(,)) − 𝑡𝑛
/
=
1
𝑁
/
,-#

.

𝐽 𝐰!, 𝐱(,)

𝐰!"# =𝐰! − 𝜂 𝛻𝐽 𝐰!, 𝐱(,)

𝐰!"# =𝐰! − 𝜂 ℎ𝐰(𝐱(,)) − 𝑡𝑛 𝐱(,)

ℎ𝐰(𝐱(%)) = 𝐰(𝐱(%)

Batch GD vs. Stochastic GD

• Accuracy:

• Time complexity:

• Memory complexity:

• Online learning:

26

Batch GD vs. Stochastic GD

27

Pre-processing Features

• Features may have very different scales, e.g. x1 = rooms
vs. x2 = size in sq ft.
– Right (different scales): GD goes first towards the bottom of the

bowl, then slowly along an almost flat valley.
– Left (scaled features): GD goes straight towards the minimum.

28

Feature Scaling

• Scaling between [0, 1] or [−1, +1]:
– For each feature xj, compute minj and maxj over the training examples.

– Scale xj as follows: <𝑥) =
*"+,-%"

,.*"+,-%"

• Scaling to standard normal distribution:
– For each feature xj, compute sample 𝜇j and sample 𝜎j over the training

examples.

– Scale xj as follows: <𝑥) =
*"+/"
0"

• Use the same scaling factors at test time:
– Clip to minj and maxj.

29

Gradient Descent vs. Normal Equations

• Gradient Descent:
– Need to select learning rate 𝜂.
– May need many iterations:

• Can do Early Stopping on validation data for regularization.
– Scalable when number of training examples N is large.

• Normal Equations:
– No iterations => easy to code.
– Computing (X1X)-1 has cubic time complexity => slow for large N.
– X1X may be singular:

1. Redundant (linearly dependent) features.
2. #features > #examples => do feature selection or regularization.

30

Implementation: Vectorization

• Version 1: Compute gradient component-wise.

grad = np.zeros(K)
for n in range(N):

h = w.dot(X[:,n])
temp = h − t[n]
for k in range(K):
grad(k) = grad(k) + temp * X[n,k]

for k in range(K):
grad(k) = grad(k) / N

31

𝛻𝐽 𝐰 =
1
𝑁C
%2#

3

ℎ𝐰(𝐱(%)) − 𝑡𝑛 𝐱(%)
ℎ𝐰(𝐱(%)) = 𝐰(𝐱(%)

Implementation: Vectorization

• Version 2: Compute gradient, partially vectorized.

grad = np.zeros(K)
for n in range(N):

grad = grad + (w.dot(X[:,n])) − t[n]) * X[:,n]
grad = grad / N

32

𝛻𝐽 𝐰 =
1
𝑁
C
%2#

3

ℎ𝐰(𝐱(%)) − 𝑡𝑛 𝐱(%)
ℎ𝐰(𝐱(%)) = 𝐰(𝐱(%)

Implementation: Vectorization

• Version 3: Compute gradient, vectorized.

grad = X.dot(w.dot(X) − t) / N

NumPy code above assumes examples stored in columns of X.
Exercise: Rewrite to work with examples stored on rows.

33

𝛻𝐽 𝐰 =
1
𝑁
C
%2#

3

ℎ𝐰(𝐱(%)) − 𝑡𝑛 𝐱(%)
ℎ𝐰(𝐱(%)) = 𝐰(𝐱(%)

Batch Gradient Descent: Ridge Regression

• Sum-of-squares error + regularizer

34

𝐽 𝐰 =
1
2𝑁

/
,-#

.

ℎ𝐰(𝐱(,)) − 𝑡𝑛
/
+
𝜆

2
𝐰 $

𝐰!"# =𝐰! − 𝜂 𝛻𝐽 𝐰!

𝐰!"# =𝐰! − 𝜂 𝜆𝐰 +
1
𝑁
/
,-#

.

ℎ𝐰 𝐱 , − 𝑡𝑛 𝐱 ,

ℎ𝐰(𝐱(%)) = 𝐰(𝐱(%)

Implementation: Vectorization

• Version 3: Compute gradient, vectorized.

grad = 𝜆 ∗ 𝐰 + X.dot(w.dot(X) − t) / N

NumPy code above assumes examples stored in columns of X.
Exercise: Rewrite to work with examples stored on rows.

35

𝛻𝐽 𝐰 = 𝜆𝐰 +
1
𝑁
C
%2#

3

ℎ𝐰(𝐱(%)) − 𝑡𝑛 𝐱(%) ℎ𝐰(𝐱(%)) = 𝐰(𝐱(%)

36

Gradient Descent Optimization Algorithms

• Momentum.
• Nesterov Accelerated Gradient (NAG).
• Adaptive learning rates methods:

– Idea is to perform larger updates for infrequent params and smaller
updates for frequent params, by accumulating previous gradient
values for each parameter.

• Adagrad:
– Divide update by sqrt of sum of squares of past gradients.

• Adadelta.
• RMSProp.
• Adaptive Moment Estimation (Adam)

37

AdaGrad

• Optimized for problems with sparse features.

• Per-parameter learning rate: make smaller updates for
params that are updated more frequently:

• Require less tuning of the learning rate compared with
SGD.

38

𝑤0 = 𝑤0 − 𝜂
1!,#
2"3!,#

where 𝐺4,0 = ∑!-#4 𝑔!,0/

𝑔4,0 =
𝜕𝐽(𝐰)
𝜕𝑤0

RMSProp

• Element-wise gradient: 𝑔04= 𝛻6#𝐽(𝐰4)
• Gradient is 𝐠4 = [𝑔#4, 𝑔/4 , …, 𝑔74]
• Element-wise square gradient: 𝐠4/ = 𝐠4 ∘ 𝐠4

RMSProp:

E4 𝐠/ = 𝛾E48# 𝐠/ + (1 − 𝛾) 𝐠4/

𝐰4"# =𝐰4 −
9

:! 𝐠$ "2
𝐠4

𝛾 is usually set to 0.9, 𝜂 is set to 0.001

39

Adam: Adaptive Moment Estimation

• Maintain an exponentially decaying average of past
gradients (1st m.) and past squared gradients (2nd m.):
1) 𝐦4 = 𝛽# 𝐦48# + (1 − 𝛽#) 𝐠4
2) 𝐯4 = 𝛽# 𝐯48# + (1 − 𝛽#) 𝐠4/

• Biased towards 0 during initial steps, use bias-corrected
first and second order estimates:

1) A𝐦4 =
𝐦!
#8=%!

2) B𝐯4 =
𝐯!

#8=$!

40

Adam: Adaptive Moment Estimation

• First and second moment:
𝐦4 = 𝛽# 𝐦48# + (1 − 𝛽#) 𝐠4
𝐯4 = 𝛽# 𝐯48# + (1 − 𝛽#) 𝐠4/

• Bias-correction:

A𝐦4 =
𝐦!
#8=%!

and B𝐯4 =
𝐯!

#8=$!

Adam:

𝐰4"# =𝐰4 −
9
>𝐯!"2

A𝐦4

41

Visualization

• Adagrad, RMSprop, Adadelta, and Adam are very similar
algorithms that do well in similar circumstances.
– Insofar, Adam might be the best overall choice.

42

Implementation: Gradient Checking

• Want to minimize J(θ), where θ is a scalar.

• Mathematical definition of derivative:

• Numerical approximation of derivative:

d
dθ

J(θ) = lim
ε→∞

J(θ +ε)− J(θ −ε)
2ε

d
dθ

J(θ) ≈ J(θ +ε)− J(θ −ε)
2ε

where ε = 0.0001

43

Implementation: Gradient Checking

• If θ is a vector of parameters θi,
– Compute numerical derivative with respect to each θi.
– Aggregate all derivatives into numerical gradient Gnum(θ).

• Compare numerical gradient Gnum(θ) with implementation
of gradient Gimp(θ):

Gnum (θ)−Gimp(θ)
Gnum (θ)+Gimp(θ)

≤10−6

44

