Machine Learning
ITCS 4156

Logistic Regression

Razvan C. Bunescu
Department of Computer Science @ CCI

rbunescu@uncc.edu

mailto:rbunescu@uncc.edu

Supervised Learning

=

Training

Training Examples HI‘:} Leamlng I:__> Model A
(X, 1) Algorithm

4

Testing

@H — [Model / } — Generalization
(x, t) Performance

Supervised Learning

Task = learn an (unkown) function 7 : X — T that maps mput
instances X € X to output targets #x) € T:
— Classification:
* The output #x) € T is one of a finite set of discrete categories.
— Regression:
* The output #x) e T is continuous, or has a continuous component.

Target function #x) 1s known (only) through (noisy) set of
training examples:

(Xlatl)a (X29t2)9 »’ (Xnatn)

Parametric Approaches to Supervised
Learning

Task = build a function A4(x) such that:

— h matches ¢ well on the training data:
=> }1 1s able to fit data that 1t has seen.
— h also matches ¢ well on test data:
=> J1 1s able to generalize to unseen data.

Task = choose % from a “nice” class of functions that
depend on a vector of parameters w:

— h(X) = hy(X) = h(w,X)

— what classes of functions are “nice”?

Three Parametric Approaches to
Classification

1) Discriminant Functions: construct f - X — T that directly
assigns a vector x to a specific class C;.

— Inference and decision combined into a single learning
problem.

— Linear Discriminant: the decision surface is a
hyperplane n X:

 Perceptron
* Support Vector Machines

e Fisher ‘s Linear Discriminant

Three Parametric Approaches to
Classification

2) Probabilistic Discriminative Models: directly model the
posterior class probabilities p(Cy, | x).

— Inference and decision are separate.
— Less data needed to estimate p(C, | xX) than p(x |C)).
— Can accommodate many overlapping features.

* Logistic Regression

e (Conditional Random Fields

Three Parametric Approaches to
Classification

=

3) Probabilistic Generative Models:

— Model class-conditional p(x |C;) as well as the priors
p(C,), then use Bayes’s theorem to find p(C, | x).

e or model p(x,C)) directly, then marginalize to obtain the
posterior probabilities p(C,, | X).

— Inference and decision are separate.

— Can use p(x) for outlier or novelty detection.

— Need to model dependencies between features.
* Naive Bayes.
e Hidden Markov Models.

Generative and Discriminative Classifiers

Suppose we're distinguishing cat from dog images

ImageNet

Generative Classifier:

[

* Build a model of what's in a cat image
 Knows about whiskers, ears, eyes

* Assigns a probability to any image:

* how cat-y is this image?

Given a new image:
Run both models and see which one fits better.

Discriminative Classifier

Just try to distinguish dogs from cats

Oh look, dogs have collars!
Let's ignore everything else.

Finding the correct class ¢ from a document d 1n
Generative vs Discriminative Classifiers

* Naive Bayes

likelihood prior

T TN

¢ =argmax P(d|c) P(c)
ceC

* Logistic Regression

~ posterior

¢ = argmax P(c|d)

ceC

Neurons

Soma is the central part of the neuron:
* where the input signals are combined.

Dendrites are cellular extensions:
* where majority of the input occurs.

Axon i1s a fine, long projection:
* carries nerve signals to other neurons.

Synapses are molecular structures between
axon terminals and other neurons:
* where the communication takes place.

McCulloch-Pitts Neuron Function

X0(1 activation | output
function

X1 ‘
y ; .®
x, @ = 2 o f hy(X)

Algebraic interpretation:

— The output of the neuron is a linear combination of inputs from other neurons,
rescaled by the synaptic weights.

» weights w; correspond to the synaptic weights (activating or inhibiting).
e summation corresponds to combination of signals in the soma.

— It is often transformed through an activation / output function.

Activation Functions

. 0 1fz<0
unit ste 7) =
™ { 1 ifz=0
Perceptron
o 1
logistic f(z) =
l+e™"

Logistic Regression

1

A

identity f(2)=z

Linear Regression

Linear Regression

activation / output
function

L f -®
Ewi'xt]’l (X) i3 E oy
f(@)=z i i

* Polynomial curve fitting 1s Linear Regression:
X = () MER ;"N]

h(x) =w'x

Perceptron

X0 Wo activation
function
X1 . wWq 2 N
%) 3 — ;‘
wW.X. .
xz‘ > 2 ivi _ h (X)= 1 lfWTX>O
3 . w .
—1 ifz<0 —1 otherwise
f()= .
1 ifz=0

* Assume classes'T = {c;, ¢} = {1, —1}.
e Ml raining SEHIS (X1,%), (X8, t3), - - (X Lok
XS 1 i, ,]

h(x) = sgn(w'x) =sgn(wy + w; x; + ... + w,xp)

N

a linear discriminant function 16 |

Linear Discriminant Functions

Use a linear function of the input vector:
h(x) = w' o (x) + wg

weight vector bias = —threshold

Decision:
x € C;if h(x) >0, otherwise x € C,.

= decision boundary is hyperplane /(x) = 0.

Properties:
— w 1s orthogonal to vectors lying within the decision surface.

— w, controls the location of the decision hyperplane.

17
T

Geometric Interpretation

h >0 552‘ I
h =0

Logistic Regression

X0(1 y activation
0

function

1@ Wi a

e 2 2 ¢ =)
@ Wa WX, ' ho(X) = 1 i
f(2)= [+exp(-w'x)
1+exp(-2z)
X3

e Training set 1s (X;,t;), (X5,1), ... (Xp.t,).
xe= [1,595, x,, oy, |1
h(x) = o(W'x)
» (Can be used for both classification and regression:
e C(lassification: T = {C;, C,} = {1, 0}.

e Regression: T = [0, 1] (i.e. output needs to be normalized). o

Logistic Regression for Binary Classification

=

« Model output can be interpreted as posterior class
probabilities:

1

PERISC (TS 1+exp(-w' X))

p(C,1xX)=1-0(W'x) = exp(-w'X)

1+exp(-w'x)

 How do we train a logistic regression model?

— What error/cost function to minimize?

Example: LR for Sentiment Classification

Logistic Regression Learning

=

* Learning = finding the “right” parameters w™ = [wy, w;, ..., w;]

— Find w that minimizes an error function E(w) which measures the
misfit between A(x,,w) and #,.

— Expect that #(x,w) performing well on training examples x, =
h(x,w) will perform well on arbitrary test examples x € X.

« Least Squares error function?
1% ;
E(w)=— h(x ,w)—t
(W) ZZ{ (X, W)=1,}

— Differentiable => can use gradient descent v

— Non-convex => not guaranteed to find the global optimum X

Maximum Likelihood

=

Tramingsciis D =KX, 1. Eiie" {00 1" <1 . AN}
Let h =p(C,1x)< h =p(t, =11x)=0(W'Xx)

Maximum Likelihood (ML) principle: find parameters that
maximize the likelithood of the labels.

N
» The likelihood function is p(tIw)=| [Ar-h,)"
n=1

* The negative log-likelihood (cross entropy) error function:
N

E(W)=~Inp(t1x)== Y {z,Ink, +(1~1,)In(1 - 1)} x%
n=1 /

we also average 23

Maximum Likelihood Learning

for Logistic Regression

[

e The ML solution is:

w,, =argmax p(t|w)=argmin|E(W) e

ML solution 1s given by VE(w) = 0.

-1 convex in w

— Cannot solve analytically => solve numerically with gradient
based methods: (stochastic) gradient descent, conjugate gradient,

L-BFGS, etc.
— GQradient 1s (prove it):

N
VE(W)= Y (h, ~1,)X, x%
n=1

Regularized Logistic Regression

e Use a Gaussian prior over the parameters:

W [W07 Wissee, WM]T

(M~+1)/2
p(w)=N(0,a'T) = (ﬂj exp{— A WTW}
270 2

* Bayes’ Theorem:
p(t{w)p(w)
p(t)

 MAP solution:

p(wW|t)= oc p(t|w)p(w)

W, » =argmax p(w|t)

Regularized Logistic Regression

MAP solution: |
W, » =argmax p(w|t) =argmax p(t|w)p(w) |

= argmin—In p(t| W) p(W)
=argmin—In p(t| w) —In p(w)

=argmin £ ,(w) —In p(w)

=argmin £, (W) + %WTW =argminE,(w)+ E_(w)

N
Ep(W) == {t, Iny, +(1=1,)In(l - y,)}x - data term
n=1

regularization term

Regularized Logistic Regression

e MAP solution:

W, ., =argmmk, (w)+E, (W)

2 still convex in w

-
-
-
-
-
-
-
-
)
-
-
-

« ML solution is given by VE(w) = 0. 2 a0 coliet sy

%3

N
VE(W)= VE,(wW)+ VE_ (W)= %E(kn —t)X, +aW'
n=1

where h, = o(W'x)
e Cannot solve analytically => solve numerically:

— (stochastic) gradient descent [PRML 3.1.3], Newton Raphson
iterative optimization [PRML 4.3.3], conjugate gradient, LBFGS.

Implementation: Vectorization of LR

e Version 1: Compute gradient component-wise.

N
VEw)= Y\ (h, ~1,)x" x%
n=1

— Assume example x,, 1s stored in column X[:,n] in data matrix X.

grad = np.zeros(K)

for n in range(N):
h = sigmoid(w.dot(X[:,n])
temp = h — t[n]
for k in range(K):

def sigmoid(x):
return 1 / (1 + np.exp(—x))

grad[k] = grad[k] + temp * X[k,n] / N

Implementation: Vectorization of LR

[

« Version 2: Compute gradient, partially vectorized.
< 1
~ g ¥
VE(W) = El (h, =1,)X, x~

grad = np.zeros(K)
for n in range(N):
grad = grad + (sigmoid(w.dot(X[:,n])) — t[n]) * X[:,;n] / N

def sigmoid(x):
return 1 / (1 + np.exp(—x))

Implementation: Vectorization of LR

* Version 3: Compute gradient, vectorized.
: 1
VEW)= Y (h —t)X x—=
(W) ;:1(n 1Ky X

grad = X.dot(sigmoid(w.dot(X)) —t) / N

def sigmoid(x):
return 1 / (1 + np.exp(—x))

Vectorization of LR with Separate Bias

* Separate the bias b from the weight vector w.

« Compute gradient separately with respect to w and b:

— @Gradient with respect to w is:
N
1
VE(w) = El (h —t)x. e h, = oc(wW'x,, + b)

grad = X.dot(sigmoid(w.dot(X) + b)) —t) / N

— Gradient with respect to bias b 1s:

def sigmoid(x):
return 1 / (1 + np.exp(—x))

31

Vectorization of LR with Regularization

* Only the gradient with respect to w changes:

— never use L2 regularization on bias.

N
VE(W) = 3 (h, 1,)] X+ aw
=il

grad = X.dot(sigmoid(w.dot(X) + b) —t) / N + aw

Softmax Regression = Logistic Regression
for Multiclass Classification

[

 Multiclass classification:
T={@, Cot, Crhi=41.,.2; ...,/ K},

e Training set 1s (X;,t;), (X5,1), ... (Xp.t,).
X = [1, x1, X9, «eep Xpql
tl) tz, tn = {1, 2, coey K}

* One weight vector per class [PRML 4.3 .4]:

exp(W, X)) exp(Wy Xn + bi)
k Ej Pl) W eXp(wJ'TX" + b))

exp(WX)

5 |

bias parameter inside each w; separate bias parameter b; 33

Softmax Regression (K > 2)

Inference:

C.=arg max p(C, |x)

T
= arg max ()

G |y exp(wix)

————
-—
-
-
—
-
-
-

= arg max exp(W, X)
C

k

T
= argmax w, X
Ck

Training using:

Maximum Likelihood (ML)

Z(X) a normalization
constant

Maximum A Posteriori (MAP) with a Gaussian prior on w.

Softmax Regression

The negative log-likelihood error function is:

El exp(w X) |

71 convex in' w

1 N
E (w)=——1In 95 =
p(W)=-—];[pu 3

The Maximum Likelihood solution is:

w,, =argminE,(w)

The gradient 1s (prove it):
1 N
V, E, (W)= —Nz(ék(tn) - p(C, 1X,))X,
=l

XN =L

1
where J,(x) = {O 1s the Kronecker delta function.
X #1 35

Regularized Softmax Regression

=

e The new cost function 1s:

Ew)=E,(W)+E_(W)

N

1 exp(W{ xp) f &

/% O Z(xy) 2
n=1

Iwl|?

 The new gradient 1s (prove it):

N

1
grad =V, E(W)= —Nz(ék(tn) - p(C, 1x,))X] +aw;

n=1

Softmax Regression

ML solution 1s given by VE,(w) =0 .
— Cannot solve analytically.

— Solve numerically, by pluging [cost, gradient] = [E(w), VE(W)]
values into general convex solvers:

L-BFGS
Newton methods

conjugate gradient

(stochastic / minibatch) gradient-based methods.
— gradient descent (with / without momentum).
— AdaGrad, AdaDelta
— RMSProp
— ADAM, ...

ST
e ———— e

Implementation

=

* Need to compute [cost, grad]:

N K

K

1 a
= cost === ¥ 8, Inp(C,Ix,)+ Y Wiw,

n=1 k=1
N

k=1

 grad, == (6,0,)- p(C,Ix,)x] +aw]

n=1

=> need to compute, for k=1, ..., K:

= output p(C,1x)=

exp(W, X,))

2 .exp(WJT.xn)
J

Overflow when w,'x,
are too large.

Implementation: Preventing Overflows

=

 Subtract from each product w,'x, the maximum product:

T
C=MaxXw, X
4 1<k<K R

When using separate bias b;, replace wi X,, everywhere
with Wi X,, + by,.

Vectorization of Softmax with Separate Bias

e Separate the bias b, from the weight vector w,.

« Compute gradient separately with respect to w;, and b :
— G@Gradient with respect to w;, 1s:

1 N
grad,=-— ¥ (0,(t,)- P(C, 1x,))x; +aw;
n=1

Gradient matrix 1s [grad, | grad, | ... | grady]
""" TSRS e & Culxy = — SXPWEXn + by)
— (@Gradient with respect to b, 1s: PitklXn) = =1k eXp(W Xy, + b))
Ab, DN c 1,if tn = k
- _NZ(e(t) = p(Cilx) 5.t = {O'if b = K
n=) n

Gradient vector i1s Ab =[Ab; | Ab, | ... | Abg]

Vectorization of Softmax

exp(w,fxn + by)

* Need to compute [cost, grad, Ab]: p(ciix,) = 5

j=1.K exp(ijxn + bj)

1 N K a K
e Ot) Inp(C, 1x)+= VY ww
NEE k(n) p(k n) 2; 2 0

n=1 k=1

" grad, = %2(5 (t,)-p(C,1x,))X, +aw,

n=1

=> compute ground truth matrix G such that G[k,n] = §,(z,)

5.6y = {1 if ta=F
from scipy.sparse import coo_matrix 0 if ty # K

groundTruth = coo _matrix((np.ones(N, dtype = np.uint§),
(labels, np.arange(N)))).toarray()

41
R

Vectorization of Softmax

=

 Compute cost———EE(S (t)Inp(C, 1x,)+— Ewkwk

nlkl

— Compute matrix of w,7; AT exp(WLx,, + by)
kn

Zj=1,_1(eXp(WjTXn + bj)

p(Cklxn) =

— Compute matrix of w,{xn 4, = &
C(1,ift, =k
Bre(tn) = {O,if t, #k

— Compute matrix of exp(W. X, + by — cp).

¢ = maxw, X, +by,
I<k<K

— Compute matrix of In p(Cr |X,,).

— Compute log-likelihood cost using all the above.

Vectorization of Softmax

N
e Compute grad, = —%E(ék(tn) - p(C 1x))X, +aw,

n=1

= Gradient matrix = [grad, | grad, | ... | grady]

exp(w,?xn + by)

— Compute matrix of p(Ci|X;,). P(Clxn) = Y ic1.x eXp(W/ Xy, + b))
. . sy [Lifta=k
— Compute matrix of gradient of data term. k() =10 Jif tg £ k

— Compute matrix of gradient of regularization term.

Vectorization of Softmax

e Useful Numpy functions:
— np.dot()
— np.amax()
— np.argmax()
— np.exp()

— np.sum()

— np.log()
— np.mean()

Implementation: Gradient Checking

Want to minimize J(6), where 6 1s a scalar.

Mathematical definition of derivative:

J(9' 1 8) = J(OE=te)
2&

d :
=

Numerical approximation of derivative:

ij(@)z JO+e)-J(O-¢)
db 2¢€

where € = 0.0001

Implementation: Gradient Checking

=

* If 0 1s a vector of parameters 0,
— Compute numerical derivative with respect to each 0..
* Create a vector v that is € in position i and 0 everywhere else:
— How do you do this without a for loop in NumPy?
e Compute G,,,(0,) = (J(0 +v) —J(0 —V))/2¢

— Aggregate all derivatives into numerical gradient G,,,(0).

e Compare numerical gradient G,,,(0) with implementation
of gradient Gy,,(0):

G (8)- G, (0)] _
(0)+G,,,(0)

<10°

|6

num

