
Razvan C. Bunescu

Department of Computer Science @ CCI

rbunescu@uncc.edu

Logistic Regression

Machine Learning
ITCS 4156

1

mailto:rbunescu@uncc.edu

Supervised Learning

Training Examples
(xk, tk)

Test Examples
(x, t)

Learning
Algorithm Model h

Model h

Training

Testing

Generalization
Performance

2

Supervised Learning

• Task = learn an (unkown) function t : X ® T that maps input
instances x Î X to output targets t(x) Î T:
– Classification:

• The output t(x) Î T is one of a finite set of discrete categories.
– Regression:

• The output t(x) Î T is continuous, or has a continuous component.

• Target function t(x) is known (only) through (noisy) set of
training examples:

(x1,t1), (x2,t2), … (xn,tn)

3

Parametric Approaches to Supervised
Learning

• Task = build a function h(x) such that:
– h matches t well on the training data:

=> h is able to fit data that it has seen.
– h also matches t well on test data:

=> h is able to generalize to unseen data.

• Task = choose h from a “nice” class of functions that
depend on a vector of parameters w:
– h(x) º hw(x) º h(w,x)
– what classes of functions are “nice”?

4

Three Parametric Approaches to
Classification

1) Discriminant Functions: construct f : X ® T that directly
assigns a vector x to a specific class Ck.
– Inference and decision combined into a single learning

problem.
– Linear Discriminant: the decision surface is a

hyperplane in X:
• Perceptron
• Support Vector Machines
• Fisher ‘s Linear Discriminant

5

Three Parametric Approaches to
Classification

2) Probabilistic Discriminative Models: directly model the
posterior class probabilities p(Ck | x).
– Inference and decision are separate.
– Less data needed to estimate p(Ck | x) than p(x |Ck).
– Can accommodate many overlapping features.

• Logistic Regression
• Conditional Random Fields

6

Three Parametric Approaches to
Classification

3) Probabilistic Generative Models:
– Model class-conditional p(x |Ck) as well as the priors

p(Ck), then use Bayes’s theorem to find p(Ck | x).
• or model p(x,Ck) directly, then marginalize to obtain the

posterior probabilities p(Ck | x).

– Inference and decision are separate.
– Can use p(x) for outlier or novelty detection.
– Need to model dependencies between features.

• Naïve Bayes.
• Hidden Markov Models.

7

Generative and Discriminative Classifiers

Suppose we're distinguishing cat from dog images

ImageNet ImageNet

8

Generative Classifier:

• Build a model of what's in a cat image
• Knows about whiskers, ears, eyes
• Assigns a probability to any image:

• how cat-y is this image?

Also build a model for dog images

Given a new image:
Run both models and see which one fits better.

9

Discriminative Classifier

Just try to distinguish dogs from cats

Oh look, dogs have collars!
Let's ignore everything else.

10

Finding the correct class c from a document d in
Generative vs Discriminative Classifiers

• Naive Bayes

• Logistic Regression

2 CHAPTER 5 • LOGISTIC REGRESSION

More formally, recall that the naive Bayes assigns a class c to a document d not
by directly computing P(c|d) but by computing a likelihood and a prior

ĉ = argmax
c2C

likelihoodz }| {
P(d|c)

prior
z}|{
P(c) (5.1)

A generative model like naive Bayes makes use of this likelihood term, whichgenerative
model

expresses how to generate the features of a document if we knew it was of class c.
By contrast a discriminative model in this text categorization scenario attemptsdiscriminative

model
to directly compute P(c|d). Perhaps it will learn to assign high weight to document
features that directly improve its ability to discriminate between possible classes,
even if it couldn’t generate an example of one of the classes.

Components of a probabilistic machine learning classifier: Like naive Bayes,
logistic regression is a probabilistic classifier that makes use of supervised machine
learning. Machine learning classifiers require a training corpus of M observations
input/output pairs (x(i),y(i)). (We’ll use superscripts in parentheses to refer to indi-
vidual instances in the training set—for sentiment classification each instance might
be an individual document to be classified). A machine learning system for classifi-
cation then has four components:

1. A feature representation of the input. For each input observation x(i), this
will be a vector of features [x1,x2, ...,xn]. We will generally refer to feature
i for input x(j) as x(j)

i , sometimes simplified as xi, but we will also see the
notation fi, fi(x), or, for multiclass classification, fi(c,x).

2. A classification function that computes ŷ, the estimated class, via p(y|x). In
the next section we will introduce the sigmoid and softmax tools for classifi-
cation.

3. An objective function for learning, usually involving minimizing error on
training examples. We will introduce the cross-entropy loss function

4. An algorithm for optimizing the objective function. We introduce the stochas-
tic gradient descent algorithm.

Logistic regression has two phases:

training: we train the system (specifically the weights w and b) using stochastic
gradient descent and the cross-entropy loss.

test: Given a test example x we compute p(y|x) and return the higher probability
label y = 1 or y = 0.

5.1 Classification: the sigmoid

The goal of binary logistic regression is to train a classifier that can make a binary
decision about the class of a new input observation. Here we introduce the sigmoid
classifier that will help us make this decision.

Consider a single input observation x, which we will represent by a vector of
features [x1,x2, ...,xn] (we’ll show sample features in the next subsection). The clas-
sifier output y can be 1 (meaning the observation is a member of the class) or 0
(the observation is not a member of the class). We want to know the probability
P(y = 1|x) that this observation is a member of the class. So perhaps the decision

2 CHAPTER 5 • LOGISTIC REGRESSION

More formally, recall that the naive Bayes assigns a class c to a document d not
by directly computing P(c|d) but by computing a likelihood and a prior

ĉ = argmax
c2C

likelihoodz }| {
P(d|c)

prior
z}|{
P(c) (5.1)

A generative model like naive Bayes makes use of this likelihood term, whichgenerative
model

expresses how to generate the features of a document if we knew it was of class c.
By contrast a discriminative model in this text categorization scenario attemptsdiscriminative

model
to directly compute P(c|d). Perhaps it will learn to assign high weight to document
features that directly improve its ability to discriminate between possible classes,
even if it couldn’t generate an example of one of the classes.

Components of a probabilistic machine learning classifier: Like naive Bayes,
logistic regression is a probabilistic classifier that makes use of supervised machine
learning. Machine learning classifiers require a training corpus of M observations
input/output pairs (x(i),y(i)). (We’ll use superscripts in parentheses to refer to indi-
vidual instances in the training set—for sentiment classification each instance might
be an individual document to be classified). A machine learning system for classifi-
cation then has four components:

1. A feature representation of the input. For each input observation x(i), this
will be a vector of features [x1,x2, ...,xn]. We will generally refer to feature
i for input x(j) as x(j)

i , sometimes simplified as xi, but we will also see the
notation fi, fi(x), or, for multiclass classification, fi(c,x).

2. A classification function that computes ŷ, the estimated class, via p(y|x). In
the next section we will introduce the sigmoid and softmax tools for classifi-
cation.

3. An objective function for learning, usually involving minimizing error on
training examples. We will introduce the cross-entropy loss function

4. An algorithm for optimizing the objective function. We introduce the stochas-
tic gradient descent algorithm.

Logistic regression has two phases:

training: we train the system (specifically the weights w and b) using stochastic
gradient descent and the cross-entropy loss.

test: Given a test example x we compute p(y|x) and return the higher probability
label y = 1 or y = 0.

5.1 Classification: the sigmoid

The goal of binary logistic regression is to train a classifier that can make a binary
decision about the class of a new input observation. Here we introduce the sigmoid
classifier that will help us make this decision.

Consider a single input observation x, which we will represent by a vector of
features [x1,x2, ...,xn] (we’ll show sample features in the next subsection). The clas-
sifier output y can be 1 (meaning the observation is a member of the class) or 0
(the observation is not a member of the class). We want to know the probability
P(y = 1|x) that this observation is a member of the class. So perhaps the decision

P(c|d)
posterior

11

Neurons

Soma is the central part of the neuron:
• where the input signals are combined.

Dendrites are cellular extensions:
• where majority of the input occurs.

Axon is a fine, long projection:
• carries nerve signals to other neurons.

Synapses are molecular structures between
axon terminals and other neurons:
• where the communication takes place.

12

McCulloch-Pitts Neuron Function

Σ f

1x0

x1

x2

x3

wixi∑ hw(x)

activation / output
function

w0
w1

w2
w3

• Algebraic interpretation:
– The output of the neuron is a linear combination of inputs from other neurons,

rescaled by the synaptic weights.
• weights wi correspond to the synaptic weights (activating or inhibiting).
• summation corresponds to combination of signals in the soma.

– It is often transformed through an activation / output function.

13

Activation Functions

1

0

f (z) = 1
1+ e−z

logistic

f (z) = 0 if z < 0
1 if z ≥ 0

"
#
$

%$
unit step

f (z) = zidentity

Perceptron

Logistic Regression
Linear Regression

14

Linear Regression

• Polynomial curve fitting is Linear Regression:
x = φ(x) = [1, x, x2, ..., xM]T

h(x) = wTx

Σ f

1x0

x1

x2

x3

wixi∑ hw(x) =

activation / output
function

w0
w1

w2
w3 f (z) = z wixi∑

15

Perceptron

• Assume classes T = {c1, c2} = {1, −1}.
• Training set is (x1, t1), (x2, t2), … (xn, tn).

x = [1, x1, x2, ..., xk]T

h(x) = sgn(wTx) = sgn(w0 + w1 x1 + … + wk xk)

Σ

1x0

x1

x2

x3

wixi∑
hw(x)

activation
function f

w0
w1

w2
w3 = 1 if wTx > 0

0 otherwise

!
"
#

$#f (z) = 0 if z < 0
1 if z ≥ 0

"
#
$

%$

16

−1 −1

a linear discriminant function

• Use a linear function of the input vector:

• Decision:
x Î C1 if h(x) ³ 0, otherwise x Î C2.
Þ decision boundary is hyperplane h(x) = 0.

• Properties:
– w is orthogonal to vectors lying within the decision surface.
– w0 controls the location of the decision hyperplane.

17

Linear Discriminant Functions

weight vector bias = - threshold

ℎ 𝐱 = 𝐰!𝜑 𝐱 + 𝑤"

Geometric Interpretation

18

h
h

hhh

hh

Logistic Regression

• Training set is (x1,t1), (x2,t2), … (xn,tn).
x = [1, x1, x2, ..., xk]T

h(x) = σ(wTx)
• Can be used for both classification and regression:

• Classification: T = {C1, C2} = {1, 0}.
• Regression: T = [0, 1] (i.e. output needs to be normalized).

Σ

1x0

x1

x2

x3

wixi∑ hw(x)

activation
function f

w0
w1

w2
w3 =

1
1+ exp(−wTx)f (z) = 1

1+ exp(−z)

19

Logistic Regression for Binary Classification

• Model output can be interpreted as posterior class
probabilities:

• How do we train a logistic regression model?
– What error/cost function to minimize?

p(C1 | x) =σ (w
Tx) = 1

1+ exp(−wTx))

p(C2 | x) =1−σ (w
Tx) = exp(−wTx)

1+ exp(−wTx)

20

Example: LR for Sentiment Classification

21

Logistic Regression Learning

• Learning = finding the “right” parameters wT = [w0, w1, … , wk]
– Find w that minimizes an error function E(w) which measures the

misfit between h(xn,w) and tn.
– Expect that h(x,w) performing well on training examples xnÞ

h(x,w) will perform well on arbitrary test examples x Î X.

• Least Squares error function?

E(w) = 1
2

{h(xn,w)− tn}
2

n=1

N

∑

– Differentiable => can use gradient descent ✓
– Non-convex => not guaranteed to find the global optimum ✗

22

Maximum Likelihood

Training set is D = {áxn, tnñ | tnÎ {0,1}, n Î 1…N}

Let

Maximum Likelihood (ML) principle: find parameters that
maximize the likelihood of the labels.

• The likelihood function is

• The negative log-likelihood (cross entropy) error function:

p(t |w) = hn
tn (1− hn)

(1−tn)

n=1

N

∏

hn = p(C1 | xn)⇔ hn = p(tn =1| xn) =σ (w
Txn)

E(w) = − ln p(t | x) = − tn lnhn + (1− tn)ln(1− hn){ }
n=1

N

∑ ×
1
𝑁

we also average 23

Maximum Likelihood Learning
for Logistic Regression

• The ML solution is:

• ML solution is given by ÑE(w) = 0.
– Cannot solve analytically => solve numerically with gradient

based methods: (stochastic) gradient descent, conjugate gradient,
L-BFGS, etc.

– Gradient is (prove it):

∇E(w) = (hn − tn)xn
T

n=1

N

∑

wML = argmaxw p(t |w) = argmin
w
E(w)

convex in w

×
1
𝑁

24

Regularized Logistic Regression

• Use a Gaussian prior over the parameters:
w = [w0, w1, … , wM]T

• Bayes’ Theorem:

• MAP solution:

þ
ý
ü

î
í
ì-÷

ø
ö

ç
è
æ==

+
- wwI0w T

M

Νp
2

exp
2

),()(
2/)1(

1 a
p
aa

)()|(
)(

)()|()|(wwt
t
wwttw pp

p
ppp µ=

)|(maxarg tww
w
pMAP =

25

Regularized Logistic Regression

• MAP solution:
)|(maxarg tww

w
pMAP =)()|(maxarg wwt

w
pp=

)()|(lnminarg wwt
w

pp-=

)(ln)|(lnminarg wwt
w

pp --=

)(ln)(minarg ww
w

pED -=

www
w

T
DE 2

)(minarg a
+=)()(minarg ww ww

EED +=

{ }å
=

--+-=
N

n
nnnnD ytytE

1
)1ln()1(ln)(w

wwww
TE

2
)(a
=

data term

regularization term

×
1
𝑁

26

Regularized Logistic Regression

• MAP solution:

• ML solution is given by ÑE(w) = 0.

ÑE(w) = ÑED(w) + ÑEw(w) =

• Cannot solve analytically => solve numerically:
– (stochastic) gradient descent [PRML 3.1.3], Newton Raphson

iterative optimization [PRML 4.3.3], conjugate gradient, LBFGS.

)()(minarg www ww
EEDMAP +=

= (hn − tn)xn
T +αwT

n=1

N

∑

still convex in w

where hn =σ (w
Txn)

1
𝑁

27

⍺ is also called decay

Implementation: Vectorization of LR

• Version 1: Compute gradient component-wise.

– Assume example xn is stored in column X[:,n] in data matrix X.

grad = np.zeros(K)
for n in range(N):

h = sigmoid(w.dot(X[:,n])
temp = h − t[n]
for k in range(K):
grad[k] = grad[k] + temp * X[k,n] / N

∇E(w) = (hn − tn)xn
T

n=1

N

∑

def sigmoid(x):
return 1 / (1 + np.exp(−x))

×
1
𝑁

28

Implementation: Vectorization of LR

• Version 2: Compute gradient, partially vectorized.

grad = np.zeros(K)
for n in range(N):

grad = grad + (sigmoid(w.dot(X[:,n])) − t[n]) * X[:,n] / N

∇E(w) = (hn − tn)xn
T

n=1

N

∑

def sigmoid(x):
return 1 / (1 + np.exp(−x))

×
1
𝑁

29

Implementation: Vectorization of LR

• Version 3: Compute gradient, vectorized.

grad = X.dot(sigmoid(w.dot(X)) − t) / N

∇E(w) = (hn − tn)xn
T

n=1

N

∑

def sigmoid(x):
return 1 / (1 + np.exp(−x))

×
1
𝑁

30

Vectorization of LR with Separate Bias

• Separate the bias b from the weight vector w.
• Compute gradient separately with respect to w and b:

– Gradient with respect to w is:

grad = X.dot(sigmoid(w.dot(X) + b) − t) / N

– Gradient with respect to bias b is:

∇E(w) = (hn − tn)xn
T

n=1

N

∑

def sigmoid(x):
return 1 / (1 + np.exp(−x))

Δ𝑏 = −
1
𝑁)
!"#

$

ℎ! − 𝑡!

×
1
𝑁

31

ℎ# = 𝜎(𝐰!𝐱# + 𝑏)

Vectorization of LR with Regularization

• Only the gradient with respect to w changes:
– never use L2 regularization on bias.

grad = X.dot(sigmoid(w.dot(X) + b) − t) / N + ⍺w

32

∇E(w) = (hn − tn)xn
T

n=1

N

∑ ×
1
𝑁
+ 𝛼𝐰

Softmax Regression = Logistic Regression
for Multiclass Classification

• Multiclass classification:
T = {C1, C2, ..., CK} = {1, 2, ..., K}.

• Training set is (x1,t1), (x2,t2), … (xn,tn).
x = [1, x1, x2, ..., xM]
t1, t2, … tn Î {1, 2, ..., K}

• One weight vector per class [PRML 4.3.4]:

p(Ck | x) =
exp(wk

Tx))
exp(w j

Tx)
j∑

33

𝑝 𝐶% 𝐱! =
exp(𝐰%

&𝐱! + 𝑏%)
∑'"#..) exp(𝐰'&𝐱! + 𝑏')

bias parameter inside each wj separate bias parameter bj

Softmax Regression (K ³ 2)

• Inference:

• Training using:
– Maximum Likelihood (ML)
– Maximum A Posteriori (MAP) with a Gaussian prior on w.

)|(maxarg* xkC
CpC

k

=

= argmax
Ck

exp(wk
Tx)

exp(w j
Tx)

j∑
Z(x) a normalization
constant

= argmax
Ck
exp(wk

Tx)

= argmax
Ck
wk

Tx

34

Softmax Regression

• The negative log-likelihood error function is:

• The Maximum Likelihood solution is:

• The gradient is (prove it):

ED (w) = −
1
N
ln p(tn | xn)

n=1

N

∏
convex in w

= −
1
N

ln
exp(wtn

T xn)
Z(xn)n=1

N

∑

î
í
ì

¹
=

=
tx
tx

xt 0
1

)(dwhere is the Kronecker delta function.

)(minarg ww
w DML E=

∇wk
ED (w) = −

1
N

δk (tn)− p(Ck | xn)()
n=1

N

∑ xn

35

Regularized Softmax Regression

• The new cost function is:

• The new gradient is (prove it):

E(w) = ED (w)+Ew (w)

∇wk
E(w) = − 1

N
δk (tn)− p(Ck | xn)()xnT

n=1

N

∑ +αwk
T

= −
1
𝑁
0
#$%

&

ln
exp 𝐰'!

! 𝐱#
𝑍 𝐱#

+
𝛼
2
𝐰 (

gradk=

36

Softmax Regression

• ML solution is given by ÑED(w) = 0 .
– Cannot solve analytically.

– Solve numerically, by pluging [cost, gradient] = [E(w), ÑE(w)]
values into general convex solvers:

• L-BFGS
• Newton methods
• conjugate gradient
• (stochastic / minibatch) gradient-based methods.

– gradient descent (with / without momentum).
– AdaGrad, AdaDelta
– RMSProp
– ADAM, ...

37

Implementation

• Need to compute [cost, grad]:

§ cost

§ gradk

=> need to compute, for k = 1, ..., K:

§ output

= −
1
N

δk (tn)ln p(Ck | xn)
k=1

K

∑
n=1

N

∑ +
α
2

wk
T

k=1

K

∑ wk

= −
1
N

δk (tn)− p(Ck | xn)()xnT
n=1

N

∑ +αwk
T

p(Ck | xn) =
exp(wk

Txn))
exp(w j

Txn)j∑ Overflow when wk
Txn

are too large.

38

Implementation: Preventing Overflows

• Subtract from each product wk
Txn the maximum product:

• When using separate bias bk, replace 𝐰89𝐱: everywhere
with 𝐰89𝐱: + 𝑏8.

c =max
1≤k≤K

wk
Txn

p(Ck | xn) =
exp(wk

Txn − c))
exp(w j

Txn − c)j∑

n

n

n

39

Vectorization of Softmax with Separate Bias

• Separate the bias bk from the weight vector wk.
• Compute gradient separately with respect to wk and bk :

– Gradient with respect to wk is:

– Gradient with respect to bk is:

= −
1
N

δk (tn)− p(Ck | xn)()xnT
n=1

N

∑ +αwk
Tgradk

Δ𝑏% = −
1
𝑁)
!"#

$

𝛿% 𝑡! − 𝑝(𝐶%|𝐱!)

Gradient matrix is [grad1 | grad2 | … | gradK]

Gradient vector is Δb =[Δ𝑏% | Δ𝑏(| … | Δ𝑏)]

𝑝 𝐶" 𝐱# =
exp(𝐰"$𝐱# + 𝑏")

∑%&'..) exp(𝐰%$𝐱# + 𝑏%)

𝛿" 𝑡# = 01 , 𝑖𝑓 𝑡# = 𝑘
0 , 𝑖𝑓 𝑡# ≠ 𝑘

40

Vectorization of Softmax

• Need to compute [cost, grad, Δb]:

§ cost

§ gradk

=> compute ground truth matrix G such that G[k,n] = 𝛿k(tn)

from scipy.sparse import coo_matrix
groundTruth = coo_matrix((np.ones(N, dtype = np.uint8),

(labels, np.arange(N)))).toarray()

= −
1
N

δk (tn)ln p(Ck | xn)
k=1

K

∑
n=1

N

∑ +
α
2

wk
T

k=1

K

∑ wk

= −
1
N

δk (tn)− p(Ck | xn)()xnT
n=1

N

∑ +αwk
T

𝑝 𝐶" 𝐱# =
exp(𝐰"$𝐱# + 𝑏")

∑%&'..) exp(𝐰%$𝐱# + 𝑏%)

41

𝛿" 𝑡# = 01 , 𝑖𝑓 𝑡# = 𝑘
0 , 𝑖𝑓 𝑡# ≠ 𝑘

Vectorization of Softmax

• Compute cost

– Compute matrix of 𝐰*!𝐱# + 𝑏*.

– Compute matrix of 𝐰*!𝐱# + 𝑏* − 𝑐#.

– Compute matrix of exp(𝐰*!𝐱# + 𝑏* − 𝑐#).

– Compute matrix of ln 𝑝(𝐶*|𝐱#).

– Compute log-likelihood cost using all the above.

= −
1
N

δk (tn)ln p(Ck | xn)
k=1

K

∑
n=1

N

∑ +
α
2

wk
T

k=1

K

∑ wk

𝑝 𝐶" 𝐱# =
exp(𝐰"$𝐱# + 𝑏")

∑%&'..) exp(𝐰%$𝐱# + 𝑏%)

42

𝛿" 𝑡# = 01 , 𝑖𝑓 𝑡# = 𝑘
0 , 𝑖𝑓 𝑡# ≠ 𝑘

c =max
1≤k≤K

wk
Txn+𝑏%n

Vectorization of Softmax

• Compute gradk

§ Gradient matrix = [grad1 | grad2 | … | gradK]

– Compute matrix of 𝑝(𝐶*|𝐱#).

– Compute matrix of gradient of data term.

– Compute matrix of gradient of regularization term.

= −
1
N

δk (tn)− p(Ck | xn)()xnT
n=1

N

∑ +αwk
T

𝑝 𝐶" 𝐱# =
exp(𝐰"$𝐱# + 𝑏")

∑%&'..) exp(𝐰%$𝐱# + 𝑏%)

43

𝛿" 𝑡# = 01 , 𝑖𝑓 𝑡# = 𝑘
0 , 𝑖𝑓 𝑡# ≠ 𝑘

Vectorization of Softmax

• Useful Numpy functions:
– np.dot()
– np.amax()
– np.argmax()
– np.exp()
– np.sum()
– np.log()
– np.mean()

44

Implementation: Gradient Checking

• Want to minimize J(θ), where θ is a scalar.

• Mathematical definition of derivative:

• Numerical approximation of derivative:

d
dθ

J(θ) ≈ J(θ +ε)− J(θ −ε)
2ε

where ε = 0.0001

𝑑
𝑑𝜃 𝐽 𝜃 = lim

8→:

𝐽 𝜃 + 𝜀 − 𝐽(𝜃 − 𝜀)
2𝜀

45

Implementation: Gradient Checking

• If θ is a vector of parameters θi,
– Compute numerical derivative with respect to each θi.

• Create a vector v that is ε in position i and 0 everywhere else:
– How do you do this without a for loop in NumPy?

• Compute Gnum(θi) = (J(θ +v) − J(θ − v)) / 2ε
– Aggregate all derivatives into numerical gradient Gnum(θ).

• Compare numerical gradient Gnum(θ) with implementation
of gradient Gimp(θ):

Gnum (θ)−Gimp(θ)
Gnum (θ)+Gimp(θ)

≤10−6

46

