Machine Learning ITCS 4156

Logistic Regression

Razvan C. Bunescu
Department of Computer Science @ CCI

rbunescu@uncc.edu

Supervised Learning

Training

Testing

Test Examples

Model h

Supervised Learning

- Task = learn an (unkown) function $t: \mathrm{X} \rightarrow \mathrm{T}$ that maps input instances $\mathbf{x} \in X$ to output targets $t(\mathbf{x}) \in \mathrm{T}$:
- Classification:
- The output $t(\mathbf{x}) \in \mathrm{T}$ is one of a finite set of discrete categories.
- Regression:
- The output $t(\mathbf{x}) \in \mathrm{T}$ is continuous, or has a continuous component.
- Target function $t(\mathbf{x})$ is known (only) through (noisy) set of training examples:

$$
\left(\mathbf{x}_{1}, t_{1}\right),\left(\mathbf{x}_{2}, t_{2}\right), \ldots\left(\mathbf{x}_{n}, t_{n}\right)
$$

Parametric Approaches to Supervised Learning

- Task = build a function $h(\mathbf{x})$ such that:
- h matches t well on the training data:
$=>h$ is able to fit data that it has seen.
- h also matches t well on test data:
$=>h$ is able to generalize to unseen data.
- Task = choose h from a "nice" class of functions that depend on a vector of parameters \mathbf{w} :
$-h(\mathbf{x}) \equiv h_{\mathbf{w}}(\mathbf{x}) \equiv h(\mathbf{w}, \mathbf{x})$
- what classes of functions are "nice"?

Three Parametric Approaches to Classification

1) Discriminant Functions: construct $f: \mathrm{X} \rightarrow \mathrm{T}$ that directly assigns a vector \mathbf{x} to a specific class C_{k}.

- Inference and decision combined into a single learning problem.
- Linear Discriminant: the decision surface is a hyperplane in X:
- Perceptron
- Support Vector Machines
- Fisher 's Linear Discriminant

Three Parametric Approaches to Classification

2) Probabilistic Discriminative Models: directly model the posterior class probabilities $p\left(C_{k} \mid \mathbf{x}\right)$.

- Inference and decision are separate.
- Less data needed to estimate $p\left(C_{k} \mid \mathbf{x}\right)$ than $p\left(\mathbf{x} \mid C_{k}\right)$.
- Can accommodate many overlapping features.
- Logistic Regression
- Conditional Random Fields

Three Parametric Approaches to Classification

3) Probabilistic Generative Models:

- Model class-conditional $p\left(\mathbf{x} \mid C_{k}\right)$ as well as the priors $p\left(C_{k}\right)$, then use Bayes's theorem to find $p\left(C_{k} \mid \mathbf{x}\right)$.
- or model $p\left(\mathbf{x}, C_{k}\right)$ directly, then marginalize to obtain the posterior probabilities $p\left(C_{k} \mid \mathbf{x}\right)$.
- Inference and decision are separate.
- Can use $p(\mathbf{x})$ for outlier or novelty detection.
- Need to model dependencies between features.
- Naïve Bayes.
- Hidden Markov Models.

Generative and Discriminative Classifiers

Suppose we're distinguishing cat from dog images

ImageNet

ImageNet

Generative Classifier:

- Build a model of what's in a cat image - Knows about whiskers, ears, eyes
- Assigns a probability to any image:
- how cat-y is this image?

Also build a model for dog images

Given a new image:
Run both models and see which one fits better.

Discriminative Classifier

Just try to distinguish dogs from cats

Oh look, dogs have collars!
Let's ignore everything else.

Finding the correct class c from a document d in Generative vs Discriminative Classifiers

- Naive Bayes

$$
\hat{c}=\underset{c \in C}{\operatorname{argmax}} \overbrace{P(d \mid c)}^{\text {likelihood }} \overbrace{P(c)}^{\text {prior }}
$$

- Logistic Regression

$$
\hat{c}=\underset{c \in C}{ } \begin{array}{ll}
\text { posterior } \\
\operatorname{argmax} & P(c \mid d)
\end{array}
$$

Neurons

Soma is the central part of the neuron:

- where the input signals are combined.

Dendrites are cellular extensions:

- where majority of the input occurs.

Axon is a fine, long projection:

- carries nerve signals to other neurons.

Synapses are molecular structures between axon terminals and other neurons:

- where the communication takes place.

McCulloch-Pitts Neuron Function

- Algebraic interpretation:
- The output of the neuron is a linear combination of inputs from other neurons, rescaled by the synaptic weights.
- weights w_{i} correspond to the synaptic weights (activating or inhibiting).
- summation corresponds to combination of signals in the soma.
- It is often transformed through an activation / output function.

Activation Functions

Linear Regression

- Polynomial curve fitting is Linear Regression:

$$
\begin{aligned}
& \mathbf{x}=\varphi(x)=\left[1, x, x^{2}, \ldots, x^{\mathrm{M}}\right]^{\mathrm{T}} \\
& h(\mathbf{x})=\mathbf{w}^{\mathrm{T}} \mathbf{x}
\end{aligned}
$$

Perceptron

- Assume classes $T=\left\{\mathrm{c}_{1}, \mathrm{c}_{2}\right\}=\{1,-1\}$.
- Training set is $\left(\mathbf{x}_{1}, \mathrm{t}_{1}\right),\left(\mathbf{x}_{2}, \mathrm{t}_{2}\right), \ldots\left(\mathbf{x}_{\mathrm{n}}, \mathrm{t}_{\mathrm{n}}\right)$.

$$
\begin{aligned}
& \mathbf{x}=\left[1, x_{1}, x_{2}, \ldots, x_{k}\right]^{\mathrm{T}} \\
& h(\mathbf{x})=\operatorname{sgn}\left(\mathbf{w}^{\mathrm{T}} \mathbf{x}\right)=\operatorname{sgn}\left(w_{0}+w_{1} x_{1}+\ldots+w_{k} x_{k}\right)
\end{aligned}
$$

Linear Discriminant Functions

- Use a linear function of the input vector:

- Decision:
$\mathbf{x} \in C_{l}$ if $h(\mathbf{x}) \geq 0$, otherwise $\mathbf{x} \in C_{2}$.
\Rightarrow decision boundary is hyperplane $h(\mathbf{x})=0$.
- Properties:
- \mathbf{w} is orthogonal to vectors lying within the decision surface.
- w_{0} controls the location of the decision hyperplane.

Geometric Interpretation

Logistic Regression

- Training set is $\left(\mathbf{x}_{1}, \mathrm{t}_{1}\right),\left(\mathbf{x}_{2}, \mathrm{t}_{2}\right), \ldots\left(\mathbf{x}_{\mathrm{n}}, \mathrm{t}_{\mathrm{n}}\right)$.

$$
\begin{aligned}
& \mathbf{x}=\left[1, x_{1}, x_{2}, \ldots, x_{k}\right]^{\mathrm{T}} \\
& h(\mathbf{x})=\sigma\left(\mathbf{w}^{\mathrm{T}} \mathbf{x}\right)
\end{aligned}
$$

- Can be used for both classification and regression:
- Classification: $\mathrm{T}=\left\{\mathrm{C}_{1}, \mathrm{C}_{2}\right\}=\{1,0\}$.
- Regression: $\mathrm{T}=[0,1]$ (i.e. output needs to be normalized).

Logistic Regression for Binary Classification

- Model output can be interpreted as posterior class probabilities:

$$
\begin{aligned}
& p\left(C_{1} \mid \mathbf{x}\right)=\sigma\left(\mathbf{w}^{T} \mathbf{x}\right)=\frac{1}{\left.1+\exp \left(-\mathbf{w}^{T} \mathbf{x}\right)\right)} \\
& p\left(C_{2} \mid \mathbf{x}\right)=1-\sigma\left(\mathbf{w}^{T} \mathbf{x}\right)=\frac{\exp \left(-\mathbf{w}^{T} \mathbf{x}\right)}{1+\exp \left(-\mathbf{w}^{T} \mathbf{x}\right)}
\end{aligned}
$$

- How do we train a logistic regression model?
- What error/cost function to minimize?

Example: LR for Sentiment Classification

Logistic Regression Learning

- Learning $=$ finding the "right" parameters $\mathbf{w}^{\mathrm{T}}=\left[w_{0}, w_{l}, \ldots, w_{k}\right]$
- Find \mathbf{w} that minimizes an error function $E(\mathbf{w})$ which measures the misfit between $h\left(\mathbf{x}_{\mathrm{n}}, \mathbf{w}\right)$ and t_{n}.
- Expect that $h(\mathbf{x}, \mathbf{w})$ performing well on training examples $\mathbf{x}_{\mathrm{n}} \Rightarrow$ $h(\mathbf{x}, \mathbf{w})$ will perform well on arbitrary test examples $\mathbf{x} \in \mathrm{X}$.
- Least Squares error function?
$E(\mathbf{w})=\frac{1}{2} \sum_{n=1}^{N}\left\{h\left(\mathbf{x}_{n}, \mathbf{w}\right)-t_{n}\right\}^{2}$
- Differentiable $=>$ can use gradient descent $\sqrt{ }$
- Non-convex $=>$ not guaranteed to find the global optimum X

Maximum Likelihood

Training set is $\mathrm{D}=\left\{\left\langle\mathbf{x}_{n}, t_{n}\right\rangle \mid t_{n} \in\{0,1\}, n \in 1 \ldots \mathrm{~N}\right\}$
Let $h_{n}=p\left(C_{1} \mid \mathbf{x}_{n}\right) \Leftrightarrow h_{n}=p\left(t_{n}=1 \mid \mathbf{x}_{n}\right)=\sigma\left(\mathbf{w}^{T} \mathbf{x}_{n}\right)$
Maximum Likelihood (ML) principle: find parameters that maximize the likelihood of the labels.

- The likelihood function is $p(\mathbf{t} \mid \mathbf{w})=\prod_{n=1}^{N} h_{n}^{t_{n}}\left(1-h_{n}\right)^{\left(1-t_{n}\right)}$
- The negative log-likelihood (cross entropy) error function:

$$
E(\mathbf{w})=-\ln p(\mathbf{t} \mid \mathbf{x})=-\sum_{n=1}^{N}\left\{t_{n} \ln h_{n}+\left(1-t_{n}\right) \ln \left(1-h_{n}\right)\right\} \times \frac{1}{N}
$$

Maximum Likelihood Learning for Logistic Regression

- The ML solution is:

$$
\begin{aligned}
& \text { he ML solution is: } \\
& \mathbf{w}_{M L}=\arg \max _{\mathbf{w}} p(\mathbf{t} \mid \mathbf{w})=\arg \min _{\mathbf{w}} E(\mathbf{w}) \ldots \ldots \text { convex in } \mathbf{w}
\end{aligned}
$$

- ML solution is given by $\nabla E(\mathbf{w})=0$.
- Cannot solve analytically $\Rightarrow>$ solve numerically with gradient based methods: (stochastic) gradient descent, conjugate gradient, L-BFGS, etc.
- Gradient is (prove it):

$$
\nabla E(\mathbf{w})=\sum_{n=1}^{N}\left(h_{n}-t_{n}\right) \mathbf{x}_{n}^{T} \times \frac{1}{N}
$$

Regularized Logistic Regression

- Use a Gaussian prior over the parameters:

$$
\begin{aligned}
& \mathbf{w}=\left[w_{0}, w_{1}, \ldots, w_{M}\right]^{\mathrm{T}} \\
& p(\mathbf{w})=N\left(\mathbf{0}, \alpha^{-1} \mathbf{I}\right)=\left(\frac{\alpha}{2 \pi}\right)^{(M+1) / 2} \exp \left\{-\frac{\alpha}{2} \mathbf{w}^{T} \mathbf{w}\right\}
\end{aligned}
$$

- Bayes’ Theorem:

$$
p(\mathbf{w} \mid \mathbf{t})=\frac{p(\mathbf{t} \mid \mathbf{w}) p(\mathbf{w})}{p(\mathbf{t})} \propto p(\mathbf{t} \mid \mathbf{w}) p(\mathbf{w})
$$

- MAP solution:

$$
\mathbf{w}_{M A P}=\arg \max _{\mathbf{w}} p(\mathbf{w} \mid \mathbf{t})
$$

Regularized Logistic Regression

- MAP solution:

$$
\begin{aligned}
\mathbf{w}_{M A P} & =\arg \max _{\mathbf{w}} p(\mathbf{w} \mid \mathbf{t})=\arg \max _{\mathbf{w}} p(\mathbf{t} \mid \mathbf{w}) p(\mathbf{w}) \\
& =\arg \min _{\mathbf{w}}-\ln p(\mathbf{t} \mid \mathbf{w}) p(\mathbf{w}) \\
& =\arg \min _{\mathbf{w}}-\ln p(\mathbf{t} \mid \mathbf{w})-\ln p(\mathbf{w}) \\
& =\arg \min _{\mathbf{w}} E_{D}(\mathbf{w})-\ln p(\mathbf{w}) \\
& =\arg \min _{\mathbf{w}} E_{D}(\mathbf{w})+\frac{\alpha}{2} \mathbf{w}^{T} \mathbf{w}=\arg \min _{\mathbf{w}} E_{D}(\mathbf{w})+E_{\mathbf{w}}(\mathbf{w}) \\
E_{D}(\mathbf{w}) & =-\sum_{n=1}^{N}\left\{t_{n} \ln y_{n}+\left(1-t_{n}\right) \ln \left(1-y_{n}\right)\right\} \times \frac{1}{N} \cdots---\cdots \text { data term } \\
E_{\mathbf{w}}(\mathbf{w}) & =\frac{\alpha}{2} \mathbf{w}^{T} \mathbf{w} \cdots-\cdots-\cdots \rightarrow-\cdots \text { regularization term }
\end{aligned}
$$

Regularized Logistic Regression

- MAP solution:

$$
\mathbf{w}_{M A P}=\arg \min _{\mathbf{w}} E_{D}(\mathbf{w})+E_{\mathbf{w}}(\mathbf{w})
$$

- ML solution is given by $\nabla E(\mathbf{w})=0$.

$$
\begin{array}{r}
\nabla E(\mathbf{w})=\nabla E_{D}(\mathbf{w})+\nabla E_{\mathbf{w}}(\mathbf{w})=\frac{1}{\bar{N}} \sum_{n=1}^{N}\left(h_{n}-t_{n}\right) \mathbf{x}_{n}^{T}+\alpha \mathbf{w}^{T} \\
\text { where } h_{n}=\sigma\left(\mathbf{w}^{T} \mathbf{x}_{n}\right)
\end{array}
$$

- Cannot solve analytically $=>$ solve numerically:
- (stochastic) gradient descent [PRML 3.1.3], Newton Raphson iterative optimization [PRML 4.3.3], conjugate gradient, LBFGS.

Implementation: Vectorization of LR

- Version 1: Compute gradient component-wise.

$$
\nabla E(\mathbf{w})=\sum_{n=1}^{N}\left(h_{n}-t_{n}\right) \mathbf{x}_{n}^{T} \times \frac{1}{N}
$$

- Assume example \mathbf{x}_{n} is stored in column X[:,n] in data matrix X.
$\operatorname{grad}=\mathrm{np} \cdot z \operatorname{zeros}(\mathrm{~K})$
for n in range(N):

$$
\begin{aligned}
& h=\operatorname{sigmoid}(\mathbf{w} \cdot \operatorname{dot}(X[:, n]) \\
& \text { temp }=h-t[n]
\end{aligned}
$$

def sigmoid(x):

$$
\text { return } 1 /(1+n p . \exp (-x))
$$

for k in range (K) :

$$
\operatorname{grad}[\mathrm{k}]=\operatorname{grad}[\mathrm{k}]+\operatorname{temp} * \mathrm{X}[\mathrm{k}, \mathrm{n}] / \mathrm{N}
$$

Implementation: Vectorization of LR

- Version 2: Compute gradient, partially vectorized.

$$
\nabla E(\mathbf{w})=\sum_{n=1}^{N}\left(h_{n}-t_{n}\right) \mathbf{x}_{n}^{T} \times \frac{1}{N}
$$

$\operatorname{grad}=\mathrm{np} \cdot z \operatorname{zeros}(\mathrm{~K})$
for n in range(N$)$:

$$
\operatorname{grad}=\operatorname{grad}+(\operatorname{sigmoid}(\mathbf{w} \cdot \operatorname{dot}(X[:, n]))-\mathrm{t}[\mathrm{n}]) * \mathrm{X}[:, \mathrm{n}] / \mathrm{N}
$$

```
def sigmoid(x):
    return 1/ (1 + np.exp(-x))
```


Implementation: Vectorization of LR

- Version 3: Compute gradient, vectorized.

$$
\nabla E(\mathbf{w})=\sum_{n=1}^{N}\left(h_{n}-t_{n}\right) \mathbf{x}_{n}^{T} \times \frac{1}{N}
$$

$\operatorname{grad}=X \cdot \operatorname{dot}(\operatorname{sigmoid}(\mathbf{w} \cdot \operatorname{dot}(X))-\mathbf{t}) / \mathrm{N}$
def sigmoid(x):
return $1 /(1+\operatorname{np} \cdot \exp (-x))$

Vectorization of LR with Separate Bias

- Separate the bias b from the weight vector \mathbf{w}.
- Compute gradient separately with respect to \mathbf{w} and b :
- Gradient with respect to \mathbf{w} is:

$$
\begin{aligned}
& \nabla E(\mathbf{w})=\sum_{n=1}^{N}\left(h_{n}-t_{n}\right) \mathbf{x}_{n}^{T} \times \frac{1}{N} \quad h_{n}=\sigma\left(\mathbf{w}^{T} \mathbf{x}_{n}+b\right) \\
& \operatorname{grad}=\mathrm{X} \cdot \operatorname{dot}(\operatorname{sigmoid}(\mathbf{w} \cdot \operatorname{dot}(\mathrm{X})+b)-\mathbf{t}) / \mathrm{N}
\end{aligned}
$$

- Gradient with respect to bias b is:

$$
\Delta b=-\frac{1}{N} \sum_{n=1}^{N}\left(h_{n}-t_{n}\right)
$$

def sigmoid(x):

Vectorization of LR with Regularization

- Only the gradient with respect to \mathbf{w} changes:
- never use L2 regularization on bias.

$$
\begin{gathered}
\nabla E(\mathbf{w})=\sum_{n=1}^{N}\left(h_{n}-t_{n}\right) \mathbf{x}_{n}^{T} \times \frac{1}{N}+\alpha \mathbf{w} \\
\operatorname{grad}=\mathrm{X} \cdot \operatorname{dot}(\operatorname{sigmoid}(\mathbf{w} \cdot \operatorname{dot}(\mathrm{X})+b)-\mathbf{t}) / \mathrm{N}+\alpha \mathbf{w}
\end{gathered}
$$

Softmax Regression = Logistic Regression for Multiclass Classification

- Multiclass classification:

$$
\mathrm{T}=\left\{\mathrm{C}_{1}, \mathrm{C}_{2}, \ldots, \mathrm{C}_{\mathrm{K}}\right\}=\{1,2, \ldots, \mathrm{~K}\} .
$$

- Training set is $\left(\mathbf{x}_{1}, \mathrm{t}_{1}\right),\left(\mathbf{x}_{2}, \mathrm{t}_{2}\right), \ldots\left(\mathbf{x}_{\mathrm{n}}, \mathrm{t}_{\mathrm{n}}\right)$.

$$
\begin{aligned}
& \mathbf{x}=\left[1, x_{1}, x_{2}, \ldots, x_{\mathrm{M}}\right] \\
& \mathrm{t}_{1}, \mathrm{t}_{2}, \ldots \mathrm{t}_{\mathrm{n}} \in\{1,2, \ldots, \mathrm{~K}\}
\end{aligned}
$$

- One weight vector per class [PRML 4.3.4]:

$$
p\left(C_{k} \mid \mathbf{x}\right)=\frac{\left.\exp \left(\mathbf{w}_{k}^{T} \mathbf{x}\right)\right)}{\sum_{j} \exp \left(\mathbf{w}_{j}^{T} \mathbf{x}\right)}
$$

$$
p\left(C_{k} \mid \mathbf{x}_{n}\right)=\frac{\exp \left(\mathbf{w}_{k}^{T} \mathbf{x}_{n}+b_{k}\right)}{\sum_{j=1 . . K} \exp \left(\mathbf{w}_{j}^{T} \mathbf{x}_{n}+b_{j}\right)}
$$

bias parameter inside each \mathbf{w}_{j}

Softmax Regression ($\mathrm{K} \geq 2$)

- Inference:

$$
\begin{aligned}
C_{*} & =\arg \max _{C_{k}} p\left(C_{k} \mid \mathbf{x}\right) \\
& =\arg \max _{C_{k}} \frac{\exp \left(\mathbf{w}_{k}^{T} \mathbf{x}\right)}{\sum_{j} \exp \left(\mathbf{w}_{j}^{T} \mathbf{x}\right)} \cdots \rightarrow \begin{array}{l}
Z(\mathbf{x}) \text { a normalization } \\
\text { constant }
\end{array} \\
& =\arg \max _{C_{k}} \exp \left(\mathbf{w}_{k}^{T} \mathbf{x}\right) \\
& =\arg \max _{C_{k}} \mathbf{w}_{k}^{T} \mathbf{x}
\end{aligned}
$$

- Training using:
- Maximum Likelihood (ML)
- Maximum A Posteriori (MAP) with a Gaussian prior on w.

Softmax Regression

- The negative log-likelihood error function is:

$$
E_{D}(\mathbf{w})=-\frac{1}{N} \ln \prod_{n=1}^{N} p\left(t_{n} \mid \mathbf{x}_{n}\right)=-\frac{1}{N} \sum_{n=1}^{N} \ln \frac{\exp \left(\mathbf{w}_{t_{n}}^{T} \mathbf{x}_{n}\right)}{Z\left(\mathbf{x}_{n}\right)}, \Rightarrow \text { convex in } \mathbf{w}
$$

- The Maximum Likelihood solution is:

$$
\mathbf{w}_{M L}=\arg \min _{\mathbf{w}} E_{D}(\mathbf{w})
$$

- The gradient is (prove it):

$$
\nabla_{\mathbf{w}_{k}} E_{D}(\mathbf{w})=-\frac{1}{N} \sum_{n=1}^{N}\left(\delta_{k}\left(t_{n}\right)-p\left(C_{k} \mid \mathbf{x}_{n}\right)\right) \mathbf{x}_{n}
$$

where $\delta_{t}(x)=\left\{\begin{array}{ll}1 & x=t \\ 0 & x \neq t\end{array}\right.$ is the Kronecker delta function.

Regularized Softmax Regression

- The new cost function is:

$$
\begin{aligned}
E(\mathbf{w}) & =E_{D}(\mathbf{w})+E_{\mathbf{w}}(\mathbf{w}) \\
& =-\frac{1}{N} \sum_{n=1}^{N} \ln \frac{\exp \left(\mathbf{w}_{t_{n}}^{T} \mathbf{x}_{n}\right)}{Z\left(\mathbf{x}_{n}\right)}+\frac{\alpha}{2}\|\mathbf{w}\|^{2}
\end{aligned}
$$

- The new gradient is (prove it):

$$
\boldsymbol{g r a d}_{k}=\nabla_{\mathbf{w}_{k}} E(\mathbf{w})=-\frac{1}{N} \sum_{n=1}^{N}\left(\delta_{k}\left(t_{n}\right)-p\left(C_{k} \mid \mathbf{x}_{n}\right)\right) \mathbf{x}_{n}^{T}+\alpha \mathbf{w}_{k}^{T}
$$

Softmax Regression

- ML solution is given by $\nabla E_{D}(\mathbf{w})=0$.
- Cannot solve analytically.
- Solve numerically, by pluging [cost, gradient $]=[E(\mathbf{w}), \nabla E(\mathbf{w})]$ values into general convex solvers:
- L-BFGS
- Newton methods
- conjugate gradient
- (stochastic / minibatch) gradient-based methods.
- gradient descent (with / without momentum).
- AdaGrad, AdaDelta
- RMSProp
- ADAM, ...

Implementation

- Need to compute [cost, grad]:
- cost $=-\frac{1}{N} \sum_{n=1}^{N} \sum_{k=1}^{K} \delta_{k}\left(t_{n}\right) \ln p\left(C_{k} \mid \mathbf{x}_{n}\right)+\frac{\alpha}{2} \sum_{k=1}^{K} \mathbf{w}_{k}^{T} \mathbf{w}_{k}$
- $\boldsymbol{\operatorname { r r a d }}_{k}=-\frac{1}{N} \sum_{n=1}^{N}\left(\delta_{k}\left(t_{n}\right)-p\left(C_{k} \mid \mathbf{x}_{n}\right)\right) \mathbf{x}_{n}^{T}+\alpha \mathbf{w}_{k}^{T}$
=> need to compute, for $k=1, \ldots, \mathrm{~K}$:
- output $p\left(C_{k} \mid \mathbf{x}_{n}\right)=\frac{\left.\exp \left(\mathbf{w}_{k}^{T} \mathbf{x}_{n}\right)\right)}{\sum_{j} \exp \left(\mathbf{w}_{j}^{T} \mathbf{x}_{n}\right)}$

Overflow when $\mathbf{w}_{k}{ }^{\mathrm{T}} \mathbf{x}_{n}$ are too large.

Implementation: Preventing Overflows

- Subtract from each product $\mathbf{w}_{k}{ }^{\mathrm{T}} \mathbf{x}_{n}$ the maximum product:

$$
\begin{aligned}
& c_{n}=\max _{1 \leq k \leq K} \mathbf{w}_{k}^{T} \mathbf{x}_{n} \\
& p\left(C_{k} \mid \mathbf{x}_{n}\right)=\frac{\left.\exp \left(\mathbf{w}_{k}^{T} \mathbf{x}_{n}-c_{n}\right)\right)}{\sum_{j} \exp \left(\mathbf{w}_{j}^{T} \mathbf{x}_{n}-c_{n}\right)}
\end{aligned}
$$

- When using separate bias b_{k}, replace $\mathbf{w}_{k}^{T} \mathbf{x}_{n}$ everywhere with $\mathbf{w}_{k}^{T} \mathbf{x}_{n}+b_{k}$.

Vectorization of Softmax with Separate Bias

- Separate the bias b_{k} from the weight vector \mathbf{w}_{k}.
- Compute gradient separately with respect to \mathbf{w}_{k} and b_{k} :
- Gradient with respect to \mathbf{w}_{k} is:

$$
\operatorname{grad}_{k}=-\frac{1}{N} \sum_{n=1}^{N}\left(\delta_{k}\left(t_{n}\right)-p\left(C_{k} \mid \mathbf{x}_{n}\right)\right) \mathbf{x}_{n}^{T}+\alpha \mathbf{w}_{k}^{T}
$$

Gradient matrix is $\left[\operatorname{grad}_{1}\left|\operatorname{grad}_{2}\right| \ldots \mid \operatorname{grad}_{\mathrm{K}}\right]$

- Gradient with respect to b_{k} is:

$$
\Delta b_{k}=-\frac{1}{N} \sum_{n=1}^{N}\left(\delta_{k}\left(t_{n}\right)-p\left(C_{k} \mid \mathbf{x}_{n}\right)\right)
$$

$$
\begin{gathered}
p\left(C_{k} \mid \mathbf{x}_{n}\right)=\frac{\exp \left(\mathbf{w}_{k}^{T} \mathbf{x}_{n}+b_{k}\right)}{\sum_{j=1 . . K} \exp \left(\mathbf{w}_{j}^{T} \mathbf{x}_{n}+b_{j}\right)} \\
\delta_{k}\left(t_{n}\right)=\left\{\begin{array}{l}
1, \text { if } t_{n}=k \\
0, \text { if } t_{n} \neq k
\end{array}\right.
\end{gathered}
$$

Gradient vector is $\Delta \mathrm{b}=\left[\Delta b_{1}\left|\Delta b_{2}\right| \ldots \mid \Delta b_{K}\right]$

Vectorization of Softmax

- Need to compute [cost, grad, $\Delta \mathrm{b}]: \quad p\left(C_{k} \mid \mathbf{x}_{n}\right)=\frac{\exp \left(\mathbf{w}_{k}^{T} \mathbf{x}_{n}+b_{k}\right)}{\sum_{j=1 . K} \exp \left(\mathbf{w}_{j}^{T} \mathbf{x}_{n}+b_{j}\right)}$
- cost $=-\frac{1}{N} \sum_{n=1}^{N} \sum_{k=1}^{K} \delta_{k}\left(t_{n}\right) \ln p\left(C_{k} \mid \mathbf{x}_{n}\right)+\frac{\alpha}{2} \sum_{k=1}^{K} \mathbf{w}_{k}^{T} \mathbf{w}_{k}$
- $\boldsymbol{\operatorname { r a d }}_{k}=-\frac{1}{N} \sum_{n=1}^{N}\left(\delta_{k}\left(t_{n}\right)-p\left(C_{k} \mid \mathbf{x}_{n}\right)\right) \mathbf{x}_{n}^{T}+\alpha \mathbf{w}_{k}^{T}$
$=>$ compute ground truth matrix G such that $\mathrm{G}[\mathrm{k}, \mathrm{n}]=\delta_{k}\left(t_{n}\right)$
from scipy.sparse import coo_matrix

$$
\delta_{k}\left(t_{n}\right)=\left\{\begin{array}{l}
1, \text { if } t_{n}=k \\
0, \text { if } t_{n} \neq k
\end{array}\right.
$$

groundTruth $=$ coo_matrix((np.ones(N, dtype $=n p . u$ int8),
(labels, np.arange(N)))).toarray()

Vectorization of Softmax

- Compute $\operatorname{cost}=-\frac{1}{N} \sum_{n=1}^{N} \sum_{k=1}^{K} \delta_{k}\left(t_{n}\right) \ln p\left(C_{k} \mid \mathbf{x}_{n}\right)+\frac{\alpha}{2} \sum_{k=1}^{K} \mathbf{w}_{k}^{T} \mathbf{w}_{k}$
- Compute matrix of $\mathbf{w}_{k}^{T} \mathbf{x}_{n}+b_{k}$.

$$
p\left(C_{k} \mid \mathbf{x}_{n}\right)=\frac{\exp \left(\mathbf{w}_{k}^{T} \mathbf{x}_{n}+b_{k}\right)}{\sum_{j=1 . K} \exp \left(\mathbf{w}_{j}^{T} \mathbf{x}_{n}+b_{j}\right)}
$$

- Compute matrix of $\mathbf{w}_{k}^{T} \mathbf{x}_{n}+b_{k}-c_{n}$.

$$
\delta_{k}\left(t_{n}\right)=\left\{\begin{array}{l}
1, \text { if } t_{n}=k \\
0, \text { if } t_{n} \neq k
\end{array}\right.
$$

- Compute matrix of $\exp \left(\mathbf{w}_{k}^{T} \mathbf{x}_{n}+b_{k}-c_{n}\right)$.
- Compute matrix of $\ln p\left(C_{k} \mid \mathbf{x}_{n}\right)$.

$$
c_{\mathrm{n}}=\max _{1 \leq k \leq K} \mathbf{w}_{k}^{T} \mathbf{x}_{n}+b_{k}
$$

- Compute log-likelihood cost using all the above.

Vectorization of Softmax

- Compute $\operatorname{grad}_{k}=-\frac{1}{N} \sum_{n=1}^{N}\left(\delta_{k}\left(t_{n}\right)-p\left(C_{k} \mid \mathbf{x}_{n}\right)\right) \mathbf{x}_{n}^{T}+\alpha \mathbf{w}_{k}^{T}$
- Gradient matrix $=\left[\operatorname{grad}_{1}\left|\operatorname{grad}_{2}\right| \ldots \mid \operatorname{grad}_{\mathrm{K}}\right]$
- Compute matrix of $p\left(C_{k} \mid \mathbf{x}_{n}\right)$.

$$
\begin{array}{r}
p\left(C_{k} \mid \mathbf{x}_{n}\right)=\frac{\exp \left(\mathbf{w}_{k}^{T} \mathbf{x}_{n}+b_{k}\right)}{\sum_{j=1 . K} \exp \left(\mathbf{w}_{j}^{T} \mathbf{x}_{n}+b_{j}\right)} \\
\delta_{k}\left(t_{n}\right)=\left\{\begin{array}{l}
1, \text { if } t_{n}=k \\
0, \text { if } t_{n} \neq k
\end{array}\right.
\end{array}
$$

- Compute matrix of gradient of data term.
- Compute matrix of gradient of regularization term.

Vectorization of Softmax

- Useful Numpy functions:
- np.dot()
- np.amax()
- np.argmax()
- np.exp()
- np.sum()
- np.log()
- np.mean()

Implementation: Gradient Checking

- Want to minimize $J(\theta)$, where θ is a scalar.
- Mathematical definition of derivative:

$$
\frac{d}{d \theta} J(\theta)=\lim _{\varepsilon \rightarrow 0} \frac{J(\theta+\varepsilon)-J(\theta-\varepsilon)}{2 \varepsilon}
$$

- Numerical approximation of derivative:

$$
\frac{d}{d \theta} J(\theta) \approx \frac{J(\theta+\varepsilon)-J(\theta-\varepsilon)}{2 \varepsilon} \quad \text { where } \varepsilon=0.0001
$$

Implementation: Gradient Checking

- If $\boldsymbol{\theta}$ is a vector of parameters $\boldsymbol{\theta}_{i}$,
- Compute numerical derivative with respect to each $\boldsymbol{\theta}_{i}$.
- Create a vector \mathbf{v} that is ε in position i and 0 everywhere else:
- How do you do this without a for loop in NumPy?
- Compute $G_{\text {num }}\left(\boldsymbol{\theta}_{i}\right)=(\mathbf{J}(\boldsymbol{\theta}+\mathbf{v})-\mathrm{J}(\boldsymbol{\theta}-\mathbf{v})) / 2 \varepsilon$
- Aggregate all derivatives into numerical gradient $G_{\text {num }}(\boldsymbol{\theta})$.
- Compare numerical gradient $G_{\text {num }}(\boldsymbol{\theta})$ with implementation of gradient $G_{\text {imp }}(\boldsymbol{\theta})$:

$$
\frac{\left\|G_{\text {num }}(\boldsymbol{\theta})-G_{i m p}(\boldsymbol{\theta})\right\|}{\left\|G_{\text {num }}(\boldsymbol{\theta})+G_{i m p}(\boldsymbol{\theta})\right\|} \leq 10^{-6}
$$

