Machine Learning
ITCS 4156

The Perceptron Algorithm
The Kernel Trick

Razvan C. Bunescu
Department of Computer Science @ CCI

rbunescu@uncc.edu

mailto:rbunescu@uncc.edu

Supervised Learning

=

Training

Training Examples HI‘:} Leamlng I:__> Model A
(X, 1) Algorithm

4

Testing

@H — [Model / } — Generalization
(x, t) Performance

Supervised Learning

Task = learn an (unkown) function 7 : X — T that maps mput
instances X € X to output targets #x) € T:
— Classification:
* The output #x) € T is one of a finite set of discrete categories.
— Regression:
* The output #x) e T is continuous, or has a continuous component.

Target function #x) 1s known (only) through (noisy) set of
training examples:

(Xlatl)a (X29t2)9 »’ (Xnatn)

Three Parametric Approaches to
Classification

1) Discriminant Functions: construct f - X — T that directly
assigns a vector x to a specific class C;.

— Inference and decision combined into a single learning
problem.

— Linear Discriminant: the decision surface is a
hyperplane n X:

 Perceptron
* Support Vector Machines

e Fisher ‘s Linear Discriminant

Three Parametric Approaches to
Classification

2) Probabilistic Discriminative Models: directly model the
posterior class probabilities p(Cy, | x).

— Inference and decision are separate.
— Less data needed to estimate p(C, | xX) than p(x |C)).
— Can accommodate many overlapping features.

* Logistic Regression

e (Conditional Random Fields

Three Parametric Approaches to
Classification

=

3) Probabilistic Generative Models:

— Model class-conditional p(x |C;) as well as the priors
p(C,), then use Bayes’s theorem to find p(C, | x).

e or model p(x,C)) directly, then marginalize to obtain the
posterior probabilities p(C,, | X).

— Inference and decision are separate.

— Can use p(x) for outlier or novelty detection.

— Need to model dependencies between features.
* Naive Bayes.
e Hidden Markov Models.

Generative and Discriminative Classifiers

Suppose we're distinguishing cat from dog images

ImageNet

Generative Classifier:

[

* Build a model of what's in a cat image
 Knows about whiskers, ears, eyes

* Assigns a probability to any image:

* how cat-y is this image?

Given a new image:
Run both models and see which one fits better.

Discriminative Classifier

Just try to distinguish dogs from cats

Oh look, dogs have collars!
Let's ignore everything else.

Finding the correct class ¢ from a document d 1n
Generative vs Discriminative Classifiers

* Naive Bayes

likelihood prior

T TN

¢ =argmax P(d|c) P(c)
ceC

* Logistic Regression

~ posterior

¢ = argmax P(c|d)

ceC

Generative vs. Discriminative

5 1.2 T T
P(C1|CU) P(Cz|$)
p(.’l?|C2) 1

4t
) 0.8}
((b]
= 3t
w
o
9 0.6}
A
a8 2]
® 0.4}

p(x|Cy)
i 02}
0 - . 0 - . .
0 0.2 04 0.6 0.8 0.2 04 0.6 0.8 1

T

T

Left-hand mode has no effect on posterior class probabilities.

Three Parametric Approaches to
Classification

1) Discriminant Functions: construct 2: X — T that directly
assigns a vector x to a specific class C;.

— Inference and decision combined into a single learning
problem.

— Linear Discriminant: the decision surface is a
hyperplane n X:

 Perceptron
* Support Vector Machines

e Fisher ‘s Linear Discriminant

Discriminant Function Approach to
Classification

Task = build a function A4(x) such that:

— h matches ¢ well on the training data:
=> }1 1s able to fit data that 1t has seen.
— h also matches ¢ well on test data:
=> J1 1s able to generalize to unseen data.

Task = choose % from a “nice” class of functions that
depend on a vector of parameters w:

— h(X) = hy(X) = h(w,X)

— what classes of functions are “nice”?

Neurons

Soma is the central part of the neuron:
* where the input signals are combined.

Dendrites are cellular extensions:
* where majority of the input occurs.

Axon i1s a fine, long projection:
* carries nerve signals to other neurons.

Synapses are molecular structures between
axon terminals and other neurons:
* where the communication takes place.

Neuron Models
https://www.research.ibm.com/software/IBMResearch/multimedia/IJCNN2013.neuron-
model.pdf year Model Name Reference

1907 Integrate and fire [13]
1943 McCulloch and Pitts [11]
1952 Hodgkin-Huxley [12]
1958 Perceptron [14]
1961 Fitzhugh-Nagumo [15]
1965 Leaky integrate-and-fire [16] |
1981 Morris-Lecar [17]
1986 Quadratic integrate-and-fire [18]
1989 Hindmarsh-Rose [19]
1998 Time-varying integrate-and-fire model [20]
1999 Wilson Polynomial [21]
2000 Integrate-and-fire or burst [22]
2001 Resonate-and-fire [23]
2003 Izhikevich [24]
2003 Exponential integrate-and-fire [25]
2004 Generalized integrate-and-fire [26]
2005 Adaptive exponential integrate-and-fire [27]
2009 Mihalas-Neibur [28] 15

Spiking/LIF Neuron Function

http://ee.princeton.edu/research/prucnal/sites/default/files/06497478.pdf

xl(t)\

w,,T,

x(t)

W;,T;

» [o

Wy, TN

x(t)”

(b)

Fig. 2. (a) lllustration and (b) functional description of a leaky integrate-and-
fire neuron. Weighted and delayed input signals are summed into the input
current I,,;,, (), which travel to the soma and perturb the internal state variable,
the voltage V. Since V' is hysteric, the soma performs integration and then
applies a threshold to make a spike or no-spike decision. After a spike is
released, the voltage V' is reset to a value Vi.s.¢. The resulting spike is sent to
other neurons in the network.

16

Neuron Models
https://www.research.ibm.com/software/IBMResearch/multimedia/IJCNN2013.neuron-
model.pdf year Model Name Reference

1907 Integrate and fire [13]
1943 McCulloch and Pitts [11]
1952 Hodgkin-Huxley [12]
1958 Perceptron [14]
1961 Fitzhugh-Nagumo [15]
1965 Leaky integrate-and-fire [16]
1981 Morris-Lecar [17]
1986 Quadratic integrate-and-fire [18]
1989 Hindmarsh-Rose [19]
1998 Time-varying integrate-and-fire model [20]
1999 Wilson Polynomial [21]
2000 Integrate-and-fire or burst [22]
2001 Resonate-and-fire [23]
2003 Izhikevich [24]
2003 Exponential integrate-and-fire [25]
2004 Generalized integrate-and-fire [26]
2005 Adaptive exponential integrate-and-fire [27]
2009 Mihalas-Neibur [28] 17

McCulloch-Pitts Neuron Function

X0(1 activation / output
function

X1 ‘
y ; .®
x, @ = 2 o f hy(X)

Algebraic interpretation:

— The output of the neuron is a linear combination of inputs from other neurons,
rescaled by the synaptic weights.

» weights w; correspond to the synaptic weights (activating or inhibiting).
e summation corresponds to combination of signals in the soma.

— It 1s often transformed through a monotonic activation function.

Activation/Output Functions

A

: |

: 088iliz<0 %

unit ste 7) =
™ { 1 ifz=0
Perceptron
o 1
logistic f(z) =
l+e™"

identity f(2)=z

Logistic Regression

Linear Regression

Perceptron

X0 Wo activation
function
X1 . wWq 2 N
%) 3 — ;‘
wW.X. .
xz‘ > 2 ivi _ h (X)= 1 lfWTX>O
3 . w .
—1 ifz<0 —1 otherwise
f()= .
1 ifz=0

* Assume classes'T = {c;, ¢} = {1, —1}.
e Ml raining SEHIS (X1,%), (X8, t3), - - (X Lok
XS 1 i, ,]

h(x) = sgn(w'x) =sgn(wy + w; x; + ... + w,xp)

N

a linear discriminant function 20 |

Linear Discriminant Functions

Use a linear function of the input vector:
h(x) = w' o (x) + wg

weight vector bias = —threshold

Decision:
x € C;if h(x) >0, otherwise x € C,.

= decision boundary is hyperplane /(x) = 0.

Properties:
— w 1s orthogonal to vectors lying within the decision surface.

— w, controls the location of the decision hyperplane.

21
T

Geometric Interpretation

h >0 552‘ I
h =0

[Linear Discriminant Functions:
Two Classes (K = 2)

[

» What algorithms can be used to learn y(x) = wip(x) + w,?

Assume a training dataset of N = N, + N, examples in C; and C,.

— Perceptron:
* Voted/Averaged Perceptron

» Kernel Perceptron

— Support Vector Machines:
* Linear
« Kernel

— Fisher’s Linear Discriminant

Perceptron

X0 Wo activation
function
X1 . wWq 2 N
%) 3 — ;‘
wW.X. .
xz‘ > 2 ivi _ h (X)= 1 lfWTX>O
3 . w .
—1 ifz<0 —1 otherwise
f()= .
1 ifz=0

* Assume classes'T = {c;, ¢} = {1, —1}.
e Ml raining SEHIS (X1,%), (X8, t3), - - (X Lok
XS 1 i, ,]

h(x) = sgn(w'x) =sgn(wy + w; x; + ... + w,xp)

N

a linear discriminant function 24 |

Perceptron Learning

[

e Learning = finding the “right” parameters w™ = [wy, wy, ..., w;]

— Find w that minimizes an error function E(w) which measures the
misfit between A(x,,w) and #,.

— Expect that 4(x,w) performing well on training examples x,, = /4(x,w)
will perform well on arbitrary test examples x € X.

* Least Squares error function?

E(w) = %;{hm,w)— ¥k

-2 x # of mistakes

Least Squares vs. Perceptron Criterion

=

* Least Squares => cost 1s # of misclassified patterns:
— Piecewise constant function of w with discontinuities.
— Cannot find closed form solution for w that minimizes cost.

— Cannot use gradient methods (gradient zero almost everywhere).

* Perceptron Criterion:

— Set labels to be +1 and — 1. Want w'x, > 0 forz,= 1, and w'x, < 0
fort,=—1.

= would like to have w'x,z, > 0 for all patterns.
— want to minimize —w'x, ¢, for all missclassified patterns M.
T

= minimize E,(W) = — X ,,emy W' Xpty

Stochastic Gradient Descent

=

* Perceptron Criterion:

N b

minimize E,(W) = — Yey W

e Update parameters w sequentially after each mistake:
W(r+l) s W(‘v) & UVEP (W(t),Xn)

=w® +nx,t,

* The magnitude of w 1s inconsequential => set 7= 1.

wiD = w@® £ x t.

The Perceptron Algorithm: Two Classes

S sgn(z) =+1 ifz>0,
initialize parameters w = 0 0 ifz=0

forn=1...N = -1 ifz<0
h,=sgn(w'x,) Repeat:

. — a) until convergence.
if 1, # 7, then b) for a number of epochs E.
wW=w+17X,

AN ol e

Theorem [Rosenblatt, 1962]:
If the training dataset is linearly separable, the perceptron learning
algorithm 1s guaranteed to find a solution in a finite number of steps.
e see Theorem 1 (Block, Novikoff) in [Freund & Schapire, 1999].

The Perceptron Algorithm: Two Classes

sgn(z) =+1 ifz>0,

1. initialize parameters w = 0 0 ifz=0.
25 fognEl . BN g -1 ifz<0
B h,=w'x, Repeat:
. — a) until convergence.
<
4 if 7%, = 0 then b) for a number of epochs E.
g¥ w=w-+17X, A

Theorem [Rosenblatt, 1962]:
If the training dataset is linearly separable, the perceptron learning
algorithm 1s guaranteed to find a solution in a finite number of steps.
e see Theorem 1 (Block, Novikoff) in [Freund & Schapire, 1999].

The Perceptron Algorithm: Two Classes

1. initialize parameters w =0 $gn(@) = +é ;Zig ’
2. forgn=1 . 3N 7 -1 ifz<0
B h,=w'x,
4, if ,>0andz,=—1 Repeat:
— a) until convergence.

. W=W—X
e > e @ e & 1 b) for a number of epochs E.
6. if h,<0and? =+
7. W=W+X,

What 1s the impact of the perceptron update on the score
w!x, of the misclassified example x,,?

Linear vs. Non-linear Decision Boundaries

How to Find Non-linear Decision Boundaries

[

1) Perceptron with manually engineered features:

— Quadratic features.

2) Kernel methods (e.g. SVMs) with non-linear kernels:

— Quadratic kernels, Gaussian kernels.

Deep Learning class

3) Unsupervised feature learning (e.g. auto-encoders):

— Plug learned features in any linear classifier.

4) Neural Networks with one or more hidden layers:
— Automatically learned features.

Non-Linear Classification: XOR Dataset

X =[x, X,]

1) Manually Engineered Features: Add x,x,

X = [x1, X5, X1X,]

Logistic Regression with Manually
Engineered Features

X = [x1, X5, X1X,]

Perceptron with Manually Engineered Features

Project x =[xy, x,, X;X,] and decision hyperplane back to x =[x, x,]

Averaged Perceptron: Two Classes

1

return w/r

During testing: h(x) = sgn(w’x)

sgn(z)=+1 ifz>0,

1. initialize parameters w=0,1=1, w=0 0 ifz=0.
25 fognEl . BN 7 —1ifz<0
8. h,=sgn(w'x,) Repeat:

2 a) until convergence.
4 if 7, = £, then _ b) for a number of epochs E.
g¥ w=w-+17X,
6. W=W+W
s T —"tanl
8.

2) Kernel Methods with Non-Linear Kernels

=

* Perceptrons, SVMs can be ‘kernelized’:

IS

Re-write the algorithm such that during training and testing
feature vectors x, y appear only in dot-products x'y.

Replace dot-products x'y with non-linear kernels K(x, y):
» K is a kernel if and only if 3¢ such that K(x, y) = @(x)" ¢(y)
— @ can be in a much higher dimensional space.
» €.g. combinations of up to k£ original features

— @(x)' ¢(y) can be computed efficiently without
enumerating @(x) or @(y).

The Perceptron Algorithm: Two Classes

initialize parameters w = (
forn=1...N 3
h,=sgn(w'x,) Repeat:

—

a) until convergence.

if hn Z then b) for a number of epochs E.

AN ol e

wW=w+17X,

Loop invariant: w is a weighted sum of training vectors:

W= 2 At X,=> WX = 2 a,t,Xhx
n=1.N n=1.N

Kernel Perceptron: Two Classes

1. define f(x) = wlx = z oOtiX; X = z a;t;K (x;, X)

j=1.N j=1.N

Repeat:
a) until convergence.
b) for a number of epochs E.

2. initialize dual parameters «, =0
5. forgi="1 ... N ¢

2 h,=sgn f(x,)

D, if 7, # t, then i

6. 0 —40% mw | 3

During testing: A(x) = sgn f(X)

Kernel Perceptron: Two Classes

=

1. define f(x) = wix = z ajtjijx = z ajth(x-,x)

s 7 4 j=1.N j=1.N
2. initialize dual parameters «, =0
5. forgi="1 ... N ¢
4, h, =sgn f(x,) Repeat:
: — a) until convergence.
S. if 7, # 7, then b) for a number of epochs E.
6. 07, =00 S | 3

Let S = {jla; # 0} be the set of support vectors. Then f(X) = Zajtjl((xj,x)
JES

During testing: 4(X) = sgn f(X)

Kernel Perceptron: Equivalent Formulation

1. define [f(x)=wlx= z anij = EajK(x-,x)

J J

Repeat:
a) until convergence.
b) for a number of epochs E.

2. initialize dual parameters «, =0
5. forgi="1 ... N ¢

2 h,=sgn f(x,)

D, if 7, # t, then i

6. =005 Lot 3

During testing: A(x) = sgn f(X)

The Perceptron vs. Boolean Functions

Perceptron with Quadratic Kernel

 Discriminant function:

f(®) =2 aitp(x) o(x) =3 at,K(x,,%)
e (Quadratic kernel:
K(x,y)=(x"y)’ = (X, + X,)’

—> corresponding feature space @(x) = ?

..

conjunctions of two atomic features

Perceptron with Quadratic Kernel

N X
[) @
d C
1
N\ . >
fo I wp

Linear kernel K(x,y)=x"y

P(x)

Quadratic Kernels

 Circles, hyperbolas, and ellipses as separating surfaces:
K(x,y)=(1+x"y) =0(x) ¢(»)

(D(.X') = [19 \/Exl 9 \/Exz 9 X12 ” \/Exlxz ” X22]T

° /\X2
°
° ° °
° ° °
. -------------------
e 0RO |t . @
WA el Y lTe. 20 TR >
. > X
! O’ '@
\
AN O O O ,/'
> () -,
® TR VB
X [] ® []
° °

Quadratic Kernels

K(x,y)=(x"y)’ =p(x) o(y)

L
L
L

st O'g0)
O O
\\\\\S) O C
~~~~~~~~~
L

X o(x)
°
° °
' /’,,’\\\
~~~~~~~~ \\\\
‘~\\ ‘ // \\
D& oie s
Y ’
1 ~ /,
o R o0 |90
V4
e O
_____ O O
°
® o

Explicit Features vs. Kernels

[

» Explicitly enumerating features can be prohibitive:
— 1,000 basic features for x'y => 500,500 quadratic features for (x'y)?

— Much worse for higher order features.

e Solution:

— Do not compute the feature vectors, compute kernels instead (i.e.
compute dot products between implicit feature vectors).

« (xTy)? takes 1001 multiplications.
* o(x)! ¢(y) in feature space takes 500,500 multiplications.

Kernel Functions

[

e Definition:

A function k£ : X x X — R 1s a kernel function 1if there
exists a feature mapping ¢ : X — R such that:

k(x,y) = p(x) " Ay)

e Theorem:

k: X x X — R s avalid kernel < the Gram matrix K
whose elements are given by A(X,,X,,) 1S positive
semidefinite for all possible choices of the set {x,}.

Kernel Examples

Linear kernel: K(x,y)=Xx"y

Quadratic kernel: K(x,y) =(c+ XTy)2

— contains constant, linear terms and terms of order two (¢ > 0).

Polynomial kernel: K(x,y)=(c+ XTy)M

— contains all terms up to degree M (c > 0).

Gaussian kernel: K(x,y) = exp(—Hx — sz /207)

— corresponding feature space has infinite dimensionality.

Techniques for Constructing Kernels

Given valid kernels kq(x,x’) and ko (x, x), the following new kernels will also
be valid:

k(x,x") ckq(x,x") (6.13)
k(x,x") = f(x)ki(x,x")f(x) (6.14)
k(x,x") = q(ki(x,x)) (6.15)
k(x,x") = exp(ki(x,x")) (6.16)
k(x,x") = ki(x,x")+ ko(x,x") (6.17)
k(x,x") = ki(x,x")ko(x,x") (6.18)
kox) = ks (S0, B(x)) (619
k(x,x') = xTAx (6.20)
k(x,x") = kq(xa,%x))+ kp(xp,x}) (6.21)
k(x,x") ka(Xas %,)kp(xp, x},) (6.22)

where ¢ > 0is a constant, f(-) is any function, ¢(-) is a polynomial with nonneg-
ative coefficients, ¢(x) is a function from x to RM | ks(-,-) is a valid kernel in
RM Aisa symmetric positive semidefinite matrix, x, and x; are variables (not
necessarily disjoint) with x = (x,,x3), and k, and & are valid kernel functions
over their respective spaces.

91

Kernels over Discrete Structures

[

* Subsequence Kernels [Lodhi et al., IMLR 2002]:
— 2 1s a finite alphabet (set of symbols).
— x,yeX* are two sequences of symbols with lengths |x| and |y|
— k(x,y) 1s defined as the number of common substrings of length #.
— k(x,y) can be computed in O(n|x||y|) time complexity.

e Tree Kernels [Collins and Duffy, NIPS 2001]:
— T, and T, are two trees with N, and N, nodes respectively.
— Kk(T,, T,) 1s defined as the number of common subtrees.
— Kk(T,, T,) can be computed in O(N,N,) time complexity.

— 1n practice, time is linear in the size of the trees.

Supplementary Reading

« PRML Chapter 6:

— Section 6.1 on dual representations for linear regression
models.

— Section 6.2 on techniques for constructing new kernels.

[inear Discriminant Functions:
Multiple Classes (K > 2)

[

1) Train K or K—1 one-versus-the-rest classifiers.

2) Tramn K(K-1)/2 one-versus-one classifiers.

3) Train K linear functions:
V(%) = W o(X) +w,

e Decision:
x € Cyif yu(x) > y(x), for all j # k.
— decision boundary between classes C; and C; 1s hyperplane defined
by yi(x)=y(x)ie. (w, — wj)T¢(x) + (W —W,;0) =0
—> same geometrical properties as in binary case.

[inear Discriminant Functions:
Multiple Classes (K > 2)

[

4) More general ranking approach:

y(x) = arg max w o(x,t) where T ={c,c,...,cp}
te

e It subsumes the approach with K separate linear functions.

e Useful when T 1s very large (e.g. exponential in the size
of mput x), assuming inference can be done efficiently.

The Perceptron Algorithm: K classes

[

1. initialize parameters w = (
2 Mowg = .. X 7
3. yj=argmaxw ¢o(X,,1) Repeat:
: < — a) until convergence.
4 ify; # ¢; then b) for a number of epochs E.
5 W =W+t @X;,1) — oX;)5)

During testing:

t =argmaxw @(X,t)
teT

Averaged Perceptron:

|

K classes

return w/ 7

During testing: ¢ =argmaxw ¢(X,?)
teT

Repeat:

a) until convergence.

1. initialize parametersw=0,t=1, w =0
2 1om="1 . Y 2

3. yi=argmax w o(x.,1)

i 1 g Gl . b) for a number of epochs E.
3. W =W+ @(X;,1;) — ¢X,0;)

6. W=W+W

% T —"tanl &)
8.

The Perceptron Algorithm: K classes

1. initialize parameters w = (

25 towgi =1 .. W 7

B ¢ = arg max w o(x,, 1) i Repeat; ’

O ikl e) fora numberof epochs
5 W =W+ o(X,1;) — (X, ¢;)

Loop invariant: w is a weighted sum of training vectors:

W= Y o ($(X,, 1) = (X))
= W) = Dt Bk, 1) .0~ plx,.c,) Px.0)

Kernel Perceptron: K classes

I define f(x.0)= ¥ a,(9(x,. 1) $(x.0) - p(x,.c;) P(x.1))

Repeat:

a) until convergence.
b) for a number of epochs E.

2. initialize dual pafameters a;=0
5. foxgsil” ... 1 3

4, C; = argntlee}xf(xi,t) g

D, if y; # ¢; then

0. a;=a;t+ 1 A
During testing:

t =argmax f(x,?)

=

Kernel Perceptron: K classes

[

 Discriminant function:

Fx0) =Y a, ($(x,, 1) (X1 = p(X.¢,) P(X,1))

= EGU(K(XZ, tl,X,t)_K(Xlac]’XSt))
i.j
where:

K(X,,1,%,0) = @' (X,,1,)p(X,1)

K(Xi’yi’x’t) & ¢T(Xi’yi)¢(xat)

