
Razvan C. Bunescu

Department of Computer Science @ CCI

rbunescu@uncc.edu

The Perceptron Algorithm

The Kernel Trick

Machine Learning
ITCS 4156

1

mailto:rbunescu@uncc.edu

Supervised Learning

Training Examples
(xk, tk)

Test Examples
(x, t)

Learning
Algorithm Model h

Model h

Training

Testing

Generalization
Performance

2

Supervised Learning

• Task = learn an (unkown) function t : X ® T that maps input
instances x Î X to output targets t(x) Î T:
– Classification:

• The output t(x) Î T is one of a finite set of discrete categories.
– Regression:

• The output t(x) Î T is continuous, or has a continuous component.

• Target function t(x) is known (only) through (noisy) set of
training examples:

(x1,t1), (x2,t2), … (xn,tn)

3

Three Parametric Approaches to
Classification

1) Discriminant Functions: construct f : X ® T that directly
assigns a vector x to a specific class Ck.
– Inference and decision combined into a single learning

problem.
– Linear Discriminant: the decision surface is a

hyperplane in X:
• Perceptron
• Support Vector Machines
• Fisher ‘s Linear Discriminant

4

Three Parametric Approaches to
Classification

2) Probabilistic Discriminative Models: directly model the
posterior class probabilities p(Ck | x).
– Inference and decision are separate.
– Less data needed to estimate p(Ck | x) than p(x |Ck).
– Can accommodate many overlapping features.

• Logistic Regression
• Conditional Random Fields

5

Three Parametric Approaches to
Classification

3) Probabilistic Generative Models:
– Model class-conditional p(x |Ck) as well as the priors

p(Ck), then use Bayes’s theorem to find p(Ck | x).
• or model p(x,Ck) directly, then marginalize to obtain the

posterior probabilities p(Ck | x).

– Inference and decision are separate.
– Can use p(x) for outlier or novelty detection.
– Need to model dependencies between features.

• Naïve Bayes.
• Hidden Markov Models.

6

Generative and Discriminative Classifiers

Suppose we're distinguishing cat from dog images

ImageNet ImageNet

7

Generative Classifier:

• Build a model of what's in a cat image
• Knows about whiskers, ears, eyes
• Assigns a probability to any image:

• how cat-y is this image?

Also build a model for dog images

Given a new image:
Run both models and see which one fits better.

8

Discriminative Classifier

Just try to distinguish dogs from cats

Oh look, dogs have collars!
Let's ignore everything else.

9

Finding the correct class c from a document d in
Generative vs Discriminative Classifiers

• Naive Bayes

• Logistic Regression

2 CHAPTER 5 • LOGISTIC REGRESSION

More formally, recall that the naive Bayes assigns a class c to a document d not
by directly computing P(c|d) but by computing a likelihood and a prior

ĉ = argmax
c2C

likelihoodz }| {
P(d|c)

prior
z}|{
P(c) (5.1)

A generative model like naive Bayes makes use of this likelihood term, whichgenerative
model

expresses how to generate the features of a document if we knew it was of class c.
By contrast a discriminative model in this text categorization scenario attemptsdiscriminative

model
to directly compute P(c|d). Perhaps it will learn to assign high weight to document
features that directly improve its ability to discriminate between possible classes,
even if it couldn’t generate an example of one of the classes.

Components of a probabilistic machine learning classifier: Like naive Bayes,
logistic regression is a probabilistic classifier that makes use of supervised machine
learning. Machine learning classifiers require a training corpus of M observations
input/output pairs (x(i),y(i)). (We’ll use superscripts in parentheses to refer to indi-
vidual instances in the training set—for sentiment classification each instance might
be an individual document to be classified). A machine learning system for classifi-
cation then has four components:

1. A feature representation of the input. For each input observation x(i), this
will be a vector of features [x1,x2, ...,xn]. We will generally refer to feature
i for input x(j) as x(j)

i , sometimes simplified as xi, but we will also see the
notation fi, fi(x), or, for multiclass classification, fi(c,x).

2. A classification function that computes ŷ, the estimated class, via p(y|x). In
the next section we will introduce the sigmoid and softmax tools for classifi-
cation.

3. An objective function for learning, usually involving minimizing error on
training examples. We will introduce the cross-entropy loss function

4. An algorithm for optimizing the objective function. We introduce the stochas-
tic gradient descent algorithm.

Logistic regression has two phases:

training: we train the system (specifically the weights w and b) using stochastic
gradient descent and the cross-entropy loss.

test: Given a test example x we compute p(y|x) and return the higher probability
label y = 1 or y = 0.

5.1 Classification: the sigmoid

The goal of binary logistic regression is to train a classifier that can make a binary
decision about the class of a new input observation. Here we introduce the sigmoid
classifier that will help us make this decision.

Consider a single input observation x, which we will represent by a vector of
features [x1,x2, ...,xn] (we’ll show sample features in the next subsection). The clas-
sifier output y can be 1 (meaning the observation is a member of the class) or 0
(the observation is not a member of the class). We want to know the probability
P(y = 1|x) that this observation is a member of the class. So perhaps the decision

2 CHAPTER 5 • LOGISTIC REGRESSION

More formally, recall that the naive Bayes assigns a class c to a document d not
by directly computing P(c|d) but by computing a likelihood and a prior

ĉ = argmax
c2C

likelihoodz }| {
P(d|c)

prior
z}|{
P(c) (5.1)

A generative model like naive Bayes makes use of this likelihood term, whichgenerative
model

expresses how to generate the features of a document if we knew it was of class c.
By contrast a discriminative model in this text categorization scenario attemptsdiscriminative

model
to directly compute P(c|d). Perhaps it will learn to assign high weight to document
features that directly improve its ability to discriminate between possible classes,
even if it couldn’t generate an example of one of the classes.

Components of a probabilistic machine learning classifier: Like naive Bayes,
logistic regression is a probabilistic classifier that makes use of supervised machine
learning. Machine learning classifiers require a training corpus of M observations
input/output pairs (x(i),y(i)). (We’ll use superscripts in parentheses to refer to indi-
vidual instances in the training set—for sentiment classification each instance might
be an individual document to be classified). A machine learning system for classifi-
cation then has four components:

1. A feature representation of the input. For each input observation x(i), this
will be a vector of features [x1,x2, ...,xn]. We will generally refer to feature
i for input x(j) as x(j)

i , sometimes simplified as xi, but we will also see the
notation fi, fi(x), or, for multiclass classification, fi(c,x).

2. A classification function that computes ŷ, the estimated class, via p(y|x). In
the next section we will introduce the sigmoid and softmax tools for classifi-
cation.

3. An objective function for learning, usually involving minimizing error on
training examples. We will introduce the cross-entropy loss function

4. An algorithm for optimizing the objective function. We introduce the stochas-
tic gradient descent algorithm.

Logistic regression has two phases:

training: we train the system (specifically the weights w and b) using stochastic
gradient descent and the cross-entropy loss.

test: Given a test example x we compute p(y|x) and return the higher probability
label y = 1 or y = 0.

5.1 Classification: the sigmoid

The goal of binary logistic regression is to train a classifier that can make a binary
decision about the class of a new input observation. Here we introduce the sigmoid
classifier that will help us make this decision.

Consider a single input observation x, which we will represent by a vector of
features [x1,x2, ...,xn] (we’ll show sample features in the next subsection). The clas-
sifier output y can be 1 (meaning the observation is a member of the class) or 0
(the observation is not a member of the class). We want to know the probability
P(y = 1|x) that this observation is a member of the class. So perhaps the decision

P(c|d)
posterior

10

Generative vs. Discriminative

11

Left-hand mode has no effect on posterior class probabilities.

Three Parametric Approaches to
Classification

1) Discriminant Functions: construct h: X ® T that directly
assigns a vector x to a specific class Ck.
– Inference and decision combined into a single learning

problem.
– Linear Discriminant: the decision surface is a

hyperplane in X:
• Perceptron
• Support Vector Machines
• Fisher ‘s Linear Discriminant

12

Discriminant Function Approach to
Classification

• Task = build a function h(x) such that:
– h matches t well on the training data:

=> h is able to fit data that it has seen.
– h also matches t well on test data:

=> h is able to generalize to unseen data.

• Task = choose h from a “nice” class of functions that
depend on a vector of parameters w:
– h(x) º hw(x) º h(w,x)
– what classes of functions are “nice”?

13

Neurons

Soma is the central part of the neuron:
• where the input signals are combined.

Dendrites are cellular extensions:
• where majority of the input occurs.

Axon is a fine, long projection:
• carries nerve signals to other neurons.

Synapses are molecular structures between
axon terminals and other neurons:
• where the communication takes place.

14

Neuron Models
https://www.research.ibm.com/software/IBMResearch/multimedia/IJCNN2013.neuron-
model.pdf

15

Spiking/LIF Neuron Function
http://ee.princeton.edu/research/prucnal/sites/default/files/06497478.pdf

16

Neuron Models
https://www.research.ibm.com/software/IBMResearch/multimedia/IJCNN2013.neuron-
model.pdf

17

McCulloch-Pitts Neuron Function

Σ f

1x0

x1

x2

x3

wixi∑ hw(x)

activation / output
function

w0
w1

w2
w3

• Algebraic interpretation:
– The output of the neuron is a linear combination of inputs from other neurons,

rescaled by the synaptic weights.
• weights wi correspond to the synaptic weights (activating or inhibiting).
• summation corresponds to combination of signals in the soma.

– It is often transformed through a monotonic activation function.

18

Activation/Output Functions

1

0

f (z) = 1
1+ e−z

logistic

f (z) = 0 if z < 0
1 if z ≥ 0

"
#
$

%$
unit step

f (z) = zidentity

Perceptron

Logistic Regression
Linear Regression

19

Perceptron

• Assume classes T = {c1, c2} = {1, −1}.
• Training set is (x1, t1), (x2, t2), … (xn, tn).

x = [1, x1, x2, ..., xk]T

h(x) = sgn(wTx) = sgn(w0 + w1 x1 + … + wk xk)

Σ

1x0

x1

x2

x3

wixi∑
hw(x)

activation
function f

w0
w1

w2
w3 = 1 if wTx > 0

0 otherwise

!
"
#

$#f (z) = 0 if z < 0
1 if z ≥ 0

"
#
$

%$

20

−1 −1

a linear discriminant function

• Use a linear function of the input vector:

• Decision:
x Î C1 if h(x) ³ 0, otherwise x Î C2.
Þ decision boundary is hyperplane h(x) = 0.

• Properties:
– w is orthogonal to vectors lying within the decision surface.
– w0 controls the location of the decision hyperplane.

21

Linear Discriminant Functions

weight vector bias = - threshold

ℎ 𝐱 = 𝐰!𝜑 𝐱 + 𝑤"

Geometric Interpretation

22

h
h

hhh

hh

Linear Discriminant Functions:
Two Classes (K = 2)

• What algorithms can be used to learn y(x) = wTj(x) + w0?
Assume a training dataset of N = N1 + N2 examples in C1 and C2.

– Perceptron:
• Voted/Averaged Perceptron
• Kernel Perceptron

– Support Vector Machines:
• Linear
• Kernel

– Fisher’s Linear Discriminant

23

Perceptron

• Assume classes T = {c1, c2} = {1, −1}.
• Training set is (x1, t1), (x2, t2), … (xn, tn).

x = [1, x1, x2, ..., xk]T

h(x) = sgn(wTx) = sgn(w0 + w1 x1 + … + wk xk)

Σ

1x0

x1

x2

x3

wixi∑
hw(x)

activation
function f

w0
w1

w2
w3 = 1 if wTx > 0

0 otherwise

!
"
#

$#f (z) = 0 if z < 0
1 if z ≥ 0

"
#
$

%$

24

−1 −1

a linear discriminant function

Perceptron Learning

• Learning = finding the “right” parameters wT = [w0, w1, … , wk]
– Find w that minimizes an error function E(w) which measures the

misfit between h(xn,w) and tn.
– Expect that h(x,w) performing well on training examples xnÞ h(x,w)

will perform well on arbitrary test examples x Î X.

• Least Squares error function?

E(w) = 1
2

{h(xn,w)− tn}
2

n=1

N

∑
2 x # of mistakes

25

Least Squares vs. Perceptron Criterion

• Least Squares => cost is # of misclassified patterns:
– Piecewise constant function of w with discontinuities.
– Cannot find closed form solution for w that minimizes cost.
– Cannot use gradient methods (gradient zero almost everywhere).

• Perceptron Criterion:
– Set labels to be +1 and − 1. Want wTxn > 0 for tn = 1, and wTxn < 0

for tn = − 1.
Þ would like to have wTxntn > 0 for all patterns.
Þ want to minimize −wTxntn for all missclassified patterns M.

Þ minimize 𝐸! 𝐰 = −∑"∈$𝐰%𝐱"𝑡"

26

Stochastic Gradient Descent

• Perceptron Criterion:

• Update parameters w sequentially after each mistake:

• The magnitude of w is inconsequential => set h = 1.

w(τ+1) =w(τ) −η∇EP (w
(τ),xn)

= 𝐰(') + 𝜂𝐱"𝑡"

minimize 𝐸! 𝐰 = −∑"∈$𝐰%𝐱"𝑡"

𝐰(')*) = 𝐰(') + 𝐱"𝑡"

27

The Perceptron Algorithm: Two Classes

1. initialize parameters w = 0
2. for n = 1 … N
3. hn = sgn(wTxn)
4. if hn ¹ tn then
5. w = w + tnxn

Repeat:
a) until convergence.
b) for a number of epochs E.

Theorem [Rosenblatt, 1962]:
If the training dataset is linearly separable, the perceptron learning
algorithm is guaranteed to find a solution in a finite number of steps.
• see Theorem 1 (Block, Novikoff) in [Freund & Schapire, 1999].

28

sgn(z) = +1 if z > 0,
0 if z = 0,

−1 if z < 0

The Perceptron Algorithm: Two Classes

1. initialize parameters w = 0
2. for n = 1 … N
3. hn = wTxn
4. if hntn ≤ 0 then
5. w = w + tnxn

Repeat:
a) until convergence.
b) for a number of epochs E.

Theorem [Rosenblatt, 1962]:
If the training dataset is linearly separable, the perceptron learning
algorithm is guaranteed to find a solution in a finite number of steps.
• see Theorem 1 (Block, Novikoff) in [Freund & Schapire, 1999].

29

sgn(z) = +1 if z > 0,
0 if z = 0,

−1 if z < 0

The Perceptron Algorithm: Two Classes

1. initialize parameters w = 0
2. for n = 1 … N
3. hn = wTxn
4. if hn ≥ 0 and tn = −1
5. w = w − xn
6. if hn ≤ 0 and tn = +1
7. w = w + xn

Repeat:
a) until convergence.
b) for a number of epochs E.

30

sgn(z) = +1 if z > 0,
0 if z = 0,

−1 if z < 0

What is the impact of the perceptron update on the score
wTxn of the misclassified example xn?

Linear vs. Non-linear Decision Boundaries

And Or Xor

?

Txx],,1[)(21=xj
Twww],,[210=w 02121],[],[)(wxxww TT +==> xw j

31

[1, 1]

[1, 0]

[0, 1]

[0, 0]

Deep Learning class

How to Find Non-linear Decision Boundaries

1) Perceptron with manually engineered features:
– Quadratic features.

2) Kernel methods (e.g. SVMs) with non-linear kernels:
– Quadratic kernels, Gaussian kernels.

3) Unsupervised feature learning (e.g. auto-encoders):
– Plug learned features in any linear classifier.

4) Neural Networks with one or more hidden layers:
– Automatically learned features.

32

Non-Linear Classification: XOR Dataset

x = [x1, x2]

33

1) Manually Engineered Features: Add x1x2

x = [x1, x2, x1x2]

34

Logistic Regression with Manually
Engineered Features

x = [x1, x2, x1x2]

35

Perceptron with Manually Engineered Features

Project x = [x1, x2, x1x2] and decision hyperplane back to x = [x1, x2]

36

Averaged Perceptron: Two Classes

1. initialize parameters w = 0, t = 1,
2. for n = 1 … N
3. hn = sgn(wTxn)
4. if hn ¹ tn then
5. w = w + tnxn
6.
7. t = t + 1
8. return

During testing: h(𝐱) = 𝑠𝑔𝑛(0𝐰%𝐱)

37

Repeat:
a) until convergence.
b) for a number of epochs E.

www +=

0=w

t/w

sgn(z) = +1 if z > 0,
0 if z = 0,

−1 if z < 0

2) Kernel Methods with Non-Linear Kernels

• Perceptrons, SVMs can be ‘kernelized’:
1. Re-write the algorithm such that during training and testing

feature vectors x, y appear only in dot-products xTy.

2. Replace dot-products xTy with non-linear kernels K(x, y):

• K is a kernel if and only if ∃𝜑 such that K(x, y) = 𝜑(x)T 𝜑(y)

– 𝜑 can be in a much higher dimensional space.

» e.g. combinations of up to k original features

– 𝜑(x)T 𝜑(y) can be computed efficiently without
enumerating 𝜑(x) or 𝜑(y).

38

The Perceptron Algorithm: Two Classes

1. initialize parameters w = 0
2. for n = 1 … N
3. hn = sgn(wTxn)
4. if hn ¹ tn then
5. w = w + tnxn

39

Repeat:
a) until convergence.
b) for a number of epochs E.

Þ𝐰 = 1
"+*..-

𝛼"𝑡"𝐱" 𝐰%𝐱 = 1
"+*..-

𝛼"𝑡"𝐱"%𝐱

Loop invariant: w is a weighted sum of training vectors:

Kernel Perceptron: Two Classes

1. define

2. initialize dual parameters an = 0

3. for n = 1 … N
4. hn = sgn f(xn)
5. if hn ¹ tn then
6. an = an + 1

During testing: h(x) = sgn f(x)

40

𝑓 𝐱 = 𝐰%𝐱 = 1
.+*..-

𝛼.𝑡.𝐱.%𝐱 = 1
.+*..-

4𝛼.𝑡.𝐾(𝐱., 𝐱

Repeat:
a) until convergence.
b) for a number of epochs E.

Kernel Perceptron: Two Classes

1. define

2. initialize dual parameters an = 0

3. for n = 1 … N
4. hn = sgn f(xn)
5. if hn ¹ tn then
6. an = an + 1

Let 𝑆 = {𝑗|𝛼! ≠ 0} be the set of support vectors. Then

During testing: h(x) = sgn f(x)
41

𝑓 𝐱 = 𝐰%𝐱 = 1
.+*..-

𝛼.𝑡.𝐱.%𝐱 = 1
.+*..-

4𝛼.𝑡.𝐾(𝐱., 𝐱

Repeat:
a) until convergence.
b) for a number of epochs E.

𝑓 𝐱 =:
!∈#

;𝛼!𝑡!𝐾(𝐱! , 𝐱

Kernel Perceptron: Equivalent Formulation

1. define

2. initialize dual parameters an = 0

3. for n = 1 … N
4. hn = sgn f(xn)
5. if hn ¹ tn then
6. an = an + tn

During testing: h(x) = sgn f(x)

42

𝑓 𝐱 = 𝐰%𝐱 =1
.

𝛼.𝐱.%𝐱 =1
.

4𝛼.𝐾(𝐱., 𝐱

Repeat:
a) until convergence.
b) for a number of epochs E.

The Perceptron vs. Boolean Functions

43

And Or Xor

?

Txx],,1[)(21=xj
Twww],,[210=w 02121],[],[)(wxxww TT +==> xw j

Perceptron with Quadratic Kernel

• Discriminant function:

• Quadratic kernel:

Þ corresponding feature space j(x) = ?

44

),()()()(xxxxx åå ==
i

iii
T

i
iii Kttf ajja

2
2211

2)()(),(yxyxK T +== yxyx

conjunctions of two atomic features

Perceptron with Quadratic Kernel

45

a b

cd

a b

d

c
1

1 1
1

2

Linear kernel

Quadratic kernel

yxyx TK =),(
2)(),(yxyx TK =

x j(x)

Quadratic Kernels

• Circles, hyperbolas, and ellipses as separating surfaces:

46

)()()1(),(2 yxK TT jj=+= yxyx
Txxxxxxx],2,,2,2,1[)(2

221
2
121=j

x1

x2

Quadratic Kernels

47

)()()(),(2 yxyxyx jj TTK ==

x j(x)

Explicit Features vs. Kernels

• Explicitly enumerating features can be prohibitive:
– 1,000 basic features for xTy => quadratic features for (xTy)2

– Much worse for higher order features.

• Solution:
– Do not compute the feature vectors, compute kernels instead (i.e.

compute dot products between implicit feature vectors).
• (xTy)2 takes 1001 multiplications.
• j(x)T j(y) in feature space takes 500,500 multiplications.

48

500,500

Kernel Functions

• Definition:
A function k : X ´ X ® R is a kernel function if there
exists a feature mapping j : X ® Rn such that:

k(x,y) = j(x)Tj(y)

• Theorem:
k : X ´ X ® R is a valid kernel Û the Gram matrix K
whose elements are given by k(xn,xm) is positive
semidefinite for all possible choices of the set {xn}.

49

Kernel Examples

• Linear kernel:

• Quadratic kernel:
– contains constant, linear terms and terms of order two (c > 0).

• Polynomial kernel:
– contains all terms up to degree M (c > 0).

• Gaussian kernel:
– corresponding feature space has infinite dimensionality.

50

yxyx TK =),(

2)(),(yxyx TcK +=

MTcK)(),(yxyx +=

)2/exp(),(22 syxyx --=K

Techniques for Constructing Kernels

51

Kernels over Discrete Structures

• Subsequence Kernels [Lodhi et al., JMLR 2002]:
– S is a finite alphabet (set of symbols).
– x,yÎS* are two sequences of symbols with lengths |x| and |y|
– k(x,y) is defined as the number of common substrings of length n.
– k(x,y) can be computed in O(n|x||y|) time complexity.

• Tree Kernels [Collins and Duffy, NIPS 2001]:
– T1 and T2 are two trees with N1 and N2 nodes respectively.
– k(T1, T2) is defined as the number of common subtrees.
– k(T1, T2) can be computed in O(N1N2) time complexity.
– in practice, time is linear in the size of the trees.

52

Supplementary Reading

• PRML Chapter 6:
– Section 6.1 on dual representations for linear regression

models.
– Section 6.2 on techniques for constructing new kernels.

53

54

Linear Discriminant Functions:
Multiple Classes (K > 2)

1) Train K or K-1 one-versus-the-rest classifiers.
2) Train K(K-1)/2 one-versus-one classifiers.

3) Train K linear functions:

• Decision:
x Î Ck if yk(x) > yj(x), for all j ¹ k.
Þdecision boundary between classes Ck and Cj is hyperplane defined

by yk(x) = yj(x) i.e.
Þ same geometrical properties as in binary case.

55

0)()(k
T
kk wy += xwx j

0)()()(00 =-+- jk
T

jk wwxww j

Linear Discriminant Functions:
Multiple Classes (K > 2)

4) More general ranking approach:

• It subsumes the approach with K separate linear functions.

• Useful when T is very large (e.g. exponential in the size
of input x), assuming inference can be done efficiently.

56

}...,,{ where),(maxarg)(21 K
T

Tt
cccTty ==

Î
xwx j

The Perceptron Algorithm: K classes

1. initialize parameters w = 0
2. for i = 1 … n
3. yi =
4. if yi ¹ ti then
5. w = w + j(xi,ti) - j(xi,yi)

During testing:

57

),(maxarg ti
T

Tt
xw j

Î
Repeat:
a) until convergence.
b) for a number of epochs E.

t* = argmax
t∈T
wTφ(x, t)

Averaged Perceptron: K classes

1. initialize parameters w = 0, t = 1,
2. for i = 1 … n
3. yi =
4. if yi ¹ ti then
5. w = w + j(xi,ti) - j(xi,yi)
6.
7. t = t + 1
8. return

During testing:

58

Repeat:
a) until convergence.
b) for a number of epochs E.

),(maxarg ti
T

Tt
xw j

Î

www +=

0=w

t/w

),(maxarg* tt T

Tt
xw j

Î
=

The Perceptron Algorithm: K classes

1. initialize parameters w = 0
2. for i = 1 … n
3. cj =
4. if cj ¹ ti then
5. w = w + j(xi,ti) - j(xi, cj)

Loop invariant: w is a weighted sum of training vectors:

59

),(maxarg ti
T

Tt
xw j

Î
Repeat:
a) until convergence.
b) for a number of epochs E.

w = αij (φ(xi,
i, j
∑ ti)−φ(xi,cj))

wTφ(x, t) = αij (φ(xi,
i, j
∑ ti)

Tφ(x, t)−φ(xi,cj)
Tφ(x, t))Þ

Kernel Perceptron: K classes

1. define

2. initialize dual parameters aij = 0

3. for i = 1 … n
4. cj =
5. if yi ¹ ti then
6. aij = aij + 1

During testing:

60

f (x, t) = αij (φ(xi,
i, j
∑ ti)

Tφ(x, t)−φ(xi,cj)
Tφ(x, t))

),(maxarg tf iTt
x

Î

),(maxarg* tft
Tt

x
Î

=

Repeat:
a) until convergence.
b) for a number of epochs E.

Kernel Perceptron: K classes

• Discriminant function:

where:

61

f (x, t) = αi, j (φ(xi,
i, j
∑ ti)

Tφ(x, t)−φ(xi,cj)
Tφ(x, t))

= αij (K(xi,
i, j
∑ ti,x, t)−K(xi,cj,x, t))

),(),(),,,(ttttK ii
T

ii xxxx jj=

K(xi, yi,x, t) = φ
T (xi, yi)φ(x, t)

