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Max-Margin Classifiers: Separable Case

• Linear model for binary classification:

• Training examples:
(x1,t1), (x2,t2), … (xN,tN), where tnÎ{+1,-1}

• Assume training data is linearly separable:

Þ perceptron solution depends on:
– initial values of w and b.
– order of processing of data points.
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Maximum Margin Classifiers

• Which hyperplane has the smallest generalization error?
– The one that maximizes the margin [Computational Learning Theory]

• margin = the distance between the decision boundary and the 
closest sample.
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Maximum Margin Classifiers

• The distance between a point xn and a hyperplane y(x)=0 is:
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Maximum Margin Classifiers

• Margin = the distance between hyperplane y(x)=0 and closest sample:

• Find parameters w and b that maximize the margin:

• Rescaling w and b does not change distances to the hyperplane:

Þ for the closest point(s), set 
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Max-Margin: Quadratic Optimization

• Constrained optimization problem:

• Solved using the technique of Lagrange Multipliers.
– [derivation not shown in this class, but see end of slides if interested].
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Max-Margin: Quadratic Optimization

• Equivalent dual representation:

– k(xn,xm) = j(xn)Tj(xn) is the kernel function.

– where and 
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Exactly like in the Kernel Perceptron!



KKT conditions

1. primal constraints:

1. dual constraints:

2. complementary slackness:

Þ for any data point, either an = 0 or tn y(xn) = 1

S = {n | tn y(xn) = 1} is the set of 
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Max-Margin Solution

• After solving the dual problem Þ know an, for n = 1… N

• Linear discriminant function becomes:

Þ In both training and testing, examples are used only through 
the kernel function!
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An SVM with Gaussian kernel
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Max-Margin Classifiers: Non-Separable Case

• Allow data points to be on the wrong side of the margin boundary.
– Penalty that increases with the distance from the boundary.
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Max-Margin: Quadratic Optimization

• Optimization problem:

• Solve it using the technique of Lagrange Multipliers.
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Max-Margin: Quadratic Optimization

• Dual representation:

• k(xn,xm)=j(xn)Tj(xn) is the kernel function.
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(Some of the) KKT conditions

1. primal constraints:

1. dual constraints:

2. complementary slackness:

Þ for any data point, either an = 0 or tn y(xn) = 1-xn

S  = {n | tn y(xn) = 1-xn} is the set of 

M ={n | 0 < an< C} is the set of SVs that lie on the margin.
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Max-Margin Solution

• After solving the dual problem Þ know an, for n = 1… N

• Linear discriminant function becomes:

Þ In both training and testing, examples are used only through 
the kernel function!
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Support Vector Machines

• Optimization problem:

– Implemented in sklearn:
• https://scikit-learn.org/stable/modules/svm.html
• https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
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upper bound on the misclassification 
error on the training data.

https://scikit-learn.org/stable/modules/svm.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html

