Machine Learning ITCS 4156

Support Vector Machines

Razvan C. Bunescu

Department of Computer Science @ CCI
rbunescu@uncc.edu

Max-Margin Classifiers: Separable Case

- Linear model for binary classification:

$$
y(\mathbf{x})=\mathbf{w}^{T} \varphi(\mathbf{x})+b
$$

- Training examples:

$$
\left(\mathbf{x}_{1}, t_{1}\right),\left(\mathbf{x}_{2}, t_{2}\right), \ldots\left(\mathbf{x}_{N}, t_{N}\right) \text {, where } t_{n} \in\{+1,-1\}
$$

- Assume training data is linearly separable:

$$
t_{n} y\left(x_{n}\right)>0, \text { for all } 1 \leq n \leq N
$$

\Rightarrow perceptron solution depends on:

- initial values of \mathbf{w} and b.
- order of processing of data points.

Maximum Margin Classifiers

- Which hyperplane has the smallest generalization error?
- The one that maximizes the margin [Computational Learning Theory]
- margin $=$ the distance between the decision boundary and the closest sample.

Maximum Margin Classifiers

- The distance between a point \mathbf{x}_{n} and a hyperplane $y(\mathbf{x})=0$ is:

$$
\frac{\left|y\left(\mathbf{x}_{n}\right)\right|}{\|\mathbf{w}\|}=\frac{t_{n} y\left(\mathbf{x}_{n}\right)}{\|\mathbf{w}\|}=\frac{t_{n}\left(\mathbf{w}^{T} \varphi\left(\mathbf{x}_{n}\right)+b\right)}{\|\mathbf{w}\|}
$$

Maximum Margin Classifiers

- \quad Margin $=$ the distance between hyperplane $y(\mathbf{x})=0$ and closest sample:

$$
\min _{n}\left[\frac{t_{n}\left(\mathbf{w}^{T} \varphi\left(\mathbf{x}_{n}\right)+b\right)}{\|\mathbf{w}\|}\right]
$$

- Find parameters \mathbf{w} and b that maximize the margin:

$$
\underset{\mathbf{w}, b}{\arg \max }\left\{\frac{1}{\|\mathbf{w}\|} \min _{n}\left[t_{n}\left(\mathbf{w}^{T} \varphi\left(\mathbf{x}_{n}\right)+b\right)\right]\right\}
$$

- Rescaling \mathbf{w} and b does not change distances to the hyperplane:
\Rightarrow for the closest point(s), set $t_{n}\left(\mathbf{w}^{T} \varphi\left(\mathbf{x}_{n}\right)+b\right)=1$

$$
\Rightarrow t_{n}\left(\mathbf{w}^{T} \varphi\left(\mathbf{x}_{n}\right)+b\right) \geq 1, \quad \forall n \in\{1, \ldots, N\}
$$

Max-Margin: Quadratic Optimization

- Constrained optimization problem:
minimize:

$$
J(\mathbf{w}, b)=\frac{1}{2}\|\mathbf{w}\|^{2}
$$

subject to:

$$
t_{n}\left(\mathbf{w}^{T} \varphi\left(\mathbf{x}_{n}\right)+b\right) \geq 1, \quad \forall n \in\{1, \ldots, N\}
$$

- Solved using the technique of Lagrange Multipliers.
- [derivation not shown in this class, but see end of slides if interested].

Max-Margin: Quadratic Optimization

- Equivalent dual representation:
maximize:

$$
L_{D}(\boldsymbol{\alpha})=\sum_{n=1}^{N} \alpha_{n}-\frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} \alpha_{n} \alpha_{m} t_{n} t_{m} k\left(\mathbf{x}_{n}, \mathbf{x}_{m}\right)
$$

subject to:

$$
\begin{aligned}
& \alpha_{n} \geq 0, \quad n=1, \ldots, N \\
& \sum_{n=1}^{N} \alpha_{n} t_{n}=0
\end{aligned}
$$

$-\mathrm{k}\left(\mathbf{x}_{\mathrm{n}}, \mathbf{x}_{\mathrm{m}}\right)=\varphi\left(\mathbf{x}_{\mathrm{n}}\right)^{\mathrm{T}} \varphi\left(\mathbf{x}_{\mathrm{n}}\right)$ is the kernel function.

- where $\mathbf{w}=\sum_{n=1}^{N} \alpha_{n} t_{n} \varphi\left(x_{n}\right)$ and $\sum_{n=1}^{N} \alpha_{n} t_{n}=0$

KKT conditions

1. primal constraints: $t_{n} y\left(x_{n}\right)-1 \geq 0$
2. dual constraints: $\alpha_{n} \geq 0$
3. complementary slackness: $\alpha_{n}\left\{t_{n} y\left(x_{n}\right)-1\right\}=0$
\Rightarrow for any data point, either $\alpha_{n}=0$ or $t_{n} y\left(x_{n}\right)=1$
$\mathrm{S}=\left\{n \mid t_{n} y\left(x_{n}\right)=1\right\}$ is the set of support vectors

Max-Margin Solution

- After solving the dual problem \Rightarrow know α_{n}, for $n=1 \ldots N$

$$
\begin{aligned}
& \mathbf{w}=\sum_{n=1}^{N} \alpha_{n} t_{n} \varphi\left(x_{n}\right)=\sum_{m \in S} \alpha_{m} t_{m} \varphi\left(x_{m}\right) \\
& b=\frac{1}{|S|} \sum_{n \in S}\left(t_{n}-\sum_{m \in S} \alpha_{m} t_{m} k\left(\mathbf{x}_{n}, \mathbf{x}_{m}\right)\right)
\end{aligned}
$$

- Linear discriminant function becomes:

$$
y(x)=\sum_{m \in S} \alpha_{m} t_{m} k\left(x, x_{m}\right)+b
$$

\Rightarrow In both training and testing, examples are used only through the kernel function!

An SVM with Gaussian kernel

Max-Margin Classifiers: Non-Separable Case

- Allow data points to be on the wrong side of the margin boundary.
- Penalty that increases with the distance from the boundary.

Max-Margin: Quadratic Optimization

- Optimization problem:
minimize:

$$
J(\mathbf{w}, b)=\frac{1}{2}\|\mathbf{w}\|^{2}+C \sum_{n=1}^{N} \xi_{n}
$$

subject to:

$$
\begin{aligned}
t_{n}\left(\mathbf{w}^{T} \varphi\left(\mathbf{x}_{n}\right)+b\right) & \geq 1-\xi_{n}, \quad \forall n \in\{1, \ldots, N\} \\
\xi_{n} & \geq 0
\end{aligned}
$$

- Solve it using the technique of Lagrange Multipliers.

Max-Margin: Quadratic Optimization

- Dual representation:
maximize:

$$
L_{D}(\boldsymbol{\alpha})=\sum_{n=1}^{N} \alpha_{n}-\frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} \alpha_{n} \alpha_{m} t_{n} t_{m} k\left(\mathbf{x}_{n}, \mathbf{x}_{m}\right)
$$

subject to:

$$
\begin{aligned}
& 0 \leq \alpha_{n} \leq C, \quad n=1, \ldots, N \\
& \sum_{n=1}^{N} \alpha_{n} t_{n}=0
\end{aligned}
$$

- $\mathrm{k}\left(\mathbf{x}_{\mathrm{n}}, \mathbf{x}_{\mathrm{m}}\right)=\varphi\left(\mathbf{x}_{\mathrm{n}}\right)^{\mathrm{T}} \varphi\left(\mathbf{x}_{\mathrm{n}}\right)$ is the kernel function.

(Some of the) KKT conditions

1. primal constraints: $t_{n} y\left(x_{n}\right)-1+\xi_{n} \geq 0$
2. dual constraints: $0 \leq \alpha_{n} \leq C$
3. complementary slackness: $\alpha_{n}\left\{t_{n} y\left(x_{n}\right)-1+\xi_{n}\right\}=0$
\Rightarrow for any data point, either $\alpha_{n}=0$ or $t_{n} y\left(x_{n}\right)=1-\xi_{n}$
$S=\left\{n \mid t_{n} y\left(x_{n}\right)=1-\xi_{n}\right\}$ is the set of support vectors
$M=\left\{n \mid 0<\alpha_{n}<\mathrm{C}\right\}$ is the set of SVs that lie on the margin.

Max-Margin Solution

- After solving the dual problem \Rightarrow know α_{n}, for $n=1 \ldots N$

$$
\begin{aligned}
& \mathbf{w}=\sum_{n=1}^{N} \alpha_{n} t_{n} \varphi\left(x_{n}\right)=\sum_{m \in S} \alpha_{m} t_{m} \varphi\left(x_{m}\right) \\
& b=\frac{1}{|M|} \sum_{n \in M}\left(t_{n}-\sum_{m \in S} \alpha_{m} t_{m} k\left(\mathbf{x}_{n}, \mathbf{x}_{m}\right)\right)
\end{aligned}
$$

- Linear discriminant function becomes:

$$
y(x)=\sum_{m \in S} \alpha_{m} t_{m} k\left(x, x_{m}\right)+b
$$

\Rightarrow In both training and testing, examples are used only through the kernel function!

Support Vector Machines

- Optimization problem:
upper bound on the misclassification error on the training data.
minimize:

$$
J(\mathbf{w}, b)=\frac{1}{2}\|\mathbf{w}\|^{2}+C \sum_{n=1}^{N} \xi_{n}
$$

subject to:

$$
\begin{aligned}
t_{n}\left(\mathbf{w}^{T} \varphi\left(\mathbf{x}_{n}\right)+b\right) & \geq 1-\xi_{n}, \quad \forall n \in\{1, \ldots, N\} \\
\xi_{n} & \geq 0
\end{aligned}
$$

- Implemented in sklearn:
- https://scikit-learn.org/stable/modules/svm.html
- https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html

