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Nonparametric Methods: k-Nearest Neighbors

Input: |
— A training dataset (X, £;), (X5, ), ... (X, £,).

— A test instance Xx.

Output:
—  Estimated class label y(x).

1. Find £k 1nstances x,, X, ..., X, nearest to Xx.

k
2. Let y(x)=arg max ;d(ti)

1 x=t¢
where J,(x) = {O ¢ 1s the Kronecker delta function.
X #1




k-Nearest Neighbors (k-NN)

* Euclidean distance, £ =4
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k-N
earest Neighbors (k-NN)

. Buclidi
uclidian distance, k =1
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k-NN for Classification: Probabilistic
Justification

Assume a dataset with N, points in class C,.
= total number of points is N = Z N,
s J

Draw a sphere centered at x containing K points:

— sphere has volume V.

— sphere contains K; points from class C,.

If V sufficiently small and K sufficiently large, we can estimate [2.5.1]:
N,
J

Py o i N B
B S T e

K. : .
Bayes’ theorem = p(C, |x)=— = choose class C; with most neighbors.
J K g




Distance Metrics

 Fuclidean distance:
d(x,y)=[x-y|, =Jx-y) (x-y)

 Hamming distance:

# of (discrete) features that have different values in x and y.

(sample) covariance matrix

e Mahalanobis distance: @~

— scale-invariant metric that normalizes for variance.
— 1f § =1 = Euclidean distance.

— if S=diag(o,?, 6,2, ... ox?) = normalized Euclidean distance.

6 |
_‘




Distance Metrics

[

e Cosine similarity: :

X'y
[l

d(X,y)=1-cos(x,y) =1~
— used for text and other high-dimensional data.

» Levenshtein distance (Edit distance):
— distance metric on strings (sequences of symbols).

— min. # of basic edit operations that can transform one string into
the other (delete, insert, substitute).

x = “athens”
}jﬂwh4

— used in bioinformatics.

y = “hints”




Efficient Indexing

Linear searching for k-nearest neighbors 1s not efficient for
large training sets:
— O(N) time complexity.

For Euclidean distance use a kd-tree:
— 1nstances stored at leaves of the tree.
— 1nternal nodes branch on threshold test on individual features.

— expected time to find the nearest neighbor is O(log N)

Indexing structures depend on distance function:

— inverted index for text retrieval with cosine similarity.




k-NN and The Curse of Dimensionality

[

« Standard metrics weigh each feature equally:

— Problematic when many features are irrelevant.

e One solution 1s to weigh each feature differently:

— Use measure indicating ability to discriminate between classes,
such as:

 Information Gain, Chi-square Statistic
» Pearson Correlation, Signal to Noise Ration, T test.
— “Stretch” the axes:
* lengthen for relevant features, shorten for irrelevant features.

— Equivalent with Mahalanobis distance with diagonal covariance.




Distance-Weighted k-NN

=

For any test point x, weight each of the k£ neighbors according

to their distance from x.

1. Find £ instances x,, X,, ..., X, nearest to X.

k
2. Let y(x)=arg max ;wi@(ti)

) ek
where w, = HX — Xi” measures the similarity between x and x;




Kernel-based Distance-Weighted NN

For any test point x, weight all training instances according

to their similarity with x.

1. Assume binary classification, T = {+1, —1}.

2. Compute weighted majority:

y(x) = Sign(iK (X, X,-)tl)

=




Regression with k-Nearest Neighbor

Input:
— A training dataset (X, £;), (X5, ), ... (X, £,).

— A test instance Xx.

Output:

—  Estimated function value y(x).

1. Find k instances x, X,, ..., X, nearest to X.

k
2. Let v(Odli= %th’
i=1




3 Datasets & Linear Interpolation
[http://www.autonlab.org/tutorials/mbl08.pdf]
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Linear interpolation does not always lead to good models of the data.




Regression with 1-Nearest Neighbor
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Regression with 1-Nearest Neighbor

2pplying facode 201:8SN:9 to file kl.mbl
¥
500 kl.mbl-A01:5N:9.




Regression with 1-Nearest Neighbor

2pplying facode 201:SN:9 to file jl.mbl
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= I-NN has high variance




Regression with 9-Nearest Neighbor

=l

k=9
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Regression with 9-Nearest Neighbor

k=1

=9
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Regression with 9-Nearest Neighbor

k=1 =9
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Distance-Weighted k-NN for Regression

For any test point x, weight each of the k£ neighbors according

to their similarity with x.

1. Find £ instances x,, X,, ..., X, nearest to X.

Zummlet y(Ea)— Zk:wl.tl. Zk:wl.
i=l1 i=1

=

where w, = HX—XZ.

For k=N = Shepard’s method [Shepard, ACM *68].




Kernel-based Distance Weighted NN
Regression

For any test point x, weight all training instances according |

to their similarity with x.

1. Return weighted average:

ﬁ:K(x,xi)ti

1

y(X) =
ZK(X,XZ.)




NN Regression with Gaussian Kernel
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NN Regression with Gaussian Kernel

26%=1/16 of x axis

26%=1/32 of x axis

26%=1/32 of x axis

lying facode A30:8N:9 to file jl.mbl

Applying facode A30:8N:9 to file ki.mbl
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k-Nearest Neighbor Summary

Training: memorize the training examples.

Testing: compute distance/similarity with training examples.
Trades decreased training time for increased test time.

Use kernel trick to work 1 implicit high dimensional space.
Needs feature selection when many irrelevant features.

An Instance-Based Learning (IBL) algorithm:
— Memory-based learning

— Lazy learning

— Exemplar-based

— Case-based




