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Nonparametric Methods: k-Nearest Neighbors

Input:
– A training dataset (x1, t1), (x2, t2), … (xn, tn).
– A test instance x.

Output:
– Estimated class label y(x).

1. Find k instances x1, x2, …, xk nearest to x.

2. Let 
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k-Nearest Neighbors (k-NN)

• Euclidean distance, k = 4
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k-Nearest Neighbors (k-NN)

• Euclidian distance, k = 1.
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Voronoi diagram decision boundary



k-NN for Classification: Probabilistic 
Justification 

• Assume a dataset with Nj points in class Cj.

Þ total number of points is

• Draw a sphere centered at x containing K points:

– sphere has volume V.
– sphere contains Kj points from class Cj.

• If V sufficiently small and K sufficiently large, we can estimate [2.5.1]:

• Bayes’ theorem Þ Þ choose class Cj with most neighbors.
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Distance Metrics

• Euclidean distance:

• Hamming distance:
# of (discrete) features that have different values in x and y.

• Mahalanobis distance:

– scale-invariant metric that normalizes for variance.

– if S = I Þ Euclidean distance.

– if S = diag(s1-2 , s2-2 , … sK-2) Þ normalized Euclidean distance.
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Distance Metrics

• Cosine similarity:

– used for text and other high-dimensional data.

• Levenshtein distance (Edit distance):
– distance metric on strings (sequences of symbols).
– min. # of basic edit operations that can transform one string into 

the other (delete, insert, substitute).
x = “athens”
y = “hints” 

– used in bioinformatics.
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Efficient Indexing

• Linear searching for k-nearest neighbors is not efficient for 
large training sets:
– O(N) time complexity.

• For Euclidean distance use a kd-tree:
– instances stored at leaves of the tree.
– internal nodes branch on threshold test on individual features.
– expected time to find the nearest neighbor is O(log N)

• Indexing structures depend on distance function:
– inverted index for text retrieval with cosine similarity.
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k-NN and The Curse of Dimensionality

• Standard metrics weigh each feature equally:
– Problematic when many features are irrelevant.

• One solution is to weigh each feature differently:
– Use measure indicating ability to discriminate between classes, 

such as:
• Information Gain, Chi-square Statistic
• Pearson Correlation, Signal to Noise Ration, T test.

– “Stretch” the axes: 
• lengthen for relevant features, shorten for irrelevant features.

– Equivalent with Mahalanobis distance with diagonal covariance.
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Distance-Weighted k-NN

For any test point x, weight each of the k neighbors according 
to their distance from x.

1. Find k instances x1, x2, …, xk nearest to x.

2. Let 
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Kernel-based Distance-Weighted NN

For any test point x, weight all training instances according 
to their similarity with x.

1. Assume binary classification, T = {+1, -1}.

2. Compute weighted majority:
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Regression with k-Nearest Neighbor

Input:
– A training dataset (x1, t1), (x2, t2), … (xn, tn).
– A test instance x.

Output:
– Estimated function value y(x).

1. Find k instances x1, x2, …, xk nearest to x.

2. Let 
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3 Datasets & Linear Interpolation
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Linear interpolation does not always lead to good models of the data. 

[http://www.autonlab.org/tutorials/mbl08.pdf]



Regression with 1-Nearest Neighbor
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Regression with 1-Nearest Neighbor
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Regression with 1-Nearest Neighbor
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Þ 1-NN has high variance



Regression with 9-Nearest Neighbor
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k = 1 k = 9



Regression with 9-Nearest Neighbor
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k = 1 k = 9



Regression with 9-Nearest Neighbor
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k = 1 k = 9



Distance-Weighted k-NN for Regression

For any test point x, weight each of the k neighbors according 
to their similarity with x.

1. Find k instances x1, x2, …, xk nearest to x.

2. Let 

For k = N Þ Shepard’s method [Shepard, ACM ’68].
20

åå
==

=
k

i
i

k

i
ii wtwxy

11
)(

2--= iiw xxwhere



Kernel-based Distance Weighted NN 
Regression 

For any test point x, weight all training instances according 
to their similarity with x.

1. Return weighted average:
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NN Regression with Gaussian Kernel

22

2s2=10 2s2=20 2s2=80

2

2

2),( s
i

eK i

xx

xx
-

-
=

Increased kernel width means more influence from 
distant points.  



NN Regression with Gaussian Kernel
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k-Nearest Neighbor Summary

• Training: memorize the training examples.
• Testing: compute distance/similarity with training examples.
• Trades decreased training time for increased test time.
• Use kernel trick to work in implicit high dimensional space.
• Needs feature selection when many irrelevant features.
• An Instance-Based Learning (IBL) algorithm:

– Memory-based learning
– Lazy learning
– Exemplar-based
– Case-based
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