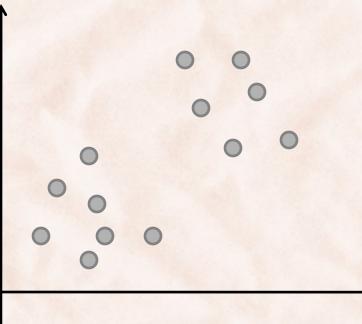
Machine Learning: ITCS 4156

Clustering: k-Means and k-Medoids


Razvan C. Bunescu

Department of Computer Science @ CCI

rbunescu@uncc.edu

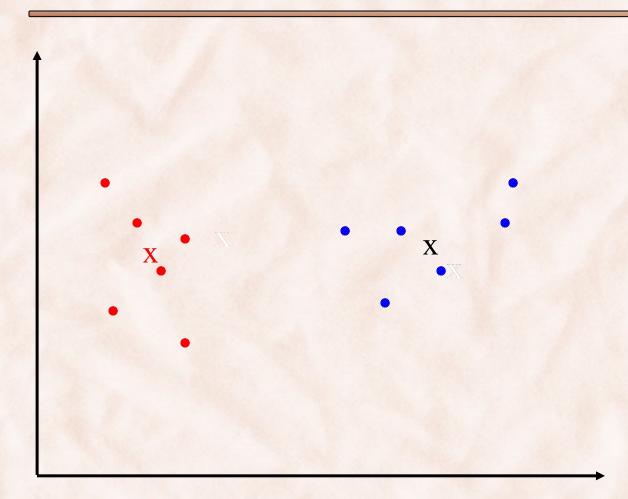
Unsupervised Learning: Clustering

- Partition unlabeled examples into disjoint clusters such that:
 - Examples in the same cluster are very similar.
 - Examples in different clusters are very different.

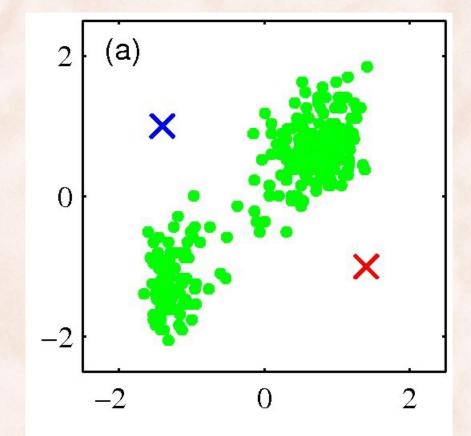
Unsupervised Learning: Clustering

- Partition unlabeled examples into disjoint clusters such that:
 - Examples in the same cluster are very similar.
 - Examples in different clusters are very different.

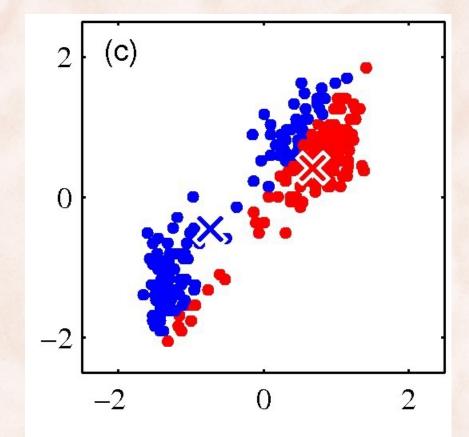
Divisive Clustering with k-Means

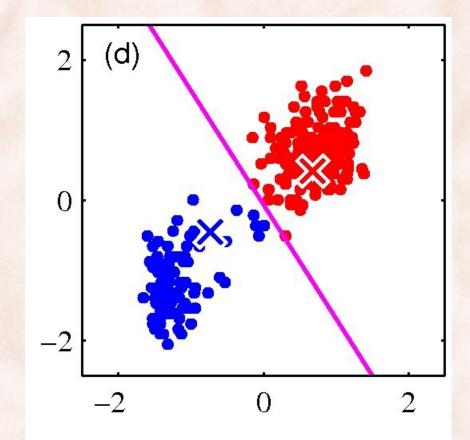

- The goal is to produce k clusters $C = \{C_1, C_2, ..., C_k\}$ such that instances are close to the cluster centroids:
 - The cluster centroid \mathbf{m}_i is the mean of all instances in the cluster C_i .
- Optimization problem:

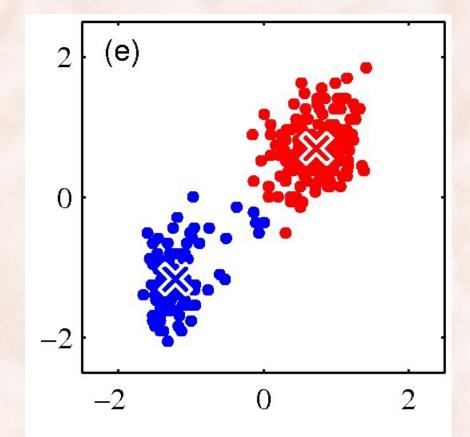
$$= \arg\min_{C} J(C)$$
$$J(C) = \sum_{i=1}^{k} \sum_{\mathbf{x} \in C_{i}} ||\mathbf{x} - \mathbf{m}_{i}||^{2}$$

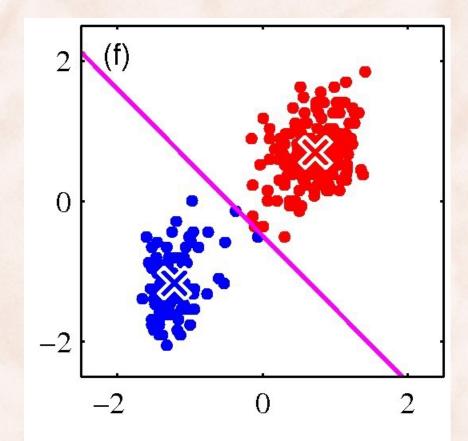

- 1. start with some seed centroids $\mathbf{m}_1^{(0)}, \mathbf{m}_2^{(0)}, \dots, \mathbf{m}_k^{(0)}$
- 2. set $t \leftarrow 0$.
- 3. while not converged:
- 4. **for** each **x**:

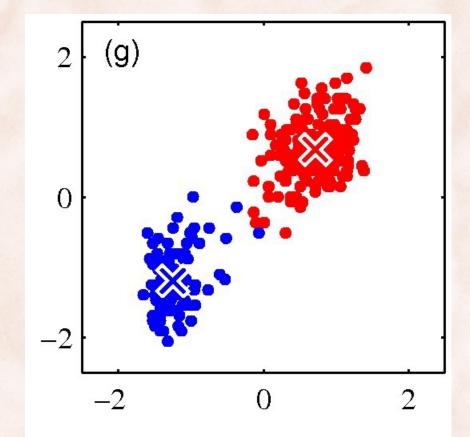
5. $\operatorname{set} \mathbf{m}^{(t)}(\mathbf{x}) \leftarrow \arg\min_{\mathbf{m}^{(t)}_{i}} \|\mathbf{x} - \mathbf{m}^{(t)}_{i}\| \leftarrow [\mathbf{E}] \operatorname{step}$ 6. $\operatorname{set} C^{(t+1)}_{i} \leftarrow \left\{ \mathbf{x} \mid \mathbf{m}^{(t)}(\mathbf{x}) = \mathbf{m}^{(t)}_{i} \right\}$ 7. $\operatorname{set} \mathbf{m}^{(t+1)}_{i} \leftarrow \frac{1}{|C^{(t+1)}_{i}|} \sum_{\mathbf{x} \in C^{(t+1)}_{i}} \mathbf{x} \leftarrow [\mathbf{M}] \operatorname{step}$

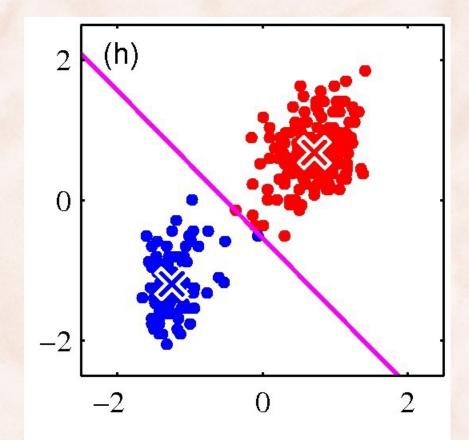

8. set $t \leftarrow t+1$

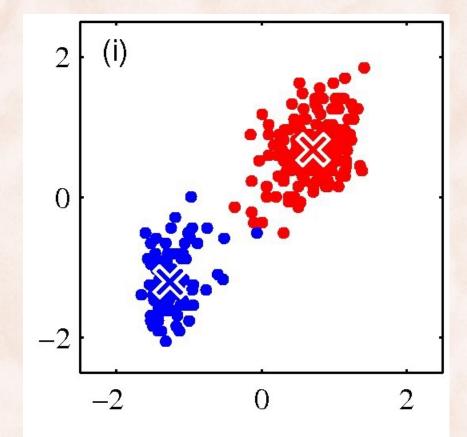

Pick seeds Reassign clusters Compute centroids Reassign clusters Compute centroids Reassign clusters Converged!








9



• The objective function monotonically decreases at every iteration:

 $J^{(t)} \ge J^{(t+1)}$ 0 1000 .-7 [E] step J500 [M] step 0 3 1 2 4

- Optimization problem is NP-hard:
 - Results depend on seed selection.
 - Improve performance by providing *must-link* and/or *cannot-link* constraints \Rightarrow semi-supervised clustering.
- Time complexity for each iteration is O(*knm*):
 - number of clusters is k.
 - feature vectors have dimensionality *m*.
 - total number of instances is *n*.

- 1. start with some seed centroids $\mathbf{m}_1^{(0)}, \mathbf{m}_2^{(0)}, \dots, \mathbf{m}_k^{(0)}$
- 2. set $t \leftarrow 0$.
- 3. while not converged:
- 4. **for** each **x**:

5. $\operatorname{set} \mathbf{m}^{(t)}(\mathbf{x}) \leftarrow \arg\min_{\mathbf{m}^{(t)}_{i}} \|\mathbf{x} - \mathbf{m}^{(t)}_{i}\| \leftarrow [\mathbf{E}] \operatorname{step}$ 6. $\operatorname{set} C^{(t+1)}_{i} \leftarrow \left\{ \mathbf{x} \mid \mathbf{m}^{(t)}(\mathbf{x}) = \mathbf{m}^{(t)}_{i} \right\}$ 7. $\operatorname{set} \mathbf{m}^{(t+1)}_{i} \leftarrow \frac{1}{|C^{(t+1)}_{i}|} \sum_{\mathbf{x} \in C^{(t+1)}_{i}} \mathbf{x} \leftarrow [\mathbf{M}] \operatorname{step}$

8. set $t \leftarrow t+1$

The k-Medoids Algorithm

- 1. start with some random seed centroids $\mathbf{m}_1^{(0)}, \mathbf{m}_2^{(0)}, \dots, \mathbf{m}_k^{(0)}$
- 2. set $t \leftarrow 0$.
- 3. while not converged:
- 4. **for** each **x**:

5. set $\mathbf{m}^{(t)}(\mathbf{x}) \leftarrow \arg\min_{\mathbf{m}_{i}^{(t)}} d(\mathbf{x} - \mathbf{m}_{i}^{(t)}) \leftarrow [\mathbf{E}]$ step 6. set $C_{i}^{(t+1)} \leftarrow \{\mathbf{x} \mid \mathbf{m}^{(t)}(\mathbf{x}) = \mathbf{m}_{i}^{(t)}\}$

7. set
$$\mathbf{m}_i^{(t+1)} \leftarrow \arg\min_{\mathbf{x}\in C_i^{(t+1)}} \sum_{\mathbf{y}\in C_i^{(t+1)}} d(\mathbf{x},\mathbf{y}) \leftarrow [\mathbf{M}]$$
 step

8. set $t \leftarrow t+1$