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Three Parametric Approaches to
Classification

1) Discriminant Functions: construct f - X — T that directly
assigns a vector x to a specific class C;.

— Inference and decision combined into a single learning
problem.

— Linear Discriminant: the decision surface is a
hyperplane n X:

e Fisher ‘s Linear Discriminant
 Perceptron
* Support Vector Machines




Three Parametric Approaches to
Classification

2) Probabilistic Discriminative Models: directly model the
posterior class probabilities p(Cy, | x).

— Inference and decision are separate.
— Less data needed to estimate p(C, | xX) than p(x |C)).
— Can accommodate many overlapping features.

* Logistic Regression

e (Conditional Random Fields




Three Parametric Approaches to
Classification

=

3) Probabilistic Generative Models:

— Model class-conditional p(x |C;) as well as the priors
p(C,), then use Bayes’s theorem to find p(C, | x).

e or model p(x,C)) directly, then marginalize to obtain the
posterior probabilities p(C,, | X).

— Inference and decision are separate.

— Can use p(x) for outlier or novelty detection.

— Need to model dependencies between features.
* Naive Bayes.
e Hidden Markov Models.




Unbiased Learning of Generative Models

Bet x.— [, %), .., xM]T be a feature vector with M features.

* Assume Boolean features:
— distribution p(x |C}) is completely specified by a table of 2™
probabilities, of which 2" —1 are independent.

e Assume binary classification:

— need to estimate 2" —1 parameters for each class
— total of 2(2™ —1) independent parameters to estimate.

— 30 features = more than 2 billion parameters to estimate!




The Naive Bayes Model

=

« Assume features are conditionally independent given the

target output:
t

X1 X2

= p(x|Cy) = Hp(xi 1 C)

XM

* Assume binary classification & features:

= need to estimate only 2M parameters, a lot less than 2@ —1).

p(x; = 0|Cy) +

p(x; = 1[Cy)

= 1, for all i between 1 and M.




The Naive Bayes Model: Inference

[

e Posterior distribution:

p(C, 1) =2 Cg)f(ck) . where p(x)= Y. p(x|C))p(C))
p(x

é p(Ck)ij(xj 1C)
p(x)

 Inference = find Cs to minimize missclassification rate:
C. =arg max p(C, |x)

=arg nlCaXp(Ck)ij(xj 1C,)




The Naive Bayes Model: Training

=

» Training = estimate parameters p(x;|C;) and p(C)).

e Maximum Likelithood (ML) estimation:
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The Naive Bayes Model: Training

[

e Maximum A-Posterior1 (MAP) estimation:

— assume a Dirichlet prior over the NB parameters, with equal-
valued parameters.

— assume x; can take J values, label ¢ can take K values.
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Text Categorization with Naive Bayes

» Text categorization problems:
— Spam filtering.
— Targeted advertisement in Gmail.

— Classification in multiple categories on news websites.

« Representation as one feature per word:

— each document is a very high dimensional feature vector.

 Most words are rare:
— Zipf’s law and heavy tail distribution.

—> feature vectors are sparse.




Text Categorization with Naive Bayes

e (Generative model of documents:
1) Generate document category by sampling from p(C)).

2) Generate a document as a bag of words by repeatedly sampling
with replacement from a vocabulary V' = {w,, w,, ..., wyj,} based
on p(w; | Cy).

* Inference with Naive Bayes:
— Input :

Document x with n words v, v,, ... v,.

—  Output: n
« Category C, = arg mC?X p(Ck)H pv, [C)

g =l




Text Categorization with Naive Bayes

[

* Training with Naive Bayes:
— Input:
» Dataset of training documents D with vocabulary V.
— Output:
« Parameters p(C,) and p(w, | C,).
1. for each category C:
2 let D, be the subset of documents in category C,
3. set p(Cy) = |Dy / |D|
4. let n; be the total number of words in D,
5 for each word w; € V:
6 let n;; be the number of occurrences of w; in D,
7

set p(w; | Cp) = (n+1) / (n + [V))




Medical Diagnosis with Naive Bayes

(s

* Diagnose a disease T={Yes, No}, using information from
various medical tests.

p(x|C,)= Hp(xi 1C)

Medical tests may result in
continuous values

X1 ) XM — need Naive Bayes to work
‘ - with continuous features.

blood test heartrate | <<+ | Xrays




Naive Bayes with Continuous Features

Assume p(x; | C,) are Gaussian distributions N(;;, ;).

Training: use ML or MAP criteria to estimate 1, ;.

in5ck (7) Z('xi =) Oc, (1)
ILAI _ (x,t)eD 6'2 __ (x,p)eD
s ik
Z 5Ck (t) Zé‘Ck (t)
(x,1)eD (x,t)eD

Inference:
C. =argmax p(C, | x) =argmax p(C,)[ | p(x 1C))




Numerical Issues

e Multiplying lots of probabilities may results in underflow:

— especially when many attributes (e.g. text categorization).

« Compute everything in log space:

px|C)=]]px1C) & | npx|C)=D Inp(x|C,)

C. =arg max p(C, |x) < |C.=arg max In p(C, |x)

k

= arg n}jax{lnp(ck) +1n p(x | Ck)}




Naive Bayes

Often has good performance, despite strong independence
assumptions:

— quite competitive with other classification methods on UCI
datasets.

It does not produce accurate probability estimates when
independence assumptions are violated:

— the estimates are still useful for finding max-probability class.

Does not focus on completely fitting the data = resilient to
noise.







Probabilistic Generative Models: Binary
Classification (K = 2)

=

Model class-conditional p(x |C,), p(x |C,) as well as the priors p(C)),
p(C5), then use Bayes’s theorem to find p(C, | x), p(C, | X):

p(x|C)p(C)

p(C |x) =

p(x|C)p(C)+ p(x|C,)p(C,)
=o(a(x))

a(x)=1In

pEICYP(C) _, pC1D)
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p(x|C,)p(C,)

logistic sigmoid

p(G, [x)

log odds

>




Probabilistic Generative Models: Binary
Classification (K = 2)

« Ifa(x)1s a linear function of x = p(C, | X) 1s a generalized linear
model:

pC D)= (@) =o(x)

1+ exp(—a(x))

1 ! T —

o(a) 1s a squashing function
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The Naive Bayes Model

Assume binary features x; € {0,1}:

= p(x|Cy) = Hp(‘xi | Cy)

M
=T 10— )™, where s, = p(x,=1|G,)

M
, Where a,(x) = E{xi Inw,; +(1-x;)In(1- Mki)} +1n p(C))
i=1

=\, x = NB is a generalized linear model.

20




Probabilistic Generative Models: Multiple
Classes (K > 2)

=

« Model class-conditional p(x |C)) as well as the priors p(C,), then use
Bayes’s theorem to find p(C, | x):

r(x|C)p(C,)
Zj px|C j) p(C j) normalized exponential

i.e. softmax function

p(C |x) =

-
—c3
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where a,(x)=Inp(x|C,)p(C,)

« Ifa,(x)=L.x = p(C, | X) is a generalized linear model.




