ICTS 4156: Introduction to ML

Razvan Bunescu

Lecture notes, February 24, 2021

1 Notes on lecture slides material

1.1 Gradient descent

Let $J(w)=\frac{1}{2}(w-4)^{2}+1$ and the initial guess $w_{0}=0$, for which $J\left(w_{0}\right)=9$. Let the learning rate be $\eta=0.5$. The gradient of J is $\nabla J(w)=w-4$.

1. The gradient at w_{0} is $\nabla J\left(w_{0}\right)=w_{0}-4=-4$. The gradient update step is $w_{1}=w_{0}-\eta \nabla J\left(w_{0}\right)=0-0.5 *-4=2$.
So, $w_{1}=2$ for which $J\left(w_{1}\right)=3$.
2. The gradient at w_{1} is $\nabla J\left(w_{1}\right)=w_{1}-4=-2$. The gradient update step is $w_{2}=w_{1}-\eta \nabla J\left(w_{1}\right)=2-0.5 *-2=3$.
So, $w_{2}=3$ for which $J\left(w_{2}\right)=1.5$.
3. The gradient at w_{2} is $\nabla J\left(w_{2}\right)=w_{2}-4=-1$. The gradient update step is $w_{3}=w_{2}-\eta \nabla J\left(w_{2}\right)=3-0.5 *-1=3.5$
So, $w_{4}=3.5$ for which $J\left(w_{3}\right)=1.125$.
4. and so on ... for ever?

Bonus points: For different values of η, plot on the same graph $J(w)$ and the points (in blue) corresponding to the gradient steps. Try eta $=0.1,0.5,1,2, \ldots$.
"Until $J(w)$ does not improve": how do we quantify this? One method is to look at the relative change.

$$
\begin{equation*}
\Delta J=\left|\frac{J\left(w_{t}\right)-J\left(w_{t-1}\right)}{J\left(w_{t-1}\right)}\right| \tag{1}
\end{equation*}
$$

If ΔJ is too small $(0,0001)$ for a number of epochs (5 or 10), then you may consider stopping.

1.2 Feature scaling

Suppose feature x_{j} has values $1,2,3$ in the training data (3 training examples). The sample mean is $m_{j}=\frac{1+2+3}{3}=2$. The sample standard deviation is $\sigma_{j}=\sqrt{\frac{\left(1-m_{j}\right)^{2}+\left(2-m_{j}\right)^{2}+\left(3-m_{j}\right)^{2}}{3}}=$ $\sqrt{\frac{2}{3}}$. Then the feature x_{j} which had values $1,2,3$ will be scaled to the following values:

1. For training example 1 , the new feature will be $\hat{x}_{j}=\frac{1-m_{j}}{\sigma_{j}}=\frac{1-2}{\sigma_{j}}$.
2. For training example 2 , the new feature will be $\hat{x}_{j}=\frac{2-m_{j}}{\sigma_{j}}=\frac{2-2}{\sigma_{j}}$.
3. For training example 3 , the new feature will be $\hat{x}_{j}=\frac{3-m_{j}}{\sigma_{j}}=\frac{3-2}{\sigma_{j}}$.

1.3 Optimization

We want to find w that minimizes $J(w)=\frac{1}{2 N} \sum f(w)$.
$\nabla J(w)=0$
$\frac{1}{2 N} \sum \nabla f(w)=0$
$\frac{1}{2} \sum \nabla f(w)=0$
$\nabla J^{\prime}(w)=0$, where $J^{\prime}(w)=N * J(w)$
w that minimizes $J(w)=(w-4)^{2}$ will also minimize $J^{\prime}(w)=10 *(w-4)^{2}$.

