ICTS 4156: Introduction to ML

Razvan Bunescu

Lecture notes, January 27, 2021

1 Quiz, week 1

1.1 Quiz question 2

Let $\mathrm{w}=[1,2,3]$ and $\mathrm{x}=[-1,2,-3]$. Then their dot-product is $\mathbf{w}^{T} \mathbf{x}=1 *-1+2 * 2+3 *-3=$ -6 .

1.2 Quiz question 2

There are 2 bowls of fruits: one bowl contains 1 apple and 1 orange, while the other bowl contains 2 apples and 3 oranges. Patrick picks one fruit from each bowl. What is the probability that he ends up with 2 apples?

Implicit (default): each fruit in a bowl is equally likely to be picked. In bowl b_{1} we have two fruits, a and o. Question is what is $P\left(a \mid b_{1}\right)=P\left(F=a \mid B=b_{1}\right)$.

There are two possible choices (outcomes) for (the random variable) F : either (mutually exclusive) a or o.

According to basic probability theory rules (axiom), $P\left(a \mid b_{1}\right)+P\left(o \mid b_{1}\right)=1$. (1)
But, equally likely to be picked means $P\left(a \mid b_{1}\right)=P\left(o \mid b_{1}\right)$ (2)
From (1) and (2), it results that $P\left(a \mid b_{1}\right)=P\left(o \mid b_{1}\right)=1 / 2$
$P\left(a_{1} \mid b_{2}\right)=1 / 5$ and $P\left(a_{2} \mid b_{2}\right)=1 / 5$. Then $P\left(a \mid b_{2}\right)=P\left(F=a_{1} \vee F=a_{2}\right)=P\left(a_{1} \mid b_{2}\right)+$ $P\left(a_{2} \mid b_{2}\right)=1 / 5+1 / 5=2 / 5$
$P(A \vee B)=P(A)+P(B)$ whenever A and B are mutually exclusive events.
Probability that Patrick picks an apple a from bowl $1\left(b_{1}\right)$ is $P\left(a \mid b_{1}\right)=1 / 2$. Probability that Patrick picks an apple a from bowl $2\left(b_{2}\right)$ is $P\left(a \mid b_{2}\right)=2 / 5$.

What is the probability that he ends up with 2 apples? This is $P\left(E_{1}=a \wedge E_{2}=a\right)=$ $P\left(a \mid b_{1}\right) \cdot P\left(a \mid b_{2}\right)=1 / 2 \cdot 2 / 5=1 / 5=0.2$
$P(A \wedge B)=P(A) \cdot P(B)$ whenever A and B are (mutually) independent events.

1.3 Quiz question 3

There are 2 bowls of fruits: one bowl contains 1 apple and 1 orange, while the other bowl contains 2 apples and 3 oranges. Patrick picks one fruit from each bowl. What is the probability that he ends up with 1 apple and 1 orange (order does not matter)?

$$
P\left(a \mid b_{1}\right)=1 / 2 .
$$

$$
P\left(o \mid b_{2}\right)=3 / 5
$$

$$
P(a, o)=P\left(a \mid b_{1}\right) \cdot P\left(o \mid b_{2}\right)=1 / 2 * 3 / 5
$$

$$
P(o, a)=P\left(o \mid b_{1}\right) \cdot P\left(a \mid b_{2}\right)=1 / 2 * 2 / 5
$$

$$
P(a, o)+P(o, a)=0.3+0.2=0.5
$$

1.4 Quiz question 4

Consider the following training dataset:

$$
\begin{aligned}
& \mathrm{x} 1=[1,0,1,1], \text { label } \mathrm{y} 1=+1 \\
& \mathrm{x} 2=[1,0,0,1], \text { label } \mathrm{y} 2=+1 \\
& \mathrm{x} 3=[1,1,1,1], \text { label } \mathrm{y} 3=-1
\end{aligned}
$$

Which of the following parameters \mathbf{w} perfectly fit the data, meaning $\mathbf{w}^{T} \mathbf{x}>0$ if and only if $y_{j}=+1$, for all $\mathrm{j}=1,2,3$.

2 Linear algebra

Let $\mathbf{w}=\left[w_{1}, w_{2}, \ldots, w_{K}\right]$ and $\mathbf{x}=\left[x_{1}, x_{2}, \ldots, x_{K}\right]$ be two real-valued vectors. Equivalently, $\mathbf{w}, \mathbf{x} \in R_{K \times 1}$. Then, the dot-product of \mathbf{w} and \mathbf{x} (also called their inner-product) is calculated as:

$$
\begin{align*}
\mathbf{w}^{T} \mathbf{x} & =\sum_{k=1}^{K} w_{k} * x_{k} \tag{1}\\
& =w_{1} * x_{1}+w_{2} * x_{2}+\ldots+w_{K} * x_{K} \tag{2}\\
& =w_{1} x_{1}+w_{2} x_{2}+\ldots+w_{K} x_{K} \tag{3}
\end{align*}
$$

By default, vectors are considered to be column vectors, i.e. w, \mathbf{x} have K rows and one column.

If we have two matrices, $A \in R_{M \times N}$ and $B \in R_{N \times K}$, then $C=A * B$, where $C \in R_{M \times K}$.

$$
\begin{equation*}
c_{i, j}=\sum_{n=1}^{N} a_{i, n} b_{n, j} \tag{4}
\end{equation*}
$$

We can see the two vectors \mathbf{w}, \mathbf{x} as two dimensional matrices, i.e. \mathbf{w}, \mathbf{x} have K rows and one column. Then $\mathbf{w} \in R_{K \times 1}$ and $\mathbf{x} \in R_{K \times 1}$. However, $\mathbf{w}^{T} \in R_{1 \times K}$ and $\mathbf{x} \in R_{K \times 1}$. Then, we can multiply them as inner-product $\mathbf{w}^{T} \mathbf{x}$ (which is a scalar) or as outer-product $\mathbf{x w}^{T}$ (which is $K \times K$).

What do we mean by the (Euclidean) norm $\|\mathbf{w}\|=\|\mathbf{w}\|_{2}$ of a vector \mathbf{w} ?

$$
\begin{align*}
\|\mathbf{w}\| & =\sqrt{\sum_{k=1}^{K} w_{k}^{2}} \tag{5}\\
\|\mathbf{w}\|^{2} & =\sum_{k=1}^{K} w_{k}^{2} \tag{6}
\end{align*}
$$

3 Probability theory

Two colors: red and blue. We designed one feature, $\phi_{1}(\mathbf{x})=1$ if and only if the object is blue, i.e. if \mathbf{x} is red, $\phi_{1}(\mathbf{x})=0$.

Q: Can we use $\phi_{1}(\mathbf{x})=2$ instead of $\phi_{1}(\mathbf{x})=1$?
Will use x_{1} instead of $\phi_{1}(\mathbf{x})$.
The only way x_{1} is used when doing classification with our simple linear model is through the product $w_{1} x_{1}$.

Replacing $x_{1}=1$ with $x_{1}=2$ results in w_{1} being replaced in the overall dot-product with $2 w_{1}$.

However, $1 * w_{1}=2 *\left(w_{1} / 2\right)=2 * w_{1}^{\prime}$, where $w_{1}^{\prime}=w_{1} / 2$.

4 Notes on lecture slides material

Suppose we have three colors: red and blue and green. How should we encode this property as feature(s)?

1. Use 3 Boolean features: $x_{1}=1$ iff x is red, $x_{2}=1$ iff x is blue, and $x_{3}=1 \mathrm{iff} \mathbf{x}$ is green.
2. Use 1 real-valued feature $x_{1}=0$ if x is red, $x_{1}=1$ if x is blue, and $x_{1}=2$ if \mathbf{x} is green.

- This is used as $w_{1} x_{1}$ when computing the "score" $\mathbf{w}^{T} \mathbf{x}$ for object \mathbf{x}. By using the values above, we tell the ML model, before it even gets a chance to learn the parameters \mathbf{w}, that the color red does not matter. We also tell it that being green $\left(w_{1} * 2\right)$ is twice as 'important' than being blue $\left(w_{1} * 1\right)$. But there is no natural, relevant for our classification task, ordering between the colors.

Suppose I want to train a ML model to predict whether my neighbor will wear a t-shirt, based on information such as air temperature T, whether the neighbor is at home, ...

Let's use one feature $x_{1}=T$. Think about two situations: one where $x_{1}=10$ and one where $x_{1}=80$.

