ICTS 4156: Introduction to ML

Razvan Bunescu

Lecture notes, March 10, 2021

1 Notes on lecture slides material

1.1 The Perceptron

We have the logical OR training dataset:

1. $x^{(1)}=[1,0,0]$, with label $t_{1}=-1$
2. $x^{(2)}=[1,0,1]$, with label $t_{2}=+1$
3. $x^{(3)}=[1,1,0]$, with label $t_{3}=+1$
4. $x^{(4)}=[1,1,1]$, with label $t_{4}=+1$

Want to train a weight vector $w=\left[w_{0}, w_{1}, w_{2}\right]$ such that $w^{T} x \geq 0$ if and only if $t(x)=+1$.
Let's run the Perceptron algorithm: Initialize $\mathbf{w}=[\mathbf{0}, \mathbf{0}, \mathbf{0}]$.

1. Epoch 1:

- For example $x^{(1)}$, prediction is $h_{1}=w^{T} x^{(1)}=0$. This means $h_{1} t_{1}=0 \leq 0$ so we made a mistake (line 4). Change the weight vector $w=w+t_{1} x^{(1)}=w-x^{(1)}=$ $[-1,0,0]$. So, $\mathbf{w}=[-\mathbf{1}, \mathbf{0}, \mathbf{0}]$.
- For example $x^{(2)}$, prediction is $h_{2}=w^{T} x^{(2)}=-1$. This means $h_{2} t_{2}=-1 \leq 0$ so we made a mistake (line 4). Change the weight vector $w=w+t_{2} x^{(2)}=w+x^{(2)}=$ $[-1,0,0]+[1,0,1]$. So, $\mathbf{w}=[\mathbf{0}, \mathbf{0}, \mathbf{1}]$.
- For example $x^{(3)}$, prediction is $h_{3}=w^{T} x^{(3)}=0$. This means $h_{3} t_{3}=0 \leq 0$ so we made a mistake (line 4). Change the weight vector $w=w+t_{3} x^{(3)}=w+x^{(3)}=$ $[0,0,1]+[1,1,0]$. So, $\mathbf{w}=[\mathbf{1}, \mathbf{1}, \mathbf{1}]$.
- For example $x^{(4)}$, prediction is $h_{4}=w^{T} x^{(4)}=3$. This means $h_{4} t_{4}=3>0$ so no mistake. The weight vector stays unchanged, i.e. $\mathbf{w}=[\mathbf{1}, \mathbf{1}, \mathbf{1}]$.

2. Epoch 2:

- For example $x^{(1)}$, prediction is $h_{1}=w^{T} x^{(1)}=1$. This means $h_{1} t_{1}=1 \leq 0$ so we made a mistake (line 4). Change the weight vector $w=w+t_{1} x^{(1)}=w-x^{(1)}=$ $[1,1,1]-[1,0,0]$. So, $\mathbf{w}=[\mathbf{0}, \mathbf{1}, \mathbf{1}]$.
- For examples $x^{(2)}, x^{(3)}, x^{(4)}$, w is good, no mistake.

3. Epoch 3:

- For example $x^{(1)}$, prediction is $h_{1}=w^{T} x^{(1)}=0$. This means $h_{1} t_{1}=0 \leq 0$ so we made a mistake (line 4). Change the weight vector $w=w+t_{1} x^{(1)}=w-x^{(1)}=$ $[0,1,1]-[1,0,0]$. So, $\mathbf{w}=[-\mathbf{1}, \mathbf{1}, \mathbf{1}]$.
- For examples $x^{(2)}, x^{(3)}, x^{(4)}$, w is good, no mistake.

4. Epoch 4:

- $\mathrm{w}=[-1,2,2]$. ?

