ICTS 4156: Introduction to ML

Razvan Bunescu

Lecture notes, March 24, 2021

1 Notes on lecture slides material

1.1 The Perceptron and the Kernel Perceptron

We have the logical OR training dataset:

- 1. $x^{(1)} = [1, 0, 0]$, with label $t_1 = -1$
- 2. $x^{(2)} = [1, 0, 1]$, with label $t_2 = +1$
- 3. $x^{(3)} = [1, 1, 0]$, with label $t_3 = +1$
- 4. $x^{(4)} = [1, 1, 1]$, with label $t_4 = +1$

Want to train a weight vector $w = [w_0, w_1, w_2]$ such that $w^T x \ge 0$ if and only if t(x) = +1. Let's run the Perceptron algorithm: Initialize $\mathbf{w} = [\mathbf{0}, \mathbf{0}, \mathbf{0}]$. Let's also run the Kernel Perceptron algorithm: $\alpha = [0, 0, 0, 0]$.

1. Epoch 1:

- For example $x^{(1)}$, prediction is $h_1 = w^T x^{(1)} = 0$. This means $h_1 t_1 = 0 \le 0$ so we made a mistake (line 4). Change the weight vector $w = w + t_1 x^{(1)} = w x^{(1)} = [-1, 0, 0]$. So, $\mathbf{w} = [-1, \mathbf{0}, \mathbf{0}]$. Similarly, in the dual version, we make a mistake on example x_1 , which means that $\alpha = [1, 0, 0, 0]$.
- For example $x^{(2)}$, prediction is $h_2 = w^T x^{(2)} = -1$. This means $h_2 t_2 = -1 \le 0$ so we made a mistake (line 4). Change the weight vector $w = w + t_2 x^{(2)} = w + x^{(2)} = [-1, 0, 0] + [1, 0, 1]$. So, $\mathbf{w} = [\mathbf{0}, \mathbf{0}, \mathbf{1}]$. Similarly, in the dual version, we make a mistake on example x_2 , which means that $\alpha = [1, 1, 0, 0]$.
- For example $x^{(3)}$, prediction is $h_3 = w^T x^{(3)} = 0$. This means $h_3 t_3 = 0 \le 0$ so we made a mistake (line 4). Change the weight vector $w = w + t_3 x^{(3)} = w + x^{(3)} = [0, 0, 1] + [1, 1, 0]$. So, $\mathbf{w} = [\mathbf{1}, \mathbf{1}, \mathbf{1}]$. Similarly, in the dual version, we make a mistake on example x_3 , which means that $\alpha = [1, 1, 1, 0]$.
- For example $x^{(4)}$, prediction is $h_4 = w^T x^{(4)} = 3$. This means $h_4 t_4 = 3 > 0$ so no mistake. The weight vector stays unchanged, i.e. $\mathbf{w} = [\mathbf{1}, \mathbf{1}, \mathbf{1}]$. Similarly, in the dual version, $\alpha = [1, 1, 1, 0]$.
- $\sum_{n} \alpha_n t_n x_n = \alpha_1 t_1 x_1 + \alpha_2 t_2 x_2 + \alpha_3 t_3 x_3 + \alpha_4 t_4 x_4 = -x_1 + x_2 + x_3 = -[1, 0, 0] + [1, 0, 1] + [1, 1, 0] = [2, 1, 1] [1, 0, 0] = [1, 1, 1] = \mathbf{w}$

2. Epoch 2:

- For example $x^{(1)}$, prediction is $h_1 = w^T x^{(1)} = 1$. This means $h_1 t_1 = 1 \le 0$ so we made a mistake (line 4). Change the weight vector $w = w + t_1 x^{(1)} = w x^{(1)} = [1, 1, 1] [1, 0, 0]$. So, $\mathbf{w} = [\mathbf{0}, \mathbf{1}, \mathbf{1}]$.
- For examples $x^{(2)}, x^{(3)}, x^{(4)}$, w is good, no mistake.

3. Epoch 3:

- For example $x^{(1)}$, prediction is $h_1 = w^T x^{(1)} = 0$. This means $h_1 t_1 = 0 \le 0$ so we made a mistake (line 4). Change the weight vector $w = w + t_1 x^{(1)} = w x^{(1)} = [0, 1, 1] [1, 0, 0]$. So, $\mathbf{w} = [-1, 1, 1]$.
- For examples $x^{(2)}, x^{(3)}, x^{(4)}$, w is good, no mistake.

4. Epoch 4:

•
$$\mathbf{w} = [-1, 2, 2]$$
. ?

1.1.1 The Quadratic Kernel

We have $K(x,y) = (x^Ty)^2 = (x_1y_1 + x_2y_2)^2$, where $x = [x_1, x_2]$ and $y = [y_1, y_2]$.

- Question: can we find a function ϕ such that $K(x,y) = (x_1y_1 + x_2y_2)^2 = \phi(x)^T\phi(y)$?
- $K(x,y) = (x_1y_1 + x_2y_2)^2 = x_1^2y_1^2 + x_2^2y_2^2 + 2x_1y_1x_2y_2 = x_1^2 * y_1^2 + x_2^2 * y_2^2 + \sqrt{2}x_1x_2 * \sqrt{2}y_1y_2$ So, $K(x,y) = [x_1^2, x_2^2, \sqrt{2}x_1x_2] \times [y_1^2, y_2^2, \sqrt{2}y_1y_2]^T$. So, $K(x,y) = \phi(x)^T\phi(y)$, where $\phi(x) = [x_1^2, x_2^2, \sqrt{2}x_1x_2]^T$.

Example c = [1, 1]. Then $\phi(c) = [1, 1, \sqrt{2}]$