Machine Learning
ITCS 4156

Python Stack

Linear Algebra and Optimization in NumPy

Computation Graphs in PyTorch

Razvan C. Bunescu
Department of Computer Science (@ CCI

rbunescu@uncc.edu

mailto:rbunescu@uncc.edu

Python Programming Stack for Deep Learning

Python = object-oriented, interpreted, scripting language.

— 1mperative programming, with functional programming features.

 NumPy = package for powerful N-dimensional arrays:

— sophisticated (broadcasting) functions.

— useful linear algebra, Fourier transform, and random number
capabilities.

SciPy = package for numerical integration and optimization.

Matplotlib = comprehensive 2D and 3D plotting library.

https://xkcd.com/353/
http://www.numpy.org/
https://docs.scipy.org/doc/scipy/reference/tutorial/index.html
http://matplotlib.org/

Python Programming Stack for Deep Learning

=

e PyTorch = a wrapper of NumPy that enables the use of
GPUs and automatic differentiation:

— Tensors similar to NumPy’s ndarray, but can also be used on GPU.

» Jupyter Notebook = a web app for creating documents that
contain live code, equations, visualizations and markdown
LEXE.

* Anaconda = an open-source distribution of Python and
Python packages:

— Package versions are managed through Conda.
— Install all packages above using Anaconda / Conda install.

https://pytorch.org/
https://jupyter.org/
https://docs.anaconda.com/

Anaconda Install

=

« Anaconda: Installation instructions for various platforms can be
found at:

— For Mac and Linux users, the system PATH must be updated after installation so
that ‘conda’ can be used from the command line.

 Mac OS X:

— For bash users: export PATH=~/anaconda3/bin:$PATH

— For csh/tcsh users: setenv PATH ~/anaconda3/bin:$SPATH
* For Linux:

— For bash users: export PATH=~/anaconda3/bin:$PATH

— For csh/tcsh users: setenv PATH ~/anaconda3/bin:$SPATH

— It is recommend the above statement be put in the ~/.bashrc or ~/.cshrc
file, so that it i1s executed every time a new terminal window is open.

— To check that conda was installed, running “conda list”’ in the terminal
should list all packages that come with Anaconda.

https://docs.anaconda.com/anaconda/install/

Installing Packages with Conda / Anaconda

=

* A number of tools and libraries that we will use can be
configured from Anaconda:

— Python 3, NumPy, SciPy, Matplotlib, Jupyter Notebook, Ipython,
Pandas, Scikit-learn.

— PyTorch can be installed from Anaconda, with ‘conda’ from the
command line:

* The actual command line depends on the platform as follows:

— Using the GUI on , choose the appropriate OS,
conda, Python 3.6, CUDA or CPU version.

http://pytorch.org/

Import numpy as np

vV VYV

YV VYV

A A

np.array()

— 1ndexing, slices.
ndarray.shape, .size, .ndim, .dtype, .T

np.zeros(), np.ones(), np.arange(). np.eye()
— dtype parameter.

— tuple (shape) parameter.

np.reshape(), np.ravel()

np.amax(), np.maximum(), np.sum(), np.mean,() np.std()
— axis parameter, also np.ndarray

np.stack(), np.[hv]stack(), np.column_stack(), np.split()

np.exp(), np.log(),
https://docs.scipy.org/doc/numpy/user/quickstart.html

https://docs.scipy.org/doc/numpy/user/quickstart.html

NumPy: Broadcasting

Broadcasting describes how numpy treats arrays with
different shapes during arithmetic operations.

The smaller array 1s “broadcast” across the larger array so
that they have compatible shapes, subject to broadcasting
rules:

— NumPy compares their shapes element-wise.

— It starts with the trailing dimensions, and works its way forward.

— Two dimensions are compatible when:

« they are equal, or one of them is 1.

https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html

Other Numpy Functions

» np.dot(), np.vdot()

 also np.ndarray.

» np.outer(), np.inner()

» import numpy.random as random:

 randn(), randint(), uniform()

» import numpy.linalg as la:

* la.norm(), la.det(), la.matrix_rank(), np.trace()
* la.eig(), la.svd()

¢ la.qr(), la.cholesky()

" https://docs.scipy.org/doc/numpy/reference/routines.linalg.htmil

https://docs.scipy.org/doc/numpy/reference/routines.linalg.html

Logistic Regresion: Vectorization

e Version 1: Compute gradient component-wise. |

VE(W)= Y (h,~1,)x,

grad = np.zeros(K)
for n in range(N):
h = sigmoid(w.dot(X[:, n])
temp = h — t[n]
for k in range(K):
grad(k) = grad(k) + temp * X[k,n]

Logistic Regresion: Vectorization

e Version 2: Compute gradient, partially vectorized.

VE(W)= Y (h,~1,)x,

grad = np.zeros(K)
for n in range(N):
grad = grad + (sigmoid(w.dot(X[:, n])) — t[n]) * X[:, n]

Logistic Regresion: Vectorization

* Version 3: Compute gradient, vectorized.
N
VE(W)= Y (h,~1,)x,
n=1

grad = X (@ (sigmoid(w.dot(X)) — t)

def sigmoid(x):
return® FERINE npexp(—x3))

Import scipy

e scipy.sparse.coo matrix()
groundTruth = coo matrix((np.ones(numCases, dtype = np.uint8),
(labels, np.arange(numCases)))).toarray()
e scipy.optimize:
— scipy.optimize.fmin | bfgs b()
theta, , =fmin 1 bfgs b(softmaxCost, theta,
args = (numClasses, inputSize, decay, images, labels),
maxiter = 100, disp=1)
— scipy.optimize.fmin cg()
— scipy.minimize
https://docs.scipy.org/doc/scipy-0.10.1/reference/tutorial/optimize.html

https://docs.scipy.org/doc/scipy-0.10.1/reference/tutorial/optimize.html

Towards PyTorch: Graphs of Computations

=

« A function J can be expressed by the composition of
computational elements from a given set:
— logic operators.
— logistic operators.
— multiplication and additions.

e The function 1s defined by a graph of computations:
— A directed acyclic graph, with one node per computational element.

— Depth of architecture = depth of the graph = longest path from an
input node to an output node.

Logistic Regression as a Computation Graph

Inference = Learning =
Forward softmax Backward
Propagation Propagation

B

Neural Network as a Computation Graph

@

Inference = ‘ Learning =
Forward RelLU Backward
Propagation Propagation

- >

@ ” E
Q

What 1s PyTorch

=

* A wrapper of NumPy that enables the use of GPUs.

— Tensors similar to NumPy’s ndarray, but can also be used on GPU.

« A flexible deep learning platform:
— Deep Neural Networks built on a tape-based autograd system:
 Building neural networks using and replaying a tape recorder.

* Reverse-mode auto-differentiation allows changing the
network at runtime:

— The computation graph is created on the fly.
— Backpropagation is done on the dynamically built graph.

http://pytorch.org/about/

Automatic Differentiation

https://pytorch.org/tutorials/beginner/blitz/autograd tutorial.html

[

e Deep learning packages offer automatic differentiation.

e PyTorch has the autograd package:
— torch.Tensor the main class; torch. Function class also important.

 When requires grad = True, it tracks all operations on this
tensor (e.g. the parameters).

* An acyclic graph is build dynamically that encodes the history
of computations, i.e. compositions of functions.

— TensorFlow compiles static computation graphs.

* To compute the gradient, call backward() in a scalar valued
Tensor (e.g. the loss).

https://pytorch.org/tutorials/beginner/blitz/autograd_tutorial.html

Tensors

PyTorch tensors support the same operations as NumPy.
— Arithmetic.
— Slicing and Indexing.
— Broadcasting.
— Reshaping.

— Sum, Max, Argmax, ...

PyTorch tensors can be converted to NumPy tensors.
NumPy tensors can be converted to PyTorch tensors.

http://pytorch.org/tutorials/beginner/blitz/tensor_tutorial.html

http://pytorch.org/tutorials/beginner/blitz/tensor_tutorial.html

Autograd

« The autograd package provides automatic differentiation
for all operations on Tensors.

— It is a define-by-run framework, which means that the gradient is
defined by how your code is run:

« Every single backprop iteration can be different.

- autograd.Tensor is the central class of the package.

— Once you finish your computation you can call .backward() and
have all the gradients computed automatically.

http://pytorch.org/tutorials/beginner/blitz/autograd_tutorial.html

Tensor and Function

* A Tensor v has three important attributes:
— v.data holds the raw tensor value.
— v.grad 1is another Tensor which accumulates the gradient w.r.t. v:
* The gradient of what?

— The gradient of any variable u that uses v on which we call
u.backward().

* http://pytorch.org/docs/master/autograd.html

— v.grad_fn stores the Function that has created the Tensor v:
 http://pytorch.org/docs/master/autograd.html

http://pytorch.org/docs/master/autograd.html
http://pytorch.org/docs/master/autograd.html

Multivariate Chain Rule for Differentiation

e Multivariate Chain Rule: losi(x)
f=f(gl(x),gz(X),...,gn(x)) Aﬁ
of 98
ax Eagl 0x /' 5 \
» Example 2: h;x) hlx\
loss(x) = (hy(x) — hy(x))? / i \ 1

hi(x) =2g,(x) +1 i
hy(x) = 2g,(x) + g2 (x) : |
gi(x) = 3x1 g /92(;\/1()\

go(x) = x% +x /* X 3

X X

PyTorch

 Install using Anaconda:

— conda install pytorch torchvision -c pytorch

— http://pytorch.org

e Install from sources:

— https://github.com/pytorch/pytorch#from-source

e Tutorials:

— http://pytorch.org/tutorials/

— http://pytorch.org/tutorials/beginner/pytorch with examples.html

http://pytorch.org/
https://github.com/pytorch/pytorch
http://pytorch.org/tutorials/
http://pytorch.org/tutorials/beginner/pytorch_with_examples.html

