Machine Learning
ITCS 5356

Polynomial Curve Fitting
Regularization

Razvan C. Bunescu
Department of Computer Science @ CCl

rbunescu@unce.edu

mailto:rbunescu@uncc.edu

Simple Linear Regression

» Use a linear function approximation:
- P =wWIX = [wy, Wi][1, X] =wX + w,.
* W, IS the intercept (or the bias term).
W, controls the slope.

— Learning = optimization:
« Find w that obtains the best fit on the training data, i.e. find w
that minimizes the sum of square errors:

N
1
J(w) = ﬁz (WTX(n) a yn)z
n=1

W = argmin J(w)
w

Regression: Curve Fitting

target t

« Training: Build a function h(x), based on (noisy) training
examples (X3,y1), (X2,Y2), .. (XnYn)

3
T

What if the raw feature i1s insufficient?

« Simple linear regression = curve fitting with a 1-degree
polynomial.

Polynomial Curve Fitting

« Generalize curve fitting, from a 1-degree to an M-degree
polynomial.
— Add new features, as polynomials of the original feature.

\
M
9 =h(x)=h(x,w)=w, +wx+w,x’ +...+w,x" = éwjxj |

T e il

parameters features

Regression: Curve Fitting

learned h

”
-
-
L

target t

« Training: Build a function h(x), based on (noisy) training
examples (X1,Y1), (X2,¥2), - (XnnYn)

6
T

learned h r---

-
LS -
-—

target t

« Testing: for arbitrary (unseen) instance X € X , compute

Regression: Curve Fitting

1

target output h(x); want it to be close to y(Xx).

Regression: Polynomial Curve Fitting

0 . 1
M

9 = h(x) = h(x, W) = wy +wx +wox” +...+w,xM = éwjxj

T X i

parameters features

Polynomial Curve Fitting

e Parametric model:

M
5; o h(X) T h(x1 W) == Wo +W1x+W2X2 + 88T WMXM = é_ijj
-
 Polynomial curve fitting is (Multiple) Linear Regreésion:

] i xes
y =wTx

» Learning = minimize the Sum-of-Squares error function:

N
W = arg min J(w) J(w) = %z (whx(™ — yn)z
=

w

Sum-of-Squares Error Function

« How to find w that minimizes J(w), I.e. W = arg min J(w)
- Solve VJ(w) = 0. &

10
T

Polynomial Curve Fitting

 Least Square solution is found by solving aset of M + 1
linear equations:

Aw =Db
M N N
a;iw; = b; where = Lt b; = xt
ijWj = Oj ajj = Xn 7S YnXn
=0 o n=1

« Homework: Prove It.

Normal Equations

. Solution is w = (XTX) " XTy

« X Is the data matrix, or the design matrix:

T (1) (1) (1) "
/X(1) \ /xo Xy X, \ For polyZut. 4
x(Z)T X(Z) x(Z) x(z) 1 X1 x]é X]I_VI
X — - — 1 xz xz xz
\X(N)T/ \ (N) (N))/ 1 xy x}% x}]\\;[

* Y =1[y1, Y2 ..., Ya]' is the vector of labels.

Polynomial Curve Fitting

» Generalization = how well the parameterized h(x,w)
performs on arbitrary (unseen) test instances x € X.

 Generalization performance depends on the value of M.

0" Order Polynomial

15t Order Polynomial

3" Order Polynomial

9t Order Polynomial

Polynomial Curve Fitting

» Model Selection: choosing the order M of the polynomial.
— Best generalization obtained with M = 3.

— M =9 obtains poor generalization, even though it fits training
examples perfectly:

« But M =9 polynomials subsume M = 3 polynomials!

 Overfitting = good performance on training examples, poor
performance on test examples.

Overfitting

« Measure fit using the Root-Mean-Square (RMS) error (RMSE):

o 2
a (WT X tn)
E s (W) =) Y,
« Use 100 random test examples, generated in the same way:

—©— Training
—©— Test

Over-fitting and Parameter VValues

M=0 M=1 M=3 M=9
s | SROE9 W 082, J0.81 0.35
w} 5127 TER99 232.37
wh -25.43 -5321.83
wh 17.37 48568.31
wk -231639.30
w? 640042.26
wy -1061800.52
wk 1042400.18
wh -557682.99
wg 125201.43

Overfitting vs. Data Set Size

0 I 0

More training data = less overfitting.
What if we do not have more training data?
— Use regularization.

Regularization

Parameter norm penalties (term in the objective).
Limit parameter norm (constraint).

Dataset augmentation.

Dropout.

Ensembles.

Semi-supervised learning.

Early stopping.

Noise robustness.

Sparse representations.

Adversarial training.

Regularization

 Penalize large parameter values: exclude w,

N
1 2 A
Jw) == (wTx® = y,)" + 2wl
n=1 : ,
L, norm regularizer

W = arg min J(w)
w

9t Order Polynomial with Regularization

9t Order Polynomial with Regularization

Training & Test error vs. In \

Training
Test

Wy

=25 -20

N

=35 -30

In A

How do we find the optimal value of A?

Model Selection

 Put aside an independent validation set.
 Select parameters giving best performance on validation set.

In 1 e{-40,~35,—30,—25,~20,—15}

7 1T *

Validation Training |
\
Ina 40 35 | -30 | -5 -20 15

Envs 105 030 | 025 | 027 052 055 |

Split 1
Split 2
Split 3
Split 4

Split 5

K-fold Cross-Validation

https://scikit-learn.org/stable/modules/cross validation.html

Final evaluation {

All Data
Training data Test data
Foldl | Fold2 || Fold3 | Fold4 || Fold5 | "\
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
> Finding Parameters
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
Fold 1 Fold 2 Fold 3 Fold 4 Fold5 | /

Test data

28

https://scikit-learn.org/stable/modules/cross_validation.html

K-fold Cross-Validation

» Split the training data into K folds and try a wide range of
tunning parameter values:
— split the data into K folds of roughly equal size
— Iterate over a set of values for A
o iterateoverk=1,2, ..., K
— use all folds except k for training
— validate (calculate test error) in the k-th fold
« error[A] = average error over the K folds
— choose the value of A that gives the smallest error.

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LassoCV.html

Model Evaluation

« K-fold evaluation:
— randomly partition dataset in K equal
— foreachfoldiin {1, 2, ..., k}:
e teston P, trainon P, U ... UP;,

ly sized subsets P4, P,, ... P,

P e AR

— compute average error/accuracy across K folds.

run 1

run 2

run 3

__ 4-fold evaluation

run 4 _|

Normal Equations for Ridge Regression

« Multiple linear regression with L2 regularization:
N
1 T o A
Jw) = ﬁzl (wx® = y,)" + WP

W = arg min J(w)
w

. Solution is w = (ANI + XTX) ™ XTt
— Prove it.

 This assumes wy Is included in regularizer, rewrite so that it
excludes w,.

Batch Gradient Descent for Ridge Regression

 Sum-of-squares error + regularizer Pp = wix(
1 % A
- G, — SN) i
J(w) ZNz (wTx Vo) +lwl
n=1
WT+1 =w? — n V](WT)

N
1
witl =w? — n (AW + N z (WTX(‘n) _ yn) X(n))

n=1

\

Implementation: Vectorization

« Version 3. Compute gradient, vectorized.

N
1
7jw) = Aw+ > (WTx™ = y,) x(™ 9, = wix® |

n=1

grad = A * w + X.dot(w.dot(X) —t) / N

NumPy code above assumes examples stored in columns of X.
Homework: Rewrite to work with examples stored on rows.

33 |

Regularization: Ridge vs. Lasso

 Ridge regression:

NIN

N
1
gy TxM) _
Jw) 2NZ(wx)
n=

e | asso:

1 ZN AZM
2
n=1 Jj=1

— If A is sufficiently large, some of the coefficients w; are driven to O
=> sparse model.

Regularization: Ridge vs. Lasso

Figure 3.4 Plot of the contours
of the unregularized error function
(blue) along with the constraint re-
gion (3.30) for the quadratic regular-
izer ¢ = 2 on the left and the lasso
regularizer ¢ = 1 on the right, in
which the optimum value for the pa-
rameter vector w is denoted by w*.
The lasso gives a sparse solution in
which wi = 0.

p
N

Regularization

» Regularization alleviates overfitting when using models
with high capacity (e.g. high degree polynomials):
— Want high capacity because we do not know how complicated the
data is.

» Q: Can we achieve high capacity when doing curve fitting
without using high degree polynomials?

« A: Use piecewise polynomial curves.
— Example: Cubic spline smoothing.

Cubic Spline Smoothing

Cubic spline smoothing is a regularized version of cubic
spline interpolation.

— Cubic spline interpolation: given n points {(x; , y;)}, connect
adjacent points using cubic functions S; , requiring that the spline
and its first and second derivative remain continuous at all points:

Si(z) = ai(x—x;)3+bi(x—z;)°+c;(x—x;)+d;, YV € [T, Tig1]
— Cubic spline smoothing: the spline S = {S;} is allowed to deviate

from the data points and has low curvature => constrained
optimization problem with objective:

n TUi A Tn i 2
L=}, — (Silzi) = yi)? + / 1S (z)| dx
i=1

s — C', if (x;,y;) is a significant local optima
1 1, otherwise 37 |

Cubic Spline Smoothing

https://doi.org/10.1109/ICMLA.2011.39

IR

r_'.-.-h
a8 O

35
=)
E
E
m
-
@
&
E
V)
o
8
m

:

==
n
i

50 - r . . - r - - - . - r
000D 02:00 0400 0600 03:00 10:00 12:00 1400 16:00 1800 20000 22:00 0000

Date (h24:mm)

. CGMS — Spline with ridge: exp(-20), C = 1000

Fig. 3. Cubic spline smoothing with A = 2" and C' = 1000.

https://doi.org/10.1109/ICMLA.2011.39

Polynomial Curve Fitting (Revisited)

0 1

x
M
2 M j
Y(X) = Y(X, W) =W, + WX+ W, X" +...+W, X" = E w;x’

- X e

parameters features

39

Generalization: Basis Functions as Features

Generally
M—1
Wi ij (f)(X)
=0
where ¢;(X) are known as basis functions.

Typically ¢y(X) = 1, so that wg acts as a bias.

In the simplest case, use linear basis functions : ¢ (X) = Xg.

Linear Basis Function Models (1)

 Polynomial basis functions:

Gy — ol

e Global behavior:

— asmall change in x affect all basis
functions.

Linear Basis Function Models (2)

e (Gaussian basis functions:

* Local behavior: 05| |

— asmall change in x only
affects nearby basis functions. 025/

- and s control location and
scale (width). 0

-1 0 |

Linear Basis Function Models (3)

 Sigmoidal basis functions:

csﬁj(m):H(I;ﬂj) !
N 1 0.75 ¢

where o(a) = o)
0.5

e Local behavior:

— asmall change in x only affect
nearby basis functions.

. 0-
3 and s control location and -1
scale (slope).

0.25}

Supplemental Topics

The Classical U-shaped risk curve

e The bias-variance trade-off:
— Recommends balancing underfitting and overfitting.

A

under-fitting over-fitting

. Test risk

~ « ‘Training risk
sweet spot_ . —

~ =
Capacity of

The Modern Double-Descent risk curve

https://www.pnas.org/doi/10.1073/pnas.1903070116

« The modern interpolating regime:
— Allow high capacity that can fit all training examples.
— Of all models that fit, select model (fu with lowest norm.

 e.g. from all degree M > N interpolating polynomials, select
the one with lowest ||w/||%.

-

under-parameterized

Test risk

“classical”
regime

over-parameterized

“modern”
interpolating regime

Risk

~ JTraining risk:

- . _interpolation threshold

—

https://www.pnas.org/doi/10.1073/pnas.1903070116

	Slide 1: Machine Learning ITCS 5356
	Slide 2: Simple Linear Regression
	Slide 3: Regression: Curve Fitting
	Slide 4: What if the raw feature is insufficient?
	Slide 5: Polynomial Curve Fitting
	Slide 6: Regression: Curve Fitting
	Slide 7: Regression: Curve Fitting
	Slide 8: Regression: Polynomial Curve Fitting
	Slide 9: Polynomial Curve Fitting
	Slide 10: Sum-of-Squares Error Function
	Slide 11: Polynomial Curve Fitting
	Slide 12: Normal Equations
	Slide 13: Polynomial Curve Fitting
	Slide 14: 0th Order Polynomial
	Slide 15: 1st Order Polynomial
	Slide 16: 3rd Order Polynomial
	Slide 17: 9th Order Polynomial
	Slide 18: Polynomial Curve Fitting
	Slide 19: Overfitting
	Slide 20: Over-fitting and Parameter Values
	Slide 21: Overfitting vs. Data Set Size
	Slide 22: Regularization
	Slide 23: Regularization
	Slide 24: 9th Order Polynomial with Regularization
	Slide 25: 9th Order Polynomial with Regularization
	Slide 26: Training & Test error vs.
	Slide 27: Model Selection
	Slide 28: K-fold Cross-Validation
	Slide 29: K-fold Cross-Validation
	Slide 30: Model Evaluation
	Slide 31: Normal Equations for Ridge Regression
	Slide 32: Batch Gradient Descent for Ridge Regression
	Slide 33: Implementation: Vectorization
	Slide 34: Regularization: Ridge vs. Lasso
	Slide 35: Regularization: Ridge vs. Lasso
	Slide 36: Regularization
	Slide 37: Cubic Spline Smoothing
	Slide 38: Cubic Spline Smoothing
	Slide 39: Polynomial Curve Fitting (Revisited)
	Slide 40: Generalization: Basis Functions as Features
	Slide 41: Linear Basis Function Models (1)
	Slide 42: Linear Basis Function Models (2)
	Slide 43: Linear Basis Function Models (3)
	Slide 44: Supplemental Topics
	Slide 45: The Classical U-shaped risk curve
	Slide 46: The Modern Double-Descent risk curve
	Slide 47
	Slide 48

