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Simple Linear Regression

• Use a linear function approximation:

– ො𝑦 = wTx = [w0, w1]
T[1, x] = w1x + w0.

• w0 is the intercept (or the bias term).

• w1 controls the slope.

– Learning = optimization:

• Find w that obtains the best fit on the training data, i.e. find w 

that minimizes the sum of square errors:
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Regression: Curve Fitting

target t

• Training: Build a function h(x), based on (noisy) training 

examples (x1,y1), (x2,y2), … (xN,yN)
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What if the raw feature is insufficient?
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• Simple linear regression = curve fitting with a 1-degree 

polynomial.



Polynomial Curve Fitting

• Generalize curve fitting, from a 1-degree to an M-degree 

polynomial.

– Add new features, as polynomials of the original feature.
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Regression: Curve Fitting

learned h

target t

• Training: Build a function h(x), based on (noisy) training 

examples (x1,y1), (x2,y2), … (xN,yN)
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Regression: Curve Fitting

learned h

• Testing: for arbitrary (unseen) instance x  X , compute 

target output h(x); want it to be close to y(x).

target t
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Regression: Polynomial Curve Fitting

h(x) = h(x,w) =w0 +w1x +w2x
2 +…+wM x
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Polynomial Curve Fitting

• Parametric model:

• Polynomial curve fitting is (Multiple) Linear Regression:

x = [1, x, x2, ..., xM]T

ො𝑦 = wTx

• Learning = minimize the Sum-of-Squares error function:
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Sum-of-Squares Error Function

• How to find ෝ𝐰 that minimizes J(w), i.e.

• Solve ∇J(w) = 0.

10

𝐽 𝐰 =
1

2𝑁
෍

𝑛=1

𝑁

𝐰𝑇𝐱(𝑛) − 𝑦𝑛

2

ෝ𝐰 = arg min
 𝐰

𝐽(𝐰)



Polynomial Curve Fitting

• Least Square solution is found by solving a set of M + 1 

linear equations:

• Homework: Prove it.

A𝐰 = 𝐛
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Normal Equations

• Solution is 

• X is the data matrix, or the design matrix:

• y = [y1, y2, …, yN]T is the vector of labels.
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Polynomial Curve Fitting

• Generalization = how well the parameterized h(x,w) 

performs on arbitrary (unseen) test instances x X.

• Generalization performance depends on the value of M.
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0th Order Polynomial

14



1st Order Polynomial
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3rd Order Polynomial
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9th Order Polynomial
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Polynomial Curve Fitting

• Model Selection: choosing the order M of the polynomial.

– Best generalization obtained with M = 3.

– M = 9 obtains poor generalization, even though it fits training 

examples perfectly:

• But M = 9 polynomials subsume M = 3 polynomials!

• Overfitting  good performance on training examples, poor 

performance on test examples.
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Overfitting

• Measure fit using the Root-Mean-Square (RMS) error (RMSE):

• Use 100 random test examples, generated in the same way:

ERMS (w) =
w
T
xn - tn( )
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Over-fitting and Parameter Values

20



Overfitting vs. Data Set Size

• More training data  less overfitting.

• What if we do not have more training data?

– Use regularization.
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Regularization

• Parameter norm penalties (term in the objective).

• Limit parameter norm (constraint).

• Dataset augmentation.

• Dropout.

• Ensembles.

• Semi-supervised learning.

• Early stopping.

• Noise robustness.

• Sparse representations.

• Adversarial training.
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Regularization

• Penalize large parameter values:

L2 norm regularizer
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9th Order Polynomial with Regularization

24



9th Order Polynomial with Regularization
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Training & Test error vs.   
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How do we find the optimal value of ?



Model Selection

• Put aside an independent validation set.

• Select parameters giving best performance on validation set.
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Validation Training

}15,20,25,30,35,40{ln −−−−−−

ln  -40 -35 -30 -25 -20 -15

ERMS 1.05 0.30 0.25 0.27 0.52 0.55



K-fold Cross-Validation
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https://scikit-learn.org/stable/modules/cross_validation.html

https://scikit-learn.org/stable/modules/cross_validation.html


K-fold Cross-Validation

• Split the training data into K folds and try a wide range of 

tunning parameter values:

– split the data into K folds of roughly equal size

– iterate over a set of values for 𝜆

• iterate over k = 1, 2, ..., K

– use all folds except k for training

– validate (calculate test error) in the k-th fold

• error[𝜆] = average error over the K folds

– choose the value of 𝜆 that gives the smallest error.
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https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LassoCV.html



Model Evaluation

• K-fold evaluation:

– randomly partition dataset in K equally sized subsets P1, P2, … Pk

– for each fold i in {1, 2, …, k}:

• test on Pi, train on P1  …  Pi-1  Pi+1  …  Pk

– compute average error/accuracy across K folds.
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Normal Equations for Ridge Regression

• Multiple linear regression with L2 regularization:

• Solution is

– Prove it.

• This assumes w0 is included in regularizer, rewrite so that it 

excludes w0.
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Batch Gradient Descent for Ridge Regression

• Sum-of-squares error + regularizer 
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Implementation: Vectorization

• Version 3: Compute gradient, vectorized.

grad = 𝜆 ∗ 𝐰 + X.dot(w.dot(X) − t) / N

NumPy code above assumes examples stored in columns of X.

Homework: Rewrite to work with examples stored on rows.
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Regularization: Ridge vs. Lasso

• Ridge regression:

• Lasso:

– If λ is sufficiently large, some of the coefficients wj are driven to 0 

=> sparse model.
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Regularization: Ridge vs. Lasso
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Regularization

• Regularization alleviates overfitting when using models 

with high capacity (e.g. high degree polynomials):

– Want high capacity because we do not know how complicated the 

data is.

• Q: Can we achieve high capacity when doing curve fitting 

without using high degree polynomials?

• A: Use piecewise polynomial curves.

– Example: Cubic spline smoothing.
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Cubic Spline Smoothing

• Cubic spline smoothing is a regularized version of cubic 

spline interpolation.

– Cubic spline interpolation: given n points {(xi , yi)}, connect 

adjacent points using cubic functions Si , requiring that the spline 

and its first and second derivative remain continuous at all points: 

– Cubic spline smoothing: the spline S = {Si} is allowed to deviate 

from the data points and has low curvature => constrained 

optimization problem with objective:
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Cubic Spline Smoothing
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https://doi.org/10.1109/ICMLA.2011.39

https://doi.org/10.1109/ICMLA.2011.39


Polynomial Curve Fitting (Revisited)
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Generalization: Basis Functions as Features

• Generally

 where j(x) are known as basis functions.

• Typically 0(x) = 1, so that w0 acts as a bias.

• In the simplest case, use linear basis functions : d(x) = xd.
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Linear Basis Function Models (1)

• Polynomial basis functions:

• Global behavior:

– a small change in x affect all basis 

functions.
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Linear Basis Function Models (2)

• Gaussian basis functions:

• Local behavior:

– a small change in x only 

affects nearby basis functions.

–   and s control location and 

scale (width).

42



Linear Basis Function Models (3)

• Sigmoidal basis functions:

 where

• Local behavior:

–  a small change in x only affect 

nearby basis functions. 

–    and s control location and 

scale (slope).
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Supplemental Topics
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The Classical U-shaped risk curve

• The bias-variance trade-off:

– Recommends balancing underfitting and overfitting.
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The Modern Double-Descent risk curve

• The modern interpolating regime:

– Allow high capacity that can fit all training examples.

– Of all models that fit, select model (fu with lowest norm.

• e.g. from all degree M > N interpolating polynomials, select 

the one with lowest ||w||2.
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https://www.pnas.org/doi/10.1073/pnas.1903070116

https://www.pnas.org/doi/10.1073/pnas.1903070116
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