ITCS 5356: Mathematical Foundations

Derivatives

Razvan C. Bunescu

Department of Computer Science @ CCI

rbunescu@uncc.edu

Derivatives and Machine Learning

- For most ML algorithms, training means finding params **w** that minimize a *cost* function $J(\mathbf{w})$.
	- Example for linear regression:

$$
J(\mathbf{w}) = \frac{1}{2N} \sum_{n=1}^{N} \left[(\mathbf{w}^T \mathbf{x}_n - y_n)^2 \right]
$$
 loss $l(\mathbf{x}_n; \mathbf{w})$

- $l(\mathbf{x}_n; \mathbf{w})$ expresses the *loss* that a model with params **w** incurs on example x_n .
	- When model classifies x_n correctly, loss will be defined to be low.
	- When model misclassifies x_n , loss will be defined to be high.
- We will see in this course how to formulate $l(\mathbf{x}_n; \mathbf{w})$ to make the cost $J(\mathbf{w})$ easy to minimize on a computer.

Derivatives and Machine Learning

- For most ML algorithms, training means finding params **w** that minimize a *cost* function $J(\mathbf{w})$.
	- Example for linear regression:

$$
J(\mathbf{w}) = \frac{1}{2N} \sum_{n=1}^{N} \left[(\mathbf{w}^T \mathbf{x}_n - y_n)^2 \right]
$$
 loss $l(\mathbf{x}_n; \mathbf{w})$

- $-$ If the *cost* $J(\mathbf{w})$ is differentiable, at the minimum its derivative is 0.
	- We use numerical algorithms (SGD) to find **w** such that the derivative of the loss $\frac{\partial J}{\partial x}$ $\partial \mathbf{w}$ $= 0$

=> we need to understand derivatives.

Univariate Functions

- A univariate function means has one scalar as input:
	- We can represent univariate functions on a 2D graph, with input on the horizontal axis and output (function value) on the vertical axis.
- For example:
	- Position *x* is a function of time *t*, so we can write is as *x*(*t*).
	- Pressure *p* is a function of temperature t, hence *p*(*t*).

$x(t)$: position x as a function of time t

$x(t)$: position x as a function of time t

- Speed is the *rate of change* of *x* with respect to *t*. $x'(t) =$ Δx Δt = $x(u) - x(t)$ $u-t$ $x'(10) =$ $x(15) - x(10)$ $\frac{15-10}{15-10}$ = 80 5 $= 16$ $x'(10) =$ $x(12.5) - x(10)$ $\frac{12.5 - 10}{12.5 - 10} =$ 40 2.5 $= 16$ $x'(12.5) = ?$ $x'(15.0) = ?$ $x'(1024) = ?$ $x'(1024) = ?$
- Speed is the *slope* of the line *x*(*t*) at time *t*.
	- What if the graph is not a line? *Hint: trigonometric name for the slope …*

$$
x'(t) = \frac{\Delta x}{\Delta t} = \frac{x(u) - x(t)}{u - t}
$$

$$
t = 12.5
$$

$$
u = t + 2.5 = 15.0
$$

$$
x'(t) = \frac{5.0}{2.5} = 2.0
$$

Let's make *u* arbitrarily close to *t*: $u = t + \varepsilon \simeq 12.5$

Derivative
$$
x'(t) = \lim_{\epsilon \to 0} \frac{x(t+\epsilon) - x(t)}{\epsilon}
$$

Formal definition of derivative

• Given a univariate function $f(x)$, the **derivative** of f with respect to *x*, when evaluated at *x*₀, is defined as:

$$
f'(x_0) = \lim_{\epsilon \to 0} \frac{f(x_0 + \epsilon) - f(x_0)}{\epsilon}
$$

- Observations:
	- When this limit does not exist \Rightarrow *f* is not differentiable at x_0 .
		- Can you think of an example?
	- How do we calculate it?
		- Use the definition, L'Hopital, differentiation rules, …

Examples: Constant functions

• Compute the derivative of $f(x) = c$, where *c* is a constant.

$$
f'(x) = \lim_{\epsilon \to 0} \frac{f(x + \epsilon) - f(x)}{\epsilon}
$$

$$
= \lim_{\epsilon \to 0} \frac{c - c}{\epsilon} = \lim_{\epsilon \to 0} 0 = 0
$$

Examples: Linear functions

• Compute the derivative of $f(x) = ax + b$, where *a* and *b* are constants.

$$
f'(x) = \lim_{\epsilon \to 0} \frac{f(x + \epsilon) - f(x)}{\epsilon}
$$

=
$$
\lim_{\epsilon \to 0} \frac{a(x + \epsilon) + b - (ax + b)}{\epsilon}
$$

=
$$
\lim_{\epsilon \to 0} \frac{ax + a\epsilon + b - ax - b}{\epsilon}
$$

=
$$
\lim_{\epsilon \to 0} \frac{a\epsilon}{\epsilon} = \lim_{\epsilon \to 0} a = a
$$

Examples: Quadratic terms

• Compute the derivative of $f(x) = ax^2$, where *a* and *b* are constants.

$$
f'(x) = \lim_{\epsilon \to 0} \frac{f(x + \epsilon) - f(x)}{\epsilon}
$$

=
$$
\lim_{\epsilon \to 0} \frac{a(x + \epsilon)^2 - ax^2}{\epsilon}
$$

=
$$
\lim_{\epsilon \to 0} \frac{ax^2 + 2a\epsilon x + a\epsilon^2 - ax^2}{\epsilon}
$$

 $=$ lim $2ax + a\epsilon = 2ax + a$ lim $\epsilon = 2ax + 0 = 2ax$ $\epsilon \rightarrow 0$ $\epsilon \rightarrow 0$

Notation for Derivatives

- For **univariate** functions $f(x)$, we'll use Leibniz and Lagrange.
- For **multivariate** functions $f(x_1, x_2, ..., x_n)$ we'll use Lagrange:
	- $-\frac{\delta f}{\delta x}$ δx_k is the **partial derivative** of f with respect to x_k .

– The vector $\nabla f(\mathbf{x}) = \frac{\delta f}{\delta x}$ δx $=\frac{\delta f}{\delta x}$ δx_1 $\frac{\delta f}{\delta x}$ δx_2 δf , $\frac{\delta f}{\delta x}$ δx_n is called the **gradient** of *f* with respect to the vector of parameters $\mathbf{x} = [x_1, x_2, ..., x_n].$

Properties of Derivatives

Using the definition, prove that:

- $h(x) = cf(x)$, then $h'(x) = cf'(x)$.
- $h(x) = f(x) + g(x)$, then $h'(x) = f'(x) + g'(x)$.

Using the above, prove that if $h(x) = af(x) + b$, then $h'(x) = af'(x)$.

Derivatives of multiplications and divisions of univariate functions:

• $h(x) = f(x)g(x)$, then $h'(x) = f'(x)g(x) + f(x)g'(x)$

•
$$
h(x) = \frac{f(x)}{g(x)}
$$
, then $h'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)}$

Using the above, prove that if $h(x) = \frac{1}{g(x)}$ $g(x)$, then $h'(x) = -\frac{1}{a^2(x)}$ $g^2(x)$

Derivatives of Common Functions

Univariate Chain Rule for Differentiation

• Univariate Chain Rule:

$$
f = f \circ g \circ h = f(g(h(x)))
$$

$$
\frac{\partial f}{\partial x} = \frac{\partial f}{\partial g} \frac{\partial g}{\partial h} \frac{\partial h}{\partial x}
$$

• Example:

$$
f(g(x)) = 2g(x)^{2} - 3g(x) + 1
$$

g(x) = x³ + 2x

Multivariate Chain Rule for Differentiation

• Multivariate Chain Rule:

$$
f = f(g_1(x), g_2(x), \dots, g_n(x))
$$

$$
\frac{\mathbb{I}f}{\sqrt{x}} = \frac{\partial}{\partial x} \frac{\sqrt{x}}{\sqrt{x}} \frac{\sqrt{x}}{\sqrt{x}}
$$

• Example:

 $f(g_1(x), g_2(x)) = 2g_1(x)^2 - 3g_1(x)g_2(x) + 1$ $g_1(x) = 3x$ $g_2(x) = x^2 + 2x$

Exercises for Differentiation Rules

Exercises for Differentiation Rules

