
Machine Learning
ITCS 5356

Gradient Descent

Least Mean Squares

Razvan C. Bunescu

Department of Computer Science @ CCI

razvan.bunescu@charlotte.edu

mailto:razvan.bunescu@charlotte.edu

ML is Optimization

• Try to find the value for w that minimizes:

• Set ∇J(w) = 0

 w – 4 = 0

 w = 4

2

𝐽 𝑤 =
1

2
𝑤2 − 4𝑤 + 9

𝐽 𝑤 =
1

2
𝑤 − 4 2 + 1

Machine Learning is Optimization

• Parametric ML involves minimizing an objective function

J(w):

– Also called cost function or loss function.

– Want to find ෝ𝐰 = argmin
 𝐰

𝐽(𝐰)

• Numerical optimization procedure:

1. Start with some guess for w0, set 𝜏 = 0.

2. Update w𝜏 to w𝜏+1 such that J(w𝜏+1) ≤ J(w𝜏).

3. Increment 𝜏 = 𝜏 + 1.

4. Repeat from 2 until J cannot be improved anymore.

3

Gradient-based Optimization

• How to update w𝜏 to w𝜏+1 such that J(w𝜏+1) ≤ J(w𝜏)?

• Move w in the direction of steepest descent:

 𝐰𝜏+1 = 𝐰𝜏 + 𝜂𝚫

– 𝚫 is the direction of steepest descent, i.e. direction along which J

decreases the most.

– 𝜂 is the learning rate and controls the magnitude of the change.

4

Gradient-based Optimization

• Move w in the direction of steepest descent:

 𝐰𝜏+1 = 𝐰𝜏 + 𝜂𝚫

• What is the direction of steepest descent of J(w) at w𝜏?

– The gradient ∇J(w) is in the direction of steepest ascent.

– Set 𝚫 = −∇J(w) => the gradient descent update:

 𝐰𝜏+1 = 𝐰𝜏 − 𝜂𝛻𝐽(𝐰𝜏)

5

Gradient Descent Algorithm

• Want to minimize a function J : R
n
 → R.

– J is differentiable and convex.

– compute gradient of J i.e. direction of steepest increase:

6

𝛻𝐽 𝐰 =
𝜕𝐽

𝜕𝑤1
,

𝜕𝐽

𝜕𝑤2
, … ,

𝜕𝐽

𝜕𝑤𝑛

1. Set learning rate 𝜂 = 0.001 (or other small value).

2. Start with some guess for w0, set 𝜏 = 0.

3. Repeat for epochs E or until J does not improve:

4. 𝜏 = 𝜏 + 1.

5. 𝐰𝜏+1 = 𝐰𝜏 − 𝜂𝛻𝐽 𝐰𝜏

What if objective is not differentiable?

• Subgradient methods.

– Minimize convex functions that are not necessarily differentiable.

• Gradient free methods:

– Evolutionary Programming.

– Bayesian Optimization.

• https://arxiv.org/abs/1807.02811

– Particle swarm optimization.

– Surrogate optimization

– Simulated annealing.

– …

7

https://arxiv.org/abs/1807.02811

Gradient Descent Algorithm

• Want to minimize a function J : R
n
 → R.

– J is differentiable and convex.

– compute gradient of J i.e. direction of steepest increase:

8

𝛻𝐽 𝐰 =
𝜕𝐽

𝜕𝑤1
,

𝜕𝐽

𝜕𝑤2
, … ,

𝜕𝐽

𝜕𝑤𝑛

1. Set learning rate 𝜂 = 0.001 (or other small value).

2. Start with some guess for w0, set 𝜏 = 0.

3. Repeat for epochs E or until J does not improve:

4. 𝜏 = 𝜏 + 1.

5. 𝐰𝜏+1 = 𝐰𝜏 − 𝜂𝛻𝐽 𝐰𝜏

Gradient Descent: Example

• Let’s use gradient descent to minimize:

– Start from w0 = 0, use learning rate 𝜂 = 0.5

– What if 𝜂 = 1.0?

– What if 𝜂 = 2.0?

9

𝐽 𝑤 =
1

2
𝑤2 − 4𝑤 + 9

Gradient Descent: Large Updates

10

Gradient Descent: Small Updates

11https://www.safaribooksonline.com/library/view/hands-on-machine-learning

The Learning Rate

1. Set learning rate 𝜂 = 0.001 (or other small value).

2. Start with some guess for w0, set 𝜏 = 0.

3. Repeat for epochs E or until J does not improve:

4. 𝜏 = 𝜏 + 1.

5. 𝐰𝜏+1 = 𝐰𝜏 − 𝜂𝛻𝐽 𝐰𝜏

▪ How big should the learning rate be?

o If learning rate too small => slow convergence.

o If learning rate too big => oscillating behavior => may not even

converge.

12

Learning Rate too Small

13

Learning Rate too Large

14

Learning Rates vs. GD Behavior

15

http://scs.ryerson.ca/~aharley/neural-networks/

The Learning Rate

• How big should the learning rate be?

– If learning rate too big => oscillating behavior.

– If learning rate too small => hinders convergence.

o Use line search (backtracking line search, conjugate gradient, …).

o Use second order methods (Newton’s method, L-BFGS, ...).

• Requires computing or estimating the Hessian.

o Use a simple learning rate annealing schedule:

– Start with a relatively large value for the learning rate.

– Decrease the learning rate as a function of the number of epochs or

as a function of the improvement in the objective.

o Use adaptive learning rates:

• Adagrad, Adadelta, RMSProp, Adam.

16

Gradient Descent: Nonconvex Objective

17

Saddle point

Convex Multivariate Objective

18

w0

w1

Gradient Step and Contour Lines

19

w0

w1

Gradient Descent: Nonconvex Objectives

20

Gradient Descent & Plateaus

21

Gradient Descent & Saddle Points

22

Gradient Descent & Ravines

23

Gradient Descent & Ravines

• Ravines are areas where the cost surface curves much more

steeply in one dimension than another.

– Common around local optima.

– GD oscillates across the slopes of the ravines, making slow progress

towards the local optimum along the bottom.

• Use momentum to help accelerate GD in the relevant

directions and dampen oscillations:

– Add a fraction of the past update vector to the current update vector.

• The momentum term increases for dimensions whose previous

gradients point in the same direction.

• It reduces updates for dimensions whose gradients change sign.

• Also reduces the risk of getting stuck in local minima.
24

Gradient Descent & Momentum

25

Vanilla Gradient Descent:

 𝐯𝜏+1 = 𝜂𝛻𝐽(𝐰𝜏)

 𝐰𝜏+1 = 𝐰𝜏 − 𝐯𝜏+1

Gradient Descent w/ Momentum:

 𝐯𝜏+1 = 𝛾𝐯𝜏 + 𝜂𝛻𝐽(𝐰𝜏)

 𝐰𝜏+1 = 𝐰𝜏 − 𝐯𝜏+1

𝛾 is usually set to 0.9 or similar.

The momentum term increases for dimensions whose gradients point in the

same directions and reduces updates for dimensions whose gradients change

directions.

Batch vs. Stochastic Gradient Descent

𝐰𝜏+1 = 𝐰𝜏 − 𝜂 𝛻𝐽 𝐰𝜏

• Depending on how much data is used to compute the

gradient at each step:

– Batch gradient descent:

• Use all the training examples.

– Stochastic gradient descent (SGD).

• Use one training example, update after each.

• Minibatch gradient descent.

– Use a constant number of training examples (minibatch).

26

Batch Gradient Descent for

Linear Regression

• Sum-of-squares error:

27

𝐽 𝐰 =
1

2𝑁

𝑛=1

𝑁

𝐰𝑇𝐱(𝑛) − 𝑦𝑛

2

𝐰𝜏+1 = 𝐰𝜏 − 𝜂 𝛻𝐽 𝐰𝜏

𝐰𝜏+1 = 𝐰𝜏 − 𝜂
1

𝑁

𝑛=1

𝑁

𝐰𝜏𝑇𝐱(𝑛) − 𝑡𝑛 𝐱(𝑛)

ො𝑦𝑛 = 𝐰𝑇𝐱(𝑛)

Stochastic Gradient Descent for

Linear Regression

• Sum-of-squares error:

• Update parameters w after each example, sequentially:

 => the least-mean-square (LMS) algorithm.

28

𝐽 𝐰 =
1

2𝑁

𝑛=1

𝑁

𝐰𝑇𝐱(𝑛) − 𝑦𝑛

2
=

1

𝑁

𝑛=1

𝑁

𝑙𝑜𝑠𝑠 𝐰𝜏 , 𝐱(𝑛)

𝐰𝜏+1 = 𝐰𝜏 − 𝜂 𝛻𝑙𝑜𝑠𝑠 𝐰𝜏 , 𝐱(𝑛)

𝐰𝜏+1 = 𝐰𝜏 − 𝜂 𝐰𝑇𝐱(𝑛) − 𝑦𝑛 𝐱(𝑛)

ො𝑦𝑛 = 𝐰𝑇𝐱(𝑛)

Batch GD vs. Stochastic GD

• Accuracy:

• Time complexity:

• Memory complexity:

• Online learning:

29

Batch GD vs. Stochastic GD

30

31

Pre-processing Features

• Features may have very different scales, e.g. x1 = rooms

vs. x2 = size in sq ft.

– Right (different scales): GD goes first towards the bottom of the

bowl, then slowly along an almost flat valley.

– Left (scaled features): GD goes straight towards the minimum.

32

Feature Scaling

• Scaling between [0, 1] or [−1, +1]:

– For each feature xj, compute minj and maxj over the training examples.

– Scale xj as follows: ො𝑥𝑗 =
𝑥𝑗−𝑚𝑖𝑛𝑗

𝑚𝑎𝑥𝑗−𝑚𝑖𝑛𝑗

• Scaling to standard normal distribution:

– For each feature xj, compute sample 𝜇j and sample 𝜎j over the training

examples.

– Scale xj as follows: ො𝑥𝑗 =
𝑥𝑗−𝜇𝑗

𝜎𝑗

• Use the same scaling factors at test time:

– Clip to minj and maxj.

33

34

Gradient Descent vs. Normal Equations

• Gradient Descent:

– Need to select learning rate 𝜂.

– May need many iterations:

• Can do Early Stopping on validation data for regularization.

– Scalable when number of training examples N is large.

• Normal Equations:

– No iterations => easy to code.

– Computing (XTX)-1 has cubic time complexity => slow for large N.

– XTX may be singular:

1. Redundant (linearly dependent) features.

2. #features > #examples => do feature selection or regularization.

35

Implementation: Vectorization

• Version 1: Compute gradient component-wise.

grad = np.zeros(K)

for n in range(N):

h = w.dot(X[n])

temp = h − y[n]

for k in range(K):

 grad[k] = grad[k]+ temp * X[n,k]

for k in range(K):

 grad[k] = grad[k] / N

36

𝛻𝐽 𝐰 =
1

𝑁

𝑛=1

𝑁

𝐰𝑇𝐱(𝑛) − 𝑦𝑛 𝐱(𝑛)

// This NumPy code assumes examples stored in rows of X.

ො𝑦𝑛 = 𝐰𝑇𝐱(𝑛)

Implementation: Vectorization

• Version 2: Compute gradient, partially vectorized.

grad = np.zeros(K)

for n in range(N):

grad = grad + (w.dot(X[n])) − y[n]) * X[n]

grad = grad / N

37

𝛻𝐽 𝐰 =
1

𝑁

𝑛=1

𝑁

𝐰𝑇𝐱(𝑛) − 𝑦𝑛 𝐱(𝑛)

// This NumPy code assumes examples stored in rows of X.

ො𝑦𝑛 = 𝐰𝑇𝐱(𝑛)

Implementation: Vectorization

• Version 3: Compute gradient, vectorized.

grad = X.T.dot(X.dot(w) − y) / N

NumPy code above assumes examples stored in columns of X

38

𝛻𝐽 𝐰 =
1

𝑁

𝑛=1

𝑁

𝐰𝑇𝐱(𝑛) − 𝑦𝑛 𝐱(𝑛)

ො𝑦𝑛 = 𝐰𝑇𝐱(𝑛)

Implementation: Gradient Checking

• Want to minimize J(θ), where θ is a scalar.

• Mathematical definition of derivative:

• Numerical approximation of derivative:

d

dq
J(q) = lim

e®¥

J(q +e)- J(q -e)

2e

d

dq
J(q) »

J(q +e)- J(q -e)

2e
where ε = 0.0001

39

Implementation: Gradient Checking

• If θ is a vector of parameters θi,

– Compute numerical derivative with respect to each θi.

– Aggregate all derivatives into numerical gradient Gnum(θ).

• Compare numerical gradient Gnum(θ) with implementation

of gradient Gimp(θ):

40

Supplemental Topics

41

Gradient Descent Optimization Algorithms

• Momentum.

• Nesterov Accelerated Gradient (NAG).

• Adaptive learning rates methods:

– Idea is to perform larger updates for infrequent params and smaller

updates for frequent params, by accumulating previous gradient

values for each parameter.

• Adagrad:

– Divide update by sqrt of sum of squares of past gradients.

• Adadelta.

• RMSProp.

• Adaptive Moment Estimation (Adam)

42

Gradient Descent & Momentum

43

Vanilla Gradient Descent:

 𝐯𝜏+1 = 𝜂𝛻𝐽(𝐰𝜏)

 𝐰𝜏+1 = 𝐰𝜏 − 𝐯𝜏+1

Gradient Descent w/ Momentum:

 𝐯𝜏+1 = 𝛾𝐯𝜏 + 𝜂𝛻𝐽(𝐰𝜏)

 𝐰𝜏+1 = 𝐰𝜏 − 𝐯𝜏+1

𝛾 is usually set to 0.9 or similar.

The momentum term increases for dimensions whose gradients point in the

same directions and reduces updates for dimensions whose gradients change

directions.

Momentum & Nesterov Accelerated Gradient

44

GD with Momentum:

 𝐯𝜏+1 = 𝛾𝐯𝜏 + 𝜂𝛻𝐽(𝐰𝜏)

 𝐰𝜏+1 = 𝐰𝜏 − 𝐯𝜏+1

Nesterov Accelerated Gradient:

 𝐯𝜏+1 = 𝛾𝐯𝜏 + 𝜂𝛻𝐽(𝐰𝜏− 𝛾𝐯𝜏)

 𝐰𝜏+1 = 𝐰𝜏 − 𝐯𝜏+1

By making an anticipatory update, NAGs prevents GD from going too fast

=> significant improvements when training RNNs.

𝜂𝛻𝐽(𝐰𝜏)

𝛾𝐯𝜏

𝜂𝛻𝐽(𝐰𝜏− 𝛾𝐯𝜏)

𝛾𝐯𝜏

AdaGrad

• Optimized for problems with sparse features.

• Per-parameter learning rate: make smaller updates for

params that are updated more frequently:

• Require less tuning of the learning rate compared with

SGD.

45

𝑤𝑖 = 𝑤𝑖 − 𝜂
𝑔𝑡,𝑖

𝜖+𝐺𝑡,𝑖
 where 𝐺𝑡,𝑖 = σ𝜏=1

𝑡 𝑔𝜏,𝑖
2

𝑔𝑡,𝑖 =
𝜕𝐽(𝐰)

𝜕𝑤𝑖

RMSProp

• Element-wise gradient: 𝑔𝑖
𝑡= 𝛻𝑤𝑖

𝐽(𝐰𝑡)

• Gradient is 𝐠𝑡 = [𝑔1
𝑡, 𝑔2

𝑡 , …, 𝑔𝐾
𝑡]

• Element-wise square gradient: 𝐠𝑡
2 = 𝐠𝑡 ∘ 𝐠𝑡

RMSProp:

 E𝑡 𝐠2 = 𝛾E𝑡−1 𝐠2 + (1 − 𝛾) 𝐠𝑡
2

 𝐰𝑡+1 = 𝐰𝑡 −
𝜂

E𝑡 𝐠2 +𝜖
𝐠𝑡

𝛾 is usually set to 0.9, 𝜂 is set to 0.001

46

Adam: Adaptive Moment Estimation

• Maintain an exponentially decaying average of past

gradients (1st m.) and past squared gradients (2nd m.):

1) 𝐦𝑡 = 𝛽1 𝐦𝑡−1 + (1 − 𝛽1) 𝐠𝑡

2) 𝐯𝑡 = 𝛽1 𝐯𝑡−1 + (1 − 𝛽1) 𝐠𝑡
2

• Biased towards 0 during initial steps, use bias-corrected

first and second order estimates:

1) ෝ𝐦𝑡 =
𝐦𝑡

1−𝛽1
𝑡

2) ො𝐯𝑡 =
𝐯𝑡

1−𝛽2
𝑡

47

Adam: Adaptive Moment Estimation

• First and second moment:

𝐦𝑡 = 𝛽1 𝐦𝑡−1 + (1 − 𝛽1) 𝐠𝑡

𝐯𝑡 = 𝛽1 𝐯𝑡−1 + (1 − 𝛽1) 𝐠𝑡
2

• Bias-correction:

 ෝ𝐦𝑡 =
𝐦𝑡

1−𝛽1
𝑡 and ො𝐯𝑡 =

𝐯𝑡

1−𝛽2
𝑡

Adam:

 𝐰𝑡+1 = 𝐰𝑡 −
𝜂

ො𝐯𝑡+𝜖
ෝ𝐦𝑡

48

Visualization

• Adagrad, RMSprop, Adadelta, and Adam are very similar

algorithms that do well in similar circumstances.

– Insofar, Adam might be the best overall choice.

49

	Slide 1: Machine Learning ITCS 5356
	Slide 2: ML is Optimization
	Slide 3: Machine Learning is Optimization
	Slide 4: Gradient-based Optimization
	Slide 5: Gradient-based Optimization
	Slide 6: Gradient Descent Algorithm
	Slide 7: What if objective is not differentiable?
	Slide 8: Gradient Descent Algorithm
	Slide 9: Gradient Descent: Example
	Slide 10: Gradient Descent: Large Updates
	Slide 11: Gradient Descent: Small Updates
	Slide 12: The Learning Rate
	Slide 13: Learning Rate too Small
	Slide 14: Learning Rate too Large
	Slide 15: Learning Rates vs. GD Behavior
	Slide 16: The Learning Rate
	Slide 17: Gradient Descent: Nonconvex Objective
	Slide 18: Convex Multivariate Objective
	Slide 19: Gradient Step and Contour Lines
	Slide 20: Gradient Descent: Nonconvex Objectives
	Slide 21: Gradient Descent & Plateaus
	Slide 22: Gradient Descent & Saddle Points
	Slide 23: Gradient Descent & Ravines
	Slide 24: Gradient Descent & Ravines
	Slide 25: Gradient Descent & Momentum
	Slide 26: Batch vs. Stochastic Gradient Descent
	Slide 27: Batch Gradient Descent for Linear Regression
	Slide 28: Stochastic Gradient Descent for Linear Regression
	Slide 29: Batch GD vs. Stochastic GD
	Slide 30: Batch GD vs. Stochastic GD
	Slide 31
	Slide 32: Pre-processing Features
	Slide 33: Feature Scaling
	Slide 34
	Slide 35: Gradient Descent vs. Normal Equations
	Slide 36: Implementation: Vectorization
	Slide 37: Implementation: Vectorization
	Slide 38: Implementation: Vectorization
	Slide 39: Implementation: Gradient Checking
	Slide 40: Implementation: Gradient Checking
	Slide 41: Supplemental Topics
	Slide 42: Gradient Descent Optimization Algorithms
	Slide 43: Gradient Descent & Momentum
	Slide 44: Momentum & Nesterov Accelerated Gradient
	Slide 45: AdaGrad
	Slide 46: RMSProp
	Slide 47: Adam: Adaptive Moment Estimation
	Slide 48: Adam: Adaptive Moment Estimation
	Slide 49: Visualization

