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ML is Optimization

• Try to find the value for w that minimizes:

• Set ∇J(w) = 0

 w – 4 = 0

 w = 4
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Machine Learning is Optimization

• Parametric ML involves minimizing an objective function 

J(w):

– Also called cost function or loss function.

– Want to find ෝ𝐰 = argmin
 𝐰

𝐽(𝐰)

• Numerical optimization procedure:

1. Start with some guess for w0, set 𝜏 = 0.

2. Update w𝜏 to w𝜏+1 such that J(w𝜏+1) ≤ J(w𝜏).

3. Increment 𝜏 = 𝜏 + 1.

4. Repeat from 2 until J cannot be improved anymore.
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Gradient-based Optimization

• How to update w𝜏 to w𝜏+1 such that J(w𝜏+1) ≤ J(w𝜏)?

• Move w in the direction of steepest descent:

  𝐰𝜏+1 = 𝐰𝜏 +  𝜂𝚫 

– 𝚫 is the direction of steepest descent, i.e. direction along which J 

decreases the most.

– 𝜂 is the learning rate and controls the magnitude of the change.
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Gradient-based Optimization

• Move w in the direction of steepest descent:

  𝐰𝜏+1 = 𝐰𝜏 +  𝜂𝚫

• What is the direction of steepest descent of J(w) at w𝜏?

– The gradient ∇J(w) is in the direction of steepest ascent.

– Set 𝚫 = −∇J(w) => the gradient descent update:

 𝐰𝜏+1 = 𝐰𝜏 − 𝜂𝛻𝐽(𝐰𝜏)
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Gradient Descent Algorithm

• Want to minimize a function  J : R
n
 → R.

– J is differentiable and convex.

– compute gradient of J  i.e. direction of steepest increase:
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1. Set learning rate 𝜂 = 0.001 (or other small value).

2. Start with some guess for w0, set 𝜏 = 0.

3. Repeat for epochs E or until J does not improve:

4.       𝜏 = 𝜏 + 1.

5.       𝐰𝜏+1 = 𝐰𝜏 − 𝜂𝛻𝐽 𝐰𝜏



What if objective is not differentiable?

• Subgradient methods.

– Minimize convex functions that are not necessarily differentiable.

• Gradient free methods:

– Evolutionary Programming.

– Bayesian Optimization.

• https://arxiv.org/abs/1807.02811

– Particle swarm optimization.

– Surrogate optimization

– Simulated annealing.

– …
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Gradient Descent Algorithm

• Want to minimize a function  J : R
n
 → R.

– J is differentiable and convex.

– compute gradient of J  i.e. direction of steepest increase:
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1. Set learning rate 𝜂 = 0.001 (or other small value).

2. Start with some guess for w0, set 𝜏 = 0.

3. Repeat for epochs E or until J does not improve:

4.       𝜏 = 𝜏 + 1.

5.       𝐰𝜏+1 = 𝐰𝜏 − 𝜂𝛻𝐽 𝐰𝜏



Gradient Descent: Example

• Let’s use gradient descent to minimize:

– Start from w0 = 0, use learning rate 𝜂 = 0.5

– What if 𝜂 = 1.0?

– What if 𝜂 = 2.0?
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Gradient Descent: Large Updates
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Gradient Descent: Small Updates

11https://www.safaribooksonline.com/library/view/hands-on-machine-learning



The Learning Rate

1. Set learning rate 𝜂 = 0.001 (or other small value).

2. Start with some guess for w0, set 𝜏 = 0.

3. Repeat for epochs E or until J does not improve:

4.       𝜏 = 𝜏 + 1.

5.       𝐰𝜏+1 = 𝐰𝜏 − 𝜂𝛻𝐽 𝐰𝜏

▪ How big should the learning rate be?

o If learning rate too small => slow convergence.

o If learning rate too big => oscillating behavior => may not even 

converge.
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Learning Rate too Small
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Learning Rate too Large
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Learning Rates vs. GD Behavior
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The Learning Rate

• How big should the learning rate be?

– If learning rate too big => oscillating behavior.

– If learning rate too small => hinders convergence.

o Use line search (backtracking line search, conjugate gradient, …).

o Use second order methods (Newton’s method, L-BFGS, ...).

• Requires computing or estimating the Hessian. 

o Use a simple learning rate annealing schedule:

– Start with a relatively large value for the learning rate.

– Decrease the learning rate as a function of the number of epochs or 

as a function of the improvement in the objective. 

o Use adaptive learning rates:

• Adagrad, Adadelta, RMSProp, Adam.
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Gradient Descent: Nonconvex Objective
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Convex Multivariate Objective
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Gradient Step and Contour Lines
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Gradient Descent: Nonconvex Objectives
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Gradient Descent & Plateaus
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Gradient Descent & Saddle Points
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Gradient Descent & Ravines
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Gradient Descent & Ravines

• Ravines are areas where the cost surface curves much more 

steeply in one dimension than another.

– Common around local optima.

– GD oscillates across the slopes of the ravines, making slow progress 

towards the local optimum along the bottom.

• Use momentum to help accelerate GD in the relevant 

directions and dampen oscillations:

– Add a fraction of the past update vector to the current update vector.

• The momentum term increases for dimensions whose previous 

gradients point in the same direction.

• It reduces updates for dimensions whose gradients change sign.

• Also reduces the risk of getting stuck in local minima.
24



Gradient Descent & Momentum
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Vanilla Gradient Descent:

  𝐯𝜏+1 = 𝜂𝛻𝐽(𝐰𝜏)

 𝐰𝜏+1 = 𝐰𝜏 − 𝐯𝜏+1

Gradient Descent w/ Momentum:

  𝐯𝜏+1 = 𝛾𝐯𝜏 + 𝜂𝛻𝐽(𝐰𝜏)

 𝐰𝜏+1 = 𝐰𝜏 − 𝐯𝜏+1

𝛾 is usually set to 0.9 or similar.

The momentum term increases for dimensions whose gradients point in the 

same directions and reduces updates for dimensions whose gradients change 

directions. 



Batch vs. Stochastic Gradient Descent

𝐰𝜏+1 = 𝐰𝜏 − 𝜂 𝛻𝐽 𝐰𝜏

• Depending on how much data is used to compute the 

gradient at each step:

– Batch gradient descent:

• Use all the training examples.

– Stochastic gradient descent (SGD).

• Use one training example, update after each.

• Minibatch gradient descent.

– Use a constant number of training examples (minibatch).
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Batch Gradient Descent for 

Linear Regression

• Sum-of-squares error: 
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Stochastic Gradient Descent for

Linear Regression

• Sum-of-squares error: 

• Update parameters w after each example, sequentially:

    => the least-mean-square (LMS) algorithm.
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Batch GD vs. Stochastic GD

• Accuracy:

• Time complexity:

• Memory complexity:

• Online learning:
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Batch GD vs. Stochastic GD

30



31



Pre-processing Features

• Features may have very different scales, e.g.  x1 = rooms 

vs. x2 = size in sq ft.

– Right (different scales): GD goes first towards the bottom of the 

bowl, then slowly along an almost flat valley.

– Left (scaled features): GD goes straight towards the minimum.
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Feature Scaling

• Scaling between [0, 1] or [−1, +1]:

– For each feature xj, compute minj and maxj over the training examples.

– Scale xj as follows: ො𝑥𝑗 =
𝑥𝑗−𝑚𝑖𝑛𝑗

𝑚𝑎𝑥𝑗−𝑚𝑖𝑛𝑗

• Scaling to standard normal distribution:

– For each feature xj, compute sample 𝜇j and sample 𝜎j over the training 

examples.

– Scale xj as follows: ො𝑥𝑗 =
𝑥𝑗−𝜇𝑗

𝜎𝑗
 

• Use the same scaling factors at test time:

– Clip to minj and maxj.
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Gradient Descent vs. Normal Equations

• Gradient Descent:

– Need to select learning rate 𝜂.

– May need many iterations:

• Can do Early Stopping on validation data for regularization.

– Scalable when number of training examples N is large.

• Normal Equations:

– No iterations => easy to code.

– Computing (XTX)-1 has cubic time complexity => slow for large N.

– XTX may be singular:

1. Redundant (linearly dependent) features.

2. #features > #examples => do feature selection or regularization.
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Implementation: Vectorization

• Version 1: Compute gradient component-wise.

grad = np.zeros(K)

for n in range(N):

h = w.dot(X[n])

temp = h − y[n]

for k in range(K):

 grad[k] = grad[k]+ temp * X[n,k]

for k in range(K):

   grad[k] = grad[k] / N 
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Implementation: Vectorization

• Version 2: Compute gradient, partially vectorized.

grad = np.zeros(K)

for n in range(N):

grad = grad + (w.dot(X[n])) − y[n]) * X[n]

grad = grad / N
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Implementation: Vectorization

• Version 3: Compute gradient, vectorized.

grad = X.T.dot(X.dot(w) − y) / N

NumPy code above assumes examples stored in columns of X
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Implementation: Gradient Checking

• Want to minimize J(θ), where θ is a scalar.

• Mathematical definition of derivative:

• Numerical approximation of derivative:

d

dq
J(q ) = lim

e®¥

J(q +e)- J(q -e)

2e

d

dq
J(q ) »

J(q +e)- J(q -e)

2e
where ε = 0.0001
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Implementation: Gradient Checking

• If θ is a vector of parameters θi, 

– Compute numerical derivative with respect to each θi.

– Aggregate all derivatives into numerical gradient Gnum(θ).

• Compare numerical gradient Gnum(θ) with implementation 

of gradient Gimp(θ):
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Supplemental Topics
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Gradient Descent Optimization Algorithms

• Momentum.

• Nesterov Accelerated Gradient (NAG).

• Adaptive learning rates methods:

– Idea is to perform larger updates for infrequent params and smaller 

updates for frequent params, by accumulating previous gradient 

values for each parameter.

• Adagrad:

– Divide update by sqrt of sum of squares of past gradients.

• Adadelta.

• RMSProp.

• Adaptive Moment Estimation (Adam)
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Gradient Descent & Momentum
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Vanilla Gradient Descent:

  𝐯𝜏+1 = 𝜂𝛻𝐽(𝐰𝜏)

 𝐰𝜏+1 = 𝐰𝜏 − 𝐯𝜏+1

Gradient Descent w/ Momentum:

  𝐯𝜏+1 = 𝛾𝐯𝜏 + 𝜂𝛻𝐽(𝐰𝜏)

 𝐰𝜏+1 = 𝐰𝜏 − 𝐯𝜏+1

𝛾 is usually set to 0.9 or similar.

The momentum term increases for dimensions whose gradients point in the 

same directions and reduces updates for dimensions whose gradients change 

directions. 



Momentum & Nesterov Accelerated Gradient
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GD with Momentum:

  𝐯𝜏+1 = 𝛾𝐯𝜏 + 𝜂𝛻𝐽(𝐰𝜏)

 𝐰𝜏+1 = 𝐰𝜏 − 𝐯𝜏+1

Nesterov Accelerated Gradient:

  𝐯𝜏+1 = 𝛾𝐯𝜏 + 𝜂𝛻𝐽(𝐰𝜏− 𝛾𝐯𝜏)

 𝐰𝜏+1 = 𝐰𝜏 − 𝐯𝜏+1

By making an anticipatory update, NAGs prevents GD from going too fast 

=> significant improvements when training RNNs.

𝜂𝛻𝐽(𝐰𝜏) 

𝛾𝐯𝜏

𝜂𝛻𝐽(𝐰𝜏− 𝛾𝐯𝜏)

𝛾𝐯𝜏



AdaGrad

• Optimized for problems with sparse features.

• Per-parameter learning rate: make smaller updates for 

params that are updated more frequently:

 

• Require less tuning of the learning rate compared with 

SGD.
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RMSProp

• Element-wise gradient: 𝑔𝑖
𝑡= 𝛻𝑤𝑖

𝐽(𝐰𝑡)

• Gradient is 𝐠𝑡 = [𝑔1
𝑡, 𝑔2

𝑡 , …, 𝑔𝐾
𝑡 ]

• Element-wise square gradient: 𝐠𝑡
2 = 𝐠𝑡 ∘ 𝐠𝑡

RMSProp:

   E𝑡 𝐠2 = 𝛾E𝑡−1 𝐠2 + (1 − 𝛾) 𝐠𝑡
2

   𝐰𝑡+1 = 𝐰𝑡 −
𝜂

E𝑡 𝐠2 +𝜖
𝐠𝑡

𝛾 is usually set to 0.9, 𝜂 is set to 0.001
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Adam: Adaptive Moment Estimation

• Maintain an exponentially decaying average of past 

gradients (1st m.) and past squared gradients (2nd m.):

1)  𝐦𝑡 = 𝛽1 𝐦𝑡−1 + (1 − 𝛽1) 𝐠𝑡

2)  𝐯𝑡 = 𝛽1 𝐯𝑡−1 + (1 − 𝛽1) 𝐠𝑡
2

• Biased towards 0 during initial steps, use bias-corrected 

first and second order estimates:

1)  ෝ𝐦𝑡 =
𝐦𝑡

1−𝛽1
𝑡

2)  ො𝐯𝑡 =
𝐯𝑡

1−𝛽2
𝑡
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Adam: Adaptive Moment Estimation

• First and second moment:

𝐦𝑡 = 𝛽1 𝐦𝑡−1 + (1 − 𝛽1) 𝐠𝑡

𝐯𝑡 = 𝛽1 𝐯𝑡−1 + (1 − 𝛽1) 𝐠𝑡
2

• Bias-correction:

 ෝ𝐦𝑡 =
𝐦𝑡

1−𝛽1
𝑡 and ො𝐯𝑡 =

𝐯𝑡

1−𝛽2
𝑡

Adam:

   𝐰𝑡+1 = 𝐰𝑡 −
𝜂

ො𝐯𝑡+𝜖
ෝ𝐦𝑡
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Visualization

• Adagrad, RMSprop, Adadelta, and Adam are very similar 

algorithms that do well in similar circumstances.

– Insofar, Adam might be the best overall choice.
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