ITCS 5356: Machine Learning

k-Nearest Neighbor Algorithms

Razvan C. Bunescu
Department of Computer Science @ CCl

rbunescu@uncc.edu

mailto:rbunescu@uncc.edu

k-Nearest Neighbors (KNN)

Euclidean distance, k = 4

k=4

4.0

3.0 -
2.0 -
1.0
0.0 -
1.0 -

201 A

30

4.0

’’’’’

4.0 -3.0 2.0 -1.0

0.0

1.0

2.0

3.0

4.0

® Class A
AClass B
m Unknown

Nonparametric Methods: k-Nearest Neighbors

Input:
— Atraining dataset (X4, t;), (X5, t5), ... (X, 1)
— Atest instance x.

Output:
— Estimated class label y(x).

1. Find Kk instances Xy, X,, ..., X, hearest to x.
k
2. Let y(x)=arg max §5t (t)

1. x=H |
where J,(X) = {O IS the Kronecker delta function. |

k-Nearest Neighbors (k-NN)

« Euclidian distance, k = 1.

©
o . agEs
O
———— -(\,
®)/ [o % ®
Voronoi diagram decision boundary

e

Voronol Diagrams

» The Voronoi diagram depends on the distance measure:

Voronoi diagrams of 20 points under two different metrics

Euclidean distance Manhattan distance

https://en.wikipedia.org/wiki/\oronoi_diagram

e .

https://en.wikipedia.org/wiki/Voronoi_diagram

Distance Metrics

« Euclidean distance:
d(x,y) =x -y, =/ (x=y)" (x~-y)

« Hamming distance:
of (discrete) features that have different values in x and y.

(sample) covariance matrix

 Mahalanobis distance: "

d(x,y) = J(x-y) S (x-y) »
— scale-invariant metric that normalizes for variance. ;

— iIf S=1 = Euclidean distance.

— ifS=diag(o;?, 0,7, ... ok?) = normalized Euclidean distance.

Distance Metrics

» Cosine similarity:
d(x,y)=1-cos(x,y)=1-

T

iyl i

— used for text and other high-dimensional data.

 Levenshtein distance (Edit distance): |
— distance metric on strings (sequences of symbols). |

— min. # of basic edit operations that can transform one string into
the other (delete, insert, substitute).

X = “athens” } ’ A
y= “hie o) B v
— used In bioinformatics. |

Distance metrics

K
« Manhattan distance: d(x,y) = zlxk — Vil
k=1

How to choose k?

The value of k can be chosen using grid search on
development data.

Eout (%)

1.5

SN
I
—k =
—k=3
—k=+/N
—CV

0

1000 2000 3000 4000 _ 5000
Data Points, NV

Efficient Indexing

 Linear searching for k-nearest neighbors is not efficient for
large training sets:
— O(N) time complexity.

« For Euclidean distance use a kd-tree:
— Instances stored at leaves of the tree.
— Internal nodes branch on threshold test on individual features.
— expected time to find the nearest neighbor is O(log N)

 Indexing structures depend on distance function:
— Inverted index for text retrieval with cosine similarity.

K-NN and The Curse of Dimensionality

K-NN and The Curse of Dimensionality

A A ¢ O ® ® ®
AAAA ..I:I Y Y
o o L M

K-NN and The Curse of Dimensionality

We would like to have the input area “covered” by training samples:

— For an arbitrary test sample X, there should be at least one training
sample x, that is close to it, I.e. d(x,x,,) < T. |

— One way of ensuring this Is to divide the input space into a grid of
regular cells, where: |

« each grid cell is small;
« each grid cell contains at least one training sample.

K-NN and The Curse of Dimensionality

K-NN and The Curse of Dimensionality
©
A ® O ([g ®
A ® o O ¢ (@ ° ®
A, o o O O o
ﬁ A O ° e ® o ¢ (@ o
o
A, : $ [T = ner JK)
7| AT | S a o ¢
A ® @ o
i A 8 Agle O P (1
A A‘A A 4 ® = e o
x4 A—a A *—o e *
A RIS & >
A 3 Tl .
A A A
NN AEER SN ARER A AP

K-NN and The Curse of Dimensionality

« How many cells of side 0.1 are needed to cover:

— The 1D unit interval [0,1] = =D=:1=$1=
- N=10

— The 2D unit square [0,1]?
« N=100

— The 3D unit cube [0,1]3 R
- N = 1,000 e

— The K dimensional hypercube [0,1]K e .
« N=10K S

» \We need an exponential number of examples!

K-NN and The Curse of Dimensionality

 Standard metrics weigh each feature equally:

— Problematic when many features are irrelevant.
* Let’s look at an example ...

 One solution is to weigh each feature differently:

— Use measure indicating ability to discriminate between classes,
such as:

« Information Gain, Chi-square Statistic
« Pearson Correlation, Signal to Noise Ration, T test.
— “Stretch” the axes:
* lengthen for relevant features, shorten for irrelevant features.

— Equivalent with Mahalanobis distance with diagonal covariance.

18 |
e

Distance-Weighted k-NN

For any test point x, weight each of the k neighbors according
to their distance from x.

1. Findk instances Xy, X, ..., X, nearest to X.

2. Let y(x)=arg max Zkllﬂi(ti)

tel :

—2 . By -
where W, = [X — ;| * measures the similarity between x and x,

Kernel-based Distance-Weighted NN

For any test point x, weight all training instances according
to their similarity with Xx.

1. Assume binary classification, T = {+1, —1}.

2. Compute weighted majority:

y(X) = sign(i K(x,xi)tij

Regression with k-Nearest Neighbor

Input:
— Atraining dataset (X4, t;), (X5, t5), ... (X, 1)
— Atest instance x.

Output:
— Estimated function value y(x).

1. Findk instances Xy, X, ..., X, nearest to X.

k
2. Lety(x)= %Zti
i=1

KNN Regression in NumPy

[12] import numpy as np
from numpy import linalg as la

def knn_regression(X, vy, x, k, d):

X: a 2D array, with rows storing training feature vectors.
y: a 1D array storing the labels of the training examples.
x: the feature vector of a test example.
d: a distance function.

x_to X = d(x, X)

neighbors = np.argpartition(x_to_X, k - 1) [:K]

label = np.mean(y[neighbors])

return label

def euclidean_distance(x, X):
return la.norm(X - x, axis = 1) e

e

KNN Regression in one line in NumPy

import numpy as np
from numpy import linalg as 1la

def knn_regression(X, y, x, k, d):
return np.mean(y[np.argpartition(d(x, X), k — 1)[:k]])

def euclidean_distance(x, X):
return la.norm(X - x, axis = 1)

Testing on a dataset with 5 training examples:

X = np.array([[-1, 1],

[-2, 2],

[0, 21,

[2, 31,

(4, 511)
y = np.array([1, 2, 3, 4, 5])
X = np.array([0, 0])

knn_regression(X, y, X, 3, euclidean_distance)

2.0 23
T

3 Datasets & Linear Interpolation
[http://wwuw.autonlab.org/tutorials/mbl08.pdf]

al.mb1-L90:5Na9. 600 ki .mbl-LO0:5N: 9. &0 31.nb1-L90: 8N: 9.

Linear interpolation does not always lead to good models of the data.

24

e . e,

Regression with 1-Nearest Neighbor

Applying facode A01:8NH:5 to file al.mbl
actributel

19] al . mbl-A01:5Ke 9.

12

10

attributel

Regression with 1-Nearest Neighbor

2pplying facode A01:SN:9 to file kl.mbl
¥
500 7 kl.mbl-2a01:8M:9.

Regression with 1-Nearest Neighbor

Applying facode AD1:5N:9 to file jl.mbl
visoosity

31 .mbl-A01:5N: 9.1

= 1-NN has high variance

Regression with 9-Nearest Neighbor

k=1

k=9

Applying faccde AD1:8N:9 to file al.mbl
attributel

14

al .ombl-a01:5He9.

1] 2
attributeld

Epplying facode A09:8H:9 to file al.mbl
attributel

14

al .mbl-A0%:5Ha9.

0 2
attributel

Regression with 9-Nearest Neighbor

k=1

k=9

Zpplying facode A01:8N:9 to file kl.mbl
¥
500

kl.nbl-201:8N:9.

Applying facode A09:8N:9 to file kl.wbl
¥
500

kl.mbl-A09:5N:9.

Regression with 9-Nearest Neighbor

Applying facode A01:SN:9 to file jl.mbl applying faoode AD9:8N:9 to file jl.mbl

viscosity visoosity

&0 31.mb1-A01:8H:9. &0 41.mb1-A09:5H: 9,

o 1.2

mixrate

Distance-Weighted k-NN for Regression

For any test point x, weight each of the k neighbors according
to their similarity with Xx.

1. Findk instances Xy, X, ..., X, nearest to X.
K k
2. Lety(x)=> wt /> w
=1 =1
—2
where W, =[x — X;| |

For k = N = Shepard’s method [Shepard, ACM ’68]. |

Kernel-based Distance Weighted NN \
Regression w

For any test point x, weight all training instances according
to their similarity with Xx.

1. Return weighted average:

ZN: K (X, X))t |

y(X) =5
D> K%, X;)

i=1 |

NN Regression with Gaussian Kernel

252=10 252=20 252=80

Applying facode A30:8N:9 to file kerex.mbl

attributel

so0 1*

450

400

350

300

Epplying facode B40:8N:9 to file kerex.mbl
attributel

500 7 *

Applying faocode A260:8N:9 to file kerex.mbl
attributel

kerex.mb1-240:5N so00 1 * kerex. mh1-260:8N

450 450

400 400

V
350 350 -

300

2501 o0

attributel

250 250
200 300 400 S00) 100 200 300 400 5008

100 200 300 400 500
at

x=xil?

e Increased kernel width means more influence from
K(X,x;)=e 2

distant points.

NN Regression with Gaussian Kernel

202=1/16 of x axis 252=1/32 of x axis 2052=1/32 of x axis

Applying facode A30:8N:9 to file jl.mbl 2pplying facode 240:5N:9 to file al.mbl Applying facode A30:8N:9 to file kl.mbl

k-Nearest Neighbor Summary

Training: memorize the training examples.

Testing: compute distance/similarity with training examples.
Trades decreased training time for increased test time.

Use kernel trick to work in implicit high dimensional space.
Needs feature selection when many irrelevant features.

An Instance-Based Learning (IBL) algorithm;
— Memory-based learning

— Lazy learning

— Exemplar-based

— Case-based

	Slide 1: ITCS 5356: Machine Learning
	Slide 2: k-Nearest Neighbors (kNN)
	Slide 3: Nonparametric Methods: k-Nearest Neighbors
	Slide 4: k-Nearest Neighbors (k-NN)
	Slide 5: Voronoi Diagrams
	Slide 7: Distance Metrics
	Slide 8: Distance Metrics
	Slide 9: Distance metrics
	Slide 10: How to choose k?
	Slide 11: Efficient Indexing
	Slide 12: k-NN and The Curse of Dimensionality
	Slide 13: k-NN and The Curse of Dimensionality
	Slide 14: k-NN and The Curse of Dimensionality
	Slide 15: k-NN and The Curse of Dimensionality
	Slide 16: k-NN and The Curse of Dimensionality
	Slide 17: k-NN and The Curse of Dimensionality
	Slide 18: k-NN and The Curse of Dimensionality
	Slide 19: Distance-Weighted k-NN
	Slide 20: Kernel-based Distance-Weighted NN
	Slide 21: Regression with k-Nearest Neighbor
	Slide 22: kNN Regression in NumPy
	Slide 23: kNN Regression in one line in NumPy
	Slide 24: 3 Datasets & Linear Interpolation
	Slide 25: Regression with 1-Nearest Neighbor
	Slide 26: Regression with 1-Nearest Neighbor
	Slide 27: Regression with 1-Nearest Neighbor
	Slide 28: Regression with 9-Nearest Neighbor
	Slide 29: Regression with 9-Nearest Neighbor
	Slide 30: Regression with 9-Nearest Neighbor
	Slide 31: Distance-Weighted k-NN for Regression
	Slide 32: Kernel-based Distance Weighted NN Regression
	Slide 33: NN Regression with Gaussian Kernel
	Slide 34: NN Regression with Gaussian Kernel
	Slide 35: k-Nearest Neighbor Summary

