ITCS 5356: Machine Learning

k-Nearest Neighbor Algorithms

Razvan C. Bunescu

Department of Computer Science @ CCI

rbunescu@uncc.edu

k-Nearest Neighbors (kNN)

• Euclidean *distance*, $k = 4$

Nonparametric Methods: k-Nearest Neighbors

Input:

- A training dataset (**x**₁, t₁), (**x**₂, t₂), ... (**x**_n, t_n).
- A test instance **x**.

Output:

- Estimated class label *y*(**x**).
- 1. Find *k* instances $\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_k$ *nearest* to **x**. 2. Let $y(x) = \arg \max_{t \in T} \sum_{i=1}^{T}$ ϵ = *k i* $t \lambda_i$ $t \in T$ $y(x) = \arg \max$ $\sum \delta_i(t)$ 1 (x) = arg max $\sum \delta_i(t_i)$ \lfloor $\left\{ \right.$ $\left\lceil$ \neq = = $x \neq t$ $x = t$ \int_{t}^{t} (x) 0 1 where $\delta_i(x) = \begin{cases} 1 & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$ is the *Kronecker delta* function.

k-Nearest Neighbors (k-NN)

• Euclidian distance, $k = 1$.

Voronoi diagram decision boundary

Voronoi Diagrams

• The Voronoi diagram depends on the distance measure:

Voronoi diagrams of 20 points under two different metrics

Euclidean distance

Manhattan distance

https://en.wikipedia.org/wiki/Voronoi_diagram

Distance Metrics

• Euclidean distance:

$$
d(\mathbf{x}, \mathbf{y}) = ||\mathbf{x} - \mathbf{y}||_2 = \sqrt{(\mathbf{x} - \mathbf{y})^T (\mathbf{x} - \mathbf{y})}
$$

• Hamming distance:

of (discrete) features that have different values in **x** and **y**.

- Mahalanobis distance: $d(x, y) = \sqrt{(x - y)^T S^{-1}(x - y)}$
- *(sample) covariance matrix*

- scale-invariant metric that normalizes for variance.
- if $S = I \Rightarrow$ Euclidean distance.
- $-$ if $S = diag(\sigma_1^{-2}, \sigma_2^{-2}, \dots \sigma_K^{-2}) \Rightarrow normalized$ Euclidean distance.

Distance Metrics

• Cosine similarity:

$$
d(\mathbf{x}, \mathbf{y}) = 1 - \cos(\mathbf{x}, \mathbf{y}) = 1 - \frac{\mathbf{x}^T \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|}
$$

– used for text and other high-dimensional data.

- Levenshtein distance (Edit distance):
	- distance metric on strings (sequences of symbols).
	- min. # of basic edit operations that can transform one string into the other (delete, insert, substitute).

$$
\begin{array}{c}\n\mathbf{x} = \text{``athens''} \\
\mathbf{y} = \text{``hints''}\n\end{array}\n\Rightarrow d(\mathbf{x}, \mathbf{y}) = 4
$$

used in bioinformatics.

Distance metrics

 $k=1$

 \overline{K}

• Manhattan distance: $d(\mathbf{x}, \mathbf{y}) = \sum_{\mathbf{x}, \mathbf{y}} d(\mathbf{x}, \mathbf{y})$ $x_k - y_k$

How to choose k?

• The value of *k* can be chosen using *grid search* on *development* data.

Efficient Indexing

- Linear searching for *k*-nearest neighbors is not efficient for large training sets:
	- O(N) time complexity.
- For Euclidean distance use a **kd-tree**:
	- instances stored at leaves of the tree.
	- internal nodes branch on threshold test on individual features.
	- expected time to find the nearest neighbor is O(log N)
- Indexing structures depend on distance function:
	- **inverted index** for text retrieval with cosine similarity.

- We would like to have the input area "covered" by training samples:
	- For an arbitrary test sample **x**, there should be at least one training sample \mathbf{x}_n that is close to it, i.e. $d(\mathbf{x}, \mathbf{x}_n) < \tau$.
	- One way of ensuring this is to divide the input space into a grid of regular cells, where:
		- each grid cell is small;
		- each grid cell contains at least one training sample.

- How many cells of side 0.1 are needed to cover:
	- The 1D unit interval [0,1]
		- $N = 10$
	- The 2D unit square $[0,1]^2$
		- $N = 100$
	- The 3D unit cube $[0,1]$ ³
		- $N = 1,000$
	- The K dimensional hypercube $[0,1]^K$

• $N = 10K$

• We need an exponential number of examples!

- Standard metrics weigh each feature equally:
	- Problematic when many features are irrelevant.
		- Let's look at an example ...
- One solution is to weigh each feature differently:
	- Use measure indicating ability to discriminate between classes, such as:
		- Information Gain, Chi-square Statistic
		- Pearson Correlation, Signal to Noise Ration, T test.
	- "Stretch" the axes:
		- lengthen for relevant features, shorten for irrelevant features.
	- Equivalent with Mahalanobis distance with diagonal covariance.

Distance-Weighted k-NN

For any test point **x**, weight each of the *k* neighbors according to their distance from **x**.

1. Find *k* instances $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_k$ nearest to **x**.

2. Let
$$
y(x) = \arg \max_{t \in T} \sum_{i=1}^{k} w_i \delta_t(t_i)
$$

 $\sum_{i=1}^{n} \frac{W_i}{\rho_t(t_i)}$
 $\left\| \sum_{i=1}^{n} \frac{W_i}{\rho_t(t_i)} \right\|_1^2$ measures the similarity between **x** and **x**_i −2 where $w_i = \|\mathbf{x} - \mathbf{x}_i\|^{-2}$ measures the similarity between **x** and \mathbf{x}_i

Kernel-based Distance-Weighted NN

For any test point **x**, weight all training instances according to their similarity with **x**.

- 1. Assume binary classification, $T = \{+1, -1\}$.
- 2. Compute weighted majority:

$$
y(\mathbf{x}) = sign\left(\sum_{i=1}^{N} K(\mathbf{x}, \mathbf{x}_i) t_i\right)
$$

Regression with k-Nearest Neighbor

Input:

- A training dataset (**x**₁, t₁), (**x**₂, t₂), ... (**x**_n, t_n).
- A test instance **x**.

Output:

- Estimated function value $y(x)$.
- 1. Find *k* instances $\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_k$ nearest to **x**. 2. Let $y(x) =$ $\sum_{i=1}^{n} t_i$ *k i i t k y x* 1 1 (x)

kNN Regression in NumPy

```
[12] import numpy as np
     from numpy import linalg as la
     def km regression(X, y, x, k, d):
       111111
         X: a 2D array, with rows storing training feature vectors.
         y: a 1D array storing the labels of the training examples.
         x: the feature vector of a test example.
         d: a distance function.
       1111111
       x to X = d(x, X)neighbors = np.\text{argpartition}(x_to_X, k - 1)[:k]label = np_mean(y[neighbors])return label
```

```
def euclidean_distance(x, X):
  return \text{la.norm}(X - x), \text{axis} = 1
```
kNN Regression in one line in NumPy

```
import numpy as np
from numpy import linalg as la
```

```
def knn regression(X, y, x, k, d):
  return np.mean(y[np.argpartition(d(x, X), k - 1)[:k]])
```

```
def euclidean_distance(x, X):
  return \text{la.norm}(X - x), axis = 1)
```
Testing on a dataset with 5 training examples:

```
X = np.array([[-1, 1],[-2, 2],[0, 2],
              [2, 3],[4, 5])
y = np.array([1, 2, 3, 4, 5])x = np.array([0, 0])
```

```
knn_{\text{regression}}(X, y, x, 3, euclidean_{\text{distance}})
```
3 Datasets & Linear Interpolation

[http://www.autonlab.org/tutorials/mbl08.pdf]

Linear interpolation does not always lead to good models of the data.

Regression with 1-Nearest Neighbor

Regression with 1-Nearest Neighbor

Regression with 1-Nearest Neighbor

Regression with 9-Nearest Neighbor

 $k=1$ $k=9$

Regression with 9-Nearest Neighbor

Regression with 9-Nearest Neighbor

Distance-Weighted k-NN for Regression

For any test point **x**, weight each of the *k* neighbors according to their similarity with **x**.

1. Find *k* instances \mathbf{x}_1 , \mathbf{x}_2 , ..., \mathbf{x}_k nearest to **x**.

2. Let
$$
y(x) = \sum_{i=1}^{k} w_i t_i / \sum_{i=1}^{k} w_i
$$

\nwhere $w_i = ||\mathbf{x} - \mathbf{x}_i||^{-2}$
\nFor $k = \mathbb{N} \Rightarrow$ Shepard's method [Shepad, ACM '68].

−2 where $w_i = \|\mathbf{x} - \mathbf{x}_i\|$

For $k = N \Rightarrow$ Shepard's method [Shepard, ACM '68].

Kernel-based Distance Weighted NN Regression

For any test point **x**, weight all training instances according to their similarity with **x**.

1. Return weighted average:

$$
y(\mathbf{x}) = \frac{\sum_{i=1}^{N} K(\mathbf{x}, \mathbf{x}_i) t_i}{\sum_{i=1}^{N} K(\mathbf{x}, \mathbf{x}_i)}
$$

NN Regression with Gaussian Kernel

 $2\sigma^2=10$ $2\sigma^2=20$ $2\sigma^2=80$

kerex.mb1-A60:SN

$$
K(\mathbf{x}, \mathbf{x}_i) = e^{-\frac{\|\mathbf{x} - \mathbf{x}_i\|^2}{2\sigma^2}}
$$

Increased kernel width means more influence from distant points.

NN Regression with Gaussian Kernel

$2\sigma^2 = 1/16$ of x axis $2\sigma^2 = 1/32$ of x axis $2\sigma^2 = 1/32$ of x axis

$$
K(\mathbf{x}, \mathbf{x}_i) = e^{-\frac{\|\mathbf{x} - \mathbf{x}_i\|^2}{2\sigma^2}}
$$

k-Nearest Neighbor Summary

- Training: memorize the training examples.
- Testing: compute distance/similarity with training examples.
- Trades decreased training time for increased test time.
- Use kernel trick to work in implicit high dimensional space.
- Needs feature selection when many irrelevant features.
- An Instance-Based Learning (IBL) algorithm:
	- Memory-based learning
	- Lazy learning
	- Exemplar-based
	- Case-based