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k-Nearest Neighbor Algorithms
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k-Nearest Neighbors (kNN)

• Euclidean distance, k = 4
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Nonparametric Methods: k-Nearest Neighbors

Input:

– A training dataset (x1, t1), (x2, t2), … (xn, tn).

– A test instance x.

Output:

– Estimated class label y(x).

1.  Find k instances x1, x2, …, xk nearest to x.

2.  Let 
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k-Nearest Neighbors (k-NN)

• Euclidian distance, k = 1.
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Voronoi diagram decision boundary



Voronoi Diagrams

• The Voronoi diagram depends on the distance measure:

https://en.wikipedia.org/wiki/Voronoi_diagram 

https://en.wikipedia.org/wiki/Voronoi_diagram


Distance Metrics

• Euclidean distance:

• Hamming distance:

 # of (discrete) features that have different values in x and y.

• Mahalanobis distance:

– scale-invariant metric that normalizes for variance.

– if S = I  Euclidean distance.

– if S = diag(1
-2 , 2

-2 , … K
-2)  normalized Euclidean distance.

7

)()(),(
2

yxyxyxyx −−=−= Td

)()(),( 1
yxyxyx −−= −Sd T

(sample) covariance matrix



Distance Metrics

• Cosine similarity:

– used for text and other high-dimensional data.

• Levenshtein distance (Edit distance):

– distance metric on strings (sequences of symbols).

– min. # of basic edit operations that can transform one string into 

the other (delete, insert, substitute).

 x = “athens”

 y = “hints” 

– used in bioinformatics.
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Distance metrics

• Manhattan distance: 
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How to choose k?

• The value of k can be chosen using grid search on 

development data.



Efficient Indexing

• Linear searching for k-nearest neighbors is not efficient for 

large training sets:

– O(N) time complexity.

• For Euclidean distance use a kd-tree:

– instances stored at leaves of the tree.

– internal nodes branch on threshold test on individual features.

– expected time to find the nearest neighbor is O(log N)

• Indexing structures depend on distance function:

– inverted index for text retrieval with cosine similarity.
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k-NN and The Curse of Dimensionality
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k-NN and The Curse of Dimensionality
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k-NN and The Curse of Dimensionality

• We would like to have the input area “covered” by training samples:

– For an arbitrary test sample x, there should be at least one training 

sample xn that is close to it, i.e. 𝑑(𝐱, 𝐱𝑛) < 𝜏.

– One way of ensuring this is to divide the input space into a grid of 

regular cells, where:

• each grid cell is small;

• each grid cell contains at least one training sample.
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k-NN and The Curse of Dimensionality
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k-NN and The Curse of Dimensionality

16



k-NN and The Curse of Dimensionality

• How many cells of side 0.1 are needed to cover:

– The 1D unit interval [0,1]

• N = 10

– The 2D unit square [0,1]2

• N = 100

– The 3D unit cube [0,1]3

• N = 1,000

– The K dimensional hypercube [0,1]K

• N = 10K

• We need an exponential number of examples!
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k-NN and The Curse of Dimensionality

• Standard metrics weigh each feature equally:

– Problematic when many features are irrelevant.

• Let’s look at an example ...

• One solution is to weigh each feature differently:

– Use measure indicating ability to discriminate between classes, 

such as:

• Information Gain, Chi-square Statistic

• Pearson Correlation, Signal to Noise Ration, T test.

– “Stretch” the axes: 

• lengthen for relevant features, shorten for irrelevant features.

– Equivalent with Mahalanobis distance with diagonal covariance.
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Distance-Weighted k-NN

For any test point x, weight each of the k neighbors according 

to their distance from x.

1.  Find k instances x1, x2, …, xk nearest to x.

2.  Let 
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Kernel-based Distance-Weighted NN

For any test point x, weight all training instances according 

to their similarity with x.

1. Assume binary classification, T = {+1, −1}.

2. Compute weighted majority:
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Regression with k-Nearest Neighbor

Input:

– A training dataset (x1, t1), (x2, t2), … (xn, tn).

– A test instance x.

Output:

– Estimated function value y(x).

1.  Find k instances x1, x2, …, xk nearest to x.

2.  Let 
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kNN Regression in NumPy 
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kNN Regression in one line in NumPy
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Testing on a dataset with 5 training examples:



3 Datasets & Linear Interpolation
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Linear interpolation does not always lead to good models of the data. 

[http://www.autonlab.org/tutorials/mbl08.pdf]



Regression with 1-Nearest Neighbor
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Regression with 1-Nearest Neighbor
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Regression with 1-Nearest Neighbor
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 1-NN has high variance



Regression with 9-Nearest Neighbor
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k = 1 k = 9



Regression with 9-Nearest Neighbor
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k = 1 k = 9



Regression with 9-Nearest Neighbor
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k = 1 k = 9



Distance-Weighted k-NN for Regression

For any test point x, weight each of the k neighbors according 

to their similarity with x.

1.  Find k instances x1, x2, …, xk nearest to x.

2.  Let 

For k = N  Shepard’s method [Shepard, ACM ’68].
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Kernel-based Distance Weighted NN 

Regression 

For any test point x, weight all training instances according 

to their similarity with x.

1.  Return weighted average:
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NN Regression with Gaussian Kernel
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distant points.  



NN Regression with Gaussian Kernel
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k-Nearest Neighbor Summary

• Training: memorize the training examples.

• Testing: compute distance/similarity with training examples.

• Trades decreased training time for increased test time.

• Use kernel trick to work in implicit high dimensional space.

• Needs feature selection when many irrelevant features.

• An Instance-Based Learning (IBL) algorithm:

– Memory-based learning

– Lazy learning

– Exemplar-based

– Case-based
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