
Razvan C. Bunescu

Department of Computer Science @ CCI

rbunescu@uncc.edu

ITCS 5356: Machine Learning

1

k-Nearest Neighbor Algorithms

mailto:rbunescu@uncc.edu

k-Nearest Neighbors (kNN)

• Euclidean distance, k = 4

2

Nonparametric Methods: k-Nearest Neighbors

Input:

– A training dataset (x1, t1), (x2, t2), … (xn, tn).

– A test instance x.

Output:

– Estimated class label y(x).

1. Find k instances x1, x2, …, xk nearest to x.

2. Let

3

=

=

k

i

it
Tt

txy
1

)(maxarg)(

=
=

tx

tx
xt

0

1
)(where is the Kronecker delta function.

k-Nearest Neighbors (k-NN)

• Euclidian distance, k = 1.

4

Voronoi diagram decision boundary

Voronoi Diagrams

• The Voronoi diagram depends on the distance measure:

https://en.wikipedia.org/wiki/Voronoi_diagram

https://en.wikipedia.org/wiki/Voronoi_diagram

Distance Metrics

• Euclidean distance:

• Hamming distance:

 # of (discrete) features that have different values in x and y.

• Mahalanobis distance:

– scale-invariant metric that normalizes for variance.

– if S = I Euclidean distance.

– if S = diag(1
-2 , 2

-2 , … K
-2) normalized Euclidean distance.

7

)()(),(
2

yxyxyxyx −−=−= Td

)()(),(1
yxyxyx −−= −Sd T

(sample) covariance matrix

Distance Metrics

• Cosine similarity:

– used for text and other high-dimensional data.

• Levenshtein distance (Edit distance):

– distance metric on strings (sequences of symbols).

– min. # of basic edit operations that can transform one string into

the other (delete, insert, substitute).

 x = “athens”

 y = “hints”

– used in bioinformatics.

8

yx

yx
yxyx

T

d −=−= 1),cos(1),(

 d(x,y) = 4

Distance metrics

• Manhattan distance:

9

𝑑 𝐱, 𝐲 =

𝑘=1

𝐾

𝑥𝑘 − 𝑦𝑘

How to choose k?

• The value of k can be chosen using grid search on

development data.

Efficient Indexing

• Linear searching for k-nearest neighbors is not efficient for

large training sets:

– O(N) time complexity.

• For Euclidean distance use a kd-tree:

– instances stored at leaves of the tree.

– internal nodes branch on threshold test on individual features.

– expected time to find the nearest neighbor is O(log N)

• Indexing structures depend on distance function:

– inverted index for text retrieval with cosine similarity.

11

k-NN and The Curse of Dimensionality

12

k-NN and The Curse of Dimensionality

13

k-NN and The Curse of Dimensionality

• We would like to have the input area “covered” by training samples:

– For an arbitrary test sample x, there should be at least one training

sample xn that is close to it, i.e. 𝑑(𝐱, 𝐱𝑛) < 𝜏.

– One way of ensuring this is to divide the input space into a grid of

regular cells, where:

• each grid cell is small;

• each grid cell contains at least one training sample.

14

k-NN and The Curse of Dimensionality

15

k-NN and The Curse of Dimensionality

16

k-NN and The Curse of Dimensionality

• How many cells of side 0.1 are needed to cover:

– The 1D unit interval [0,1]

• N = 10

– The 2D unit square [0,1]2

• N = 100

– The 3D unit cube [0,1]3

• N = 1,000

– The K dimensional hypercube [0,1]K

• N = 10K

• We need an exponential number of examples!

17

k-NN and The Curse of Dimensionality

• Standard metrics weigh each feature equally:

– Problematic when many features are irrelevant.

• Let’s look at an example ...

• One solution is to weigh each feature differently:

– Use measure indicating ability to discriminate between classes,

such as:

• Information Gain, Chi-square Statistic

• Pearson Correlation, Signal to Noise Ration, T test.

– “Stretch” the axes:

• lengthen for relevant features, shorten for irrelevant features.

– Equivalent with Mahalanobis distance with diagonal covariance.

18

Distance-Weighted k-NN

For any test point x, weight each of the k neighbors according

to their distance from x.

1. Find k instances x1, x2, …, xk nearest to x.

2. Let

19

=

=

k

i

iti
Tt

twxy
1

)(maxarg)(

2−
−= iiw xxwhere measures the similarity between x and xi

Kernel-based Distance-Weighted NN

For any test point x, weight all training instances according

to their similarity with x.

1. Assume binary classification, T = {+1, −1}.

2. Compute weighted majority:

20

=

=

N

i

ii tKsigny
1

),()(xxx

Regression with k-Nearest Neighbor

Input:

– A training dataset (x1, t1), (x2, t2), … (xn, tn).

– A test instance x.

Output:

– Estimated function value y(x).

1. Find k instances x1, x2, …, xk nearest to x.

2. Let

21

=

=
k

i

it
k

xy
1

1
)(

kNN Regression in NumPy

22

kNN Regression in one line in NumPy

23

Testing on a dataset with 5 training examples:

3 Datasets & Linear Interpolation

24

Linear interpolation does not always lead to good models of the data.

[http://www.autonlab.org/tutorials/mbl08.pdf]

Regression with 1-Nearest Neighbor

25

Regression with 1-Nearest Neighbor

26

Regression with 1-Nearest Neighbor

27

 1-NN has high variance

Regression with 9-Nearest Neighbor

28

k = 1 k = 9

Regression with 9-Nearest Neighbor

29

k = 1 k = 9

Regression with 9-Nearest Neighbor

30

k = 1 k = 9

Distance-Weighted k-NN for Regression

For any test point x, weight each of the k neighbors according

to their similarity with x.

1. Find k instances x1, x2, …, xk nearest to x.

2. Let

For k = N Shepard’s method [Shepard, ACM ’68].

31

==

=
k

i

i

k

i

ii wtwxy
11

)(

2−
−= iiw xxwhere

Kernel-based Distance Weighted NN

Regression

For any test point x, weight all training instances according

to their similarity with x.

1. Return weighted average:

32

=

==
N

i

i

N

i

ii

K

tK

y

1

1

),(

),(

)(

xx

xx

x

NN Regression with Gaussian Kernel

33

22=10 22=20 22=80

2

2

2),(

i

eK i

xx

xx

−
−

=
Increased kernel width means more influence from

distant points.

NN Regression with Gaussian Kernel

34

22=1/16 of x axis 22=1/32 of x axis 22=1/32 of x axis

2

2

2),(

i

eK i

xx

xx

−
−

=

k-Nearest Neighbor Summary

• Training: memorize the training examples.

• Testing: compute distance/similarity with training examples.

• Trades decreased training time for increased test time.

• Use kernel trick to work in implicit high dimensional space.

• Needs feature selection when many irrelevant features.

• An Instance-Based Learning (IBL) algorithm:

– Memory-based learning

– Lazy learning

– Exemplar-based

– Case-based

35

	Slide 1: ITCS 5356: Machine Learning
	Slide 2: k-Nearest Neighbors (kNN)
	Slide 3: Nonparametric Methods: k-Nearest Neighbors
	Slide 4: k-Nearest Neighbors (k-NN)
	Slide 5: Voronoi Diagrams
	Slide 7: Distance Metrics
	Slide 8: Distance Metrics
	Slide 9: Distance metrics
	Slide 10: How to choose k?
	Slide 11: Efficient Indexing
	Slide 12: k-NN and The Curse of Dimensionality
	Slide 13: k-NN and The Curse of Dimensionality
	Slide 14: k-NN and The Curse of Dimensionality
	Slide 15: k-NN and The Curse of Dimensionality
	Slide 16: k-NN and The Curse of Dimensionality
	Slide 17: k-NN and The Curse of Dimensionality
	Slide 18: k-NN and The Curse of Dimensionality
	Slide 19: Distance-Weighted k-NN
	Slide 20: Kernel-based Distance-Weighted NN
	Slide 21: Regression with k-Nearest Neighbor
	Slide 22: kNN Regression in NumPy
	Slide 23: kNN Regression in one line in NumPy
	Slide 24: 3 Datasets & Linear Interpolation
	Slide 25: Regression with 1-Nearest Neighbor
	Slide 26: Regression with 1-Nearest Neighbor
	Slide 27: Regression with 1-Nearest Neighbor
	Slide 28: Regression with 9-Nearest Neighbor
	Slide 29: Regression with 9-Nearest Neighbor
	Slide 30: Regression with 9-Nearest Neighbor
	Slide 31: Distance-Weighted k-NN for Regression
	Slide 32: Kernel-based Distance Weighted NN Regression
	Slide 33: NN Regression with Gaussian Kernel
	Slide 34: NN Regression with Gaussian Kernel
	Slide 35: k-Nearest Neighbor Summary

