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How to Solve Computational Problems?

« A computational problem is a task that can be solved by a
computer, i.e. by the mechanical application of a sequence of
steps, I1.e. by computer code.

» Where does the computer code come from?
— Expert Systems (aka rule-based or traditional programming):
1. Experts write rules that capture patterns about the problem.
2. Programmers implement the rule-based solution in code.

— Machine Learning = program computers to learn from experience to
improve performance on a given task.

« Automatically discover patterns from solved problem instances
(i.e. experience) that enable solving new instances of the problem.

« Trained ML model is code that does pattern recognition.
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We use ML to automate solutions to
Computational Problems

* Why use a Machine Learning (ML) approach:
— Because ML is hot? Because ML is The solution?

 Traditional programming may work very well:

What is the solution of x2 — 4x + 3?

How do | get from UNCC campus to the Mint museum uptown?




Spam Filtering 1s a Computational Problem

From: Tammy Jordan From: UK National Lottery
jordant@oak.cats.ohiou.edu
Subject: Spring 2015 Course Subject: Award Winning Notice |
CS690: Machine Learning UK NATIONAL LOTTERY. GOVERNMENT
ACCREDITED LICENSED LOTTERY. |
Instructor: Razvan Bunescu REGISTERED UNDER THE UNITED KINGDOM
Email: bunescu@ohio.edu DATA PROTECTION ACT;
Time and Location: Tue, Thu 9:00 AM , ARC 101
Website: http://ace.cs.ohio.edu/~razvan/courses/m16830 We happily announce to you the draws of (UK
NATIONAL LOTTERY PROMOTION) International
Course description: programs held in London , England Your email address

Machine Learning is concerned with the design and analysis of  [ReliEIela(=lo RToRT[e I Ma[¥]gg ol g TR N i g RS g =1 R LF10glol<T g
algorithms that enable computers to automatically find patterns  [SSASYATIVRe [ Ao =N (V1o 4 VA o1 U170 o[ ¥ B 5/ BT/ o 1ol
in the data. This introductory course will give an overview ... subsequently won you the lottery in the first category ...

« Example rules or patterns for an expert systems approach:
—  ”MONEY” appears in the text => Spam.
«  What if email sent by grandmother?
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How to Automate Solutions to
Computational Problems?

» Expert Systems approach:
— Cognitively demanding:
« Difficult for humans to reason with many useful but imprecise
features that are indicative (signals) of spam or not spam:
— Words, phrases, images, meta-data, time series, ...

— Need to combine a large number of signals, figure out their
relative importance in determining spam vs. ham label.

— Brittle: Always going to miss some useful features or patterns.
— “All grammars leak.” (Edward Sapir).

— Spam filtering is adversarial, new features need to be added
over time.

+ Often much more interpretable than ML approach!
+ Often better at systematic generalization too ...




How to Automate Solutions to
Computational Problems?

« Machine Learning (ML) approach:
1. Data acquisition: create a large enough dataset of labeled
examples:
« Email is the example, the label is spam (+1) vs. not spam (—1).
»  Collecting labels is easier than writing rules!
2. Feature engineering: Represent examples as feature vectors, each
feature has a weight.

3. Learn the weights such that the model prediction (weighted
combination of features) matches the labels of training examples.




What is Machine Learning?

» Machine Learning = constructing computer programs that
learn from experience to perform well on a given task.

— Supervised Learning i.e. discover patterns from labeled
examples that enable predictions on unseen examples.

labeled pattern recognizer
Training _ Model
———> ML algorithm
unlabeled pattern recognizer

Test — Model —
examples (W) BB




Human Learning

M;:xisRed=>x e C;
M,: X Is a Square or x Is a Diamond => x € C;

M;: x is Red and x is a Quadrilateral => x e C,

?
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Occam’s Razor

’ William of Occam (1288 — 1348)
¥ | English Franciscan friar, theologian and philosopher.

“Entia non sunt multiplicanda praeter necessitatem”
— Entities must not be multiplied beyond necessity.

l.e. Do not make things needlessly complicated.
l.e. Prefer the simplest hypothesis that fits the data.




Occam’s Razor vs. Kolmogorov Complexity, |
Intelligence & Science

« Kolmogorov Complexity = the length of the shortest
program that generates the data.
SE2, INREND, 22, 295 37, 46, 50N
=1L, 3ROBIN 13 4208
SROF 3, S 508 THIN 9

 Intelligence = the ability to apply Occam’s Razor.
— http://www.vetta.org/documents/Machine_Super_Intelligence.pdf

— https://doi.org/10.1111/nyas.15086

|
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« Science = discover the simplest descriptions of our world.
|
|



http://www.vetta.org/documents/Machine_Super_Intelligence.pdf
https://doi.org/10.1111/nyas.15086

ML Objective

* Find a model M
that is simple + that fits the training data.

N

M = argmin Complexity(M) + Error(M, Data)
M

 Inductive hypothesis: Models that perform well on training
examples are expected to do well on test (unseen) examples.

* Occam’s Razor: Simpler models are expected to do better
than complex models on test examples (assuming similar
training performance).
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Example

M;:xisRed=>x e C;
M,: X Is a Square or x Is a Diamond => x € C;

M;: x is Red and x is a Quadrilateral => x e C,

A

A ¢ . a 9,

Class C, Class C, 12 |




Feature Vectors

Features Xy X, X3 X, Xg
Red? 1 1 0 0 0
Quad? 1 1 0 1 0 |
Square? 1 0 0 0 0 |
Diamond? 0 1 0 0 0 |
Label (y) y = +1 y2=+1  y3=-1 y,=-1 ys =—1
N
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Learning with a Linear Classifier

Features X1 X5 X3 Xy Xz
Red? 1 1 0 0 0
Quad? 1 1 0 1 0
Square? 1 0 0 0 0
Diamond? 0 1 0 0 0
Label (y) y = +1 y,= +1 ys=-1 ys=-1 ys=—1
X, =[1, 1,1, 0] X,=[1,1,0, 1] X; = [0, 0, 0, 0]
y1 = +1 Y, = +1 Ya =gwl

Learning = finding parameters w' = [wy, W,, W, W,] and t such that:
« WTX, > 1,ify;=+1
e W'Y < 1, ify;=-1

W = [Wy, Wy, W3, W]
where| W' X = W; X; + W, Xy + W3 X3 + W, X, X =[Xy, Xp X3, X4] iy
T




Model M;: x; Is Red =>y. = +1

n Square?
Rei. Quad? .~ Diamond?
X, =[1,1,1,0]" labely, =+1
X,=[1,1,0,1]" labely,=+1
X,=1[0,1,0,0]" labely;,=-1
Xs =[0,0,0,0]" labely;=-1
w=11,0,0, 0]

=>w'X,=1>0.5
=>WwW'X,=1>0.5
=>W'X;=0<0.5
=>w'x,=0<05
=>W'x;=0<0.5

=> M, error is 0%

Learning = finding parameters w' = [wy, w,, W, W,] such that (t =0.5):

wl X >0.5,ify; = +1
w' x; <0.5,ify; =—1

Ty
where WT X = Wy X; + W, X, + W3 X3 + W, X,

W = [wy, Wy, W, W]

X=Xy, X2 X3, Xg]
15



M.: x; Is Square or Diamond =>y; = +1

5 Square?

Re.(i: Quad? .~ Diamond?
X, =[1,1,1,0 “labely, = +1
X,=[1,1,0,1]" labely,=+1
X3 - :O, O, O, O:T Iabel y3 =—1
X,=[0,1,0,0]" labely;=-1
X5 =[0,0,0,0]" label y;=-1

ast0, Ol il

=>w'X,=1>0.5
=>WwW'X,=1>0.5
=>W'X;=0<0.5
=>w'x,=0<05
=>W'x;=0<0.5

=> M, error is 0%

Learning = finding parameters w' = [wy, w,, W, W,] such that (t =0.5):

wl X >0.5,ify; = +1
w' x; <0.5,ify; =—1

W' = [wy, Wy, W, W]

where WT X = Wy X; + W, X, + W3 X5 + W, X, X =[X;, X9, X3, X4]

16




M, or M,?

 Model M;: xiiIsRed =>y, = +1
- w)=T1,0,0 0]
— Error =0%

* Model M,: x; Is Square or Diamond =>vy; = +1
= W00 T "
— Error=0%

* Which one should we choose?
— Which one is expected to perform better on unseen (new) examples?




ML Objective

« Find a model w that is simple and that fits the training data.

w = argmin Complexity(w) + Error(w, Data)

W




M, or M,?

 Model M;: xiiIsRed =>y, = +1
- w)=T1,0,0 0]
— Error =0%

* Model M,: x; Is Square or Diamond =>vy; = +1
—i?) = [0,0,71, 1©
— Error=0%

w = argmin Complexity(w) + Error(w, Data)

w

= |[wl|o 1.€. # non-zero values

3
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Complexity(w) = ? p ||w]|, i.e. sum of absolute values

1lw]|; 1.e sum of squared values |
e




ML Objectives

» Find a model w that is simple and that fits the training data.
w = argmin Complexity(w) + Error(w, Data)

w

N
Ridge Regression:  argmin EIHWHZ +%é{y(xn, w)-t,}
w =1

N
a
Logistic Regression: argmini lw||? — z Inp(t,|x,)
n=1




ML Objectives

Support Vector Machines:

Upper bound on the number of
7| . o o
,,,,,,,,, misclassified training examples

=1, e o
argmin EHwH +Ccax,

n=1

subject to:

t (W o(x)+b)>1-¢&, Vne{l... N}
E >0




Bias w, = — Threshold t

WIX= WX+ Wy Xo F Wy Xg + WXy > T
<=>SW Xg+HWo Xo+WaXg+ Wy X, —T > 0
Define the intercept or bias w, = — 7.

< W1X1+W2X2+W3 X3+W4X4+ WO Z O

hx) =wix+wy; =0 h(x) =wlx>0
where: where:
WT = [wy W, wa W] W= [Wy Wy W, W3 W]

X=X X5 Xg %] X =[1 X X X3 X4




Geometric Interpretation

« Example x Is a feature vector X = [X; X, ... Xq].
— Example x is a point in a K-dimensional feature space.

« Parameters w form a vector w' = [w; W, ... Wy].
— Parameters w are a point in a K-dimensional feature space.

 What does it mean that h(x) = wix + w, > 07?




Linear Discriminant Functions:
Two classes (K = 2)

 Use a linear function of the input vector:
h(x) = wix+w,

A i

weight vector bias = —threshold

 Decision:
X € Cy if h(x) >0, otherwise x € C..
= decision boundary is hyperplane h(x) = 0.

 Properties:
— w is orthogonal to vectors lying within the decision surface.

— W, controls the location of the decision hyperplane.

24'
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Geometric Interpretation

h(X) = WTX + Wo = W1Xq 15 Wy X5 + Wo




Linear Models for Classification

 We want to use a linear function of the feature vector:
h(x) = wix+w,

» How to find w automatically? Use ML!
— Perceptron.
— Logistic Regression.

« What if the data is not linearly separable? Make it!
— Engineer new features (LR) or use kernels (Perceptron).
— Learn new features (Neural Networks).




Machine Learning (most of ML pre-2006)

Hope raw data x is linearly separable. X

h(x) = wTx + w,

E—

Engineer features ¢(x), o(X)
aim to make data X e
linearly separable. ; : h(x) = w' @(x) + w

Use a Perceptron or LR or SVMs to learn w.
20




Deep Learning

A raw observation vector X is pre-processed and further
transformed into a sequence of higher-level feature vectors
o(X) = [eWD(X), ¢@)(X), ..., o®(x)]" that are learned.

PD(x) P(x) P(x)
X h = wlp®(x) + w,
e e o) h

> > > >

W1 Wz e e WK




Linear Models: h(x) = w'x

« Given N training examples (X1,Y1), (X5,¥5), ... (XniYn)
where:
= [Edbels yaeIgeE] | .
— Each example X; Is assumed to also contain a bias feature set to 1,
corresponding to parameter w.

» Find parameter vector w such the model h(x) = wx fits
the training examples:
o wlx, > 0 for all positive examples (y,, = +1)
o wlx, < 0 for all negative examples (y,, = —1)




The Perceptron Algorithm: Two Classes

1. initialize parametersw =0

25 TownE" . 8N e

of h,=wTx,

4, ifh,>0andy,=-1 Repeat:

| wewex, " |5 nnumberotepoeiee
6. Ifh,<0andy,=+1

T W=W + X,

What is the impact of the perceptron update on the score
w'x. of the misclassified example x,?

30‘
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The Perceptron Algorithm: Two Classes

1. initialize parametersw =0
25 TownE" . 8N 3
8. h,=wT'x, Repeat:
- — a) until convergence.
<
“ IThyy, < 0 then b) for a number of epochs E.
S. W =W +YpX;, 2

Loop invariant: w Is a weighted sum of training vectors:

w = z Y, X S Wi Xe= z o, Vo XE X
n

n




The Perceptron Algorithm: Two Classes

sgn(h) = +1 ifh >0,

1. initialize parameters w =0 0ifh=0
2. TORNE"] . 8N S ~1 ifh<0
B. 9, =sgn(w'x,) Repeat:
P — a) until convergence.
y T 9, = Y, tNEN b) for a number of epochs E.
S. W =W+ YyX, 2

Theorem [Rosenblatt, 1962]:
If the training dataset is linearly separable, the perceptron learning
algorithm is guaranteed to find a solution in a finite number of steps.
» see Theorem 1 (Block, Novikoff) in [Freund & Schapire, 1999].




The Perceptron Algorithm: Two Classes

sgn(h) = +1 ifh >0,

Initialize parameters w = 0 0 ifh=0.
forepoche=1 ... E -1 ifh<0
mistakes = 0

forexamplen=1 ... N
Vn= Sgn(WTXn)

If 9, =Yy, then - 1 epoch = one pass over all
training examples.

W =W + YyX,
mistakes = mistakes + 1 _
If mistakes =0
break  Converged!




>

The Perceptron Algorithm

Epochs: 1

1.5 T
— Decision Boundary
lo_c “....... @ = '. ® ~-
° 9 o o Go
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Classifiers & Margin

« Which classifier has the smallest generalization error?
— The one that maximizes the margin [Computational Learning Theory]

« margin = the distance between the decision boundary and the
closest sample.




L inear vs. Non-linear Classifiers

And

o(X) =[1, X, Xz]T
W = [Wo’W1’W2]T

]’ => WT(D(X) L [W1’W2]T [X1’ Xz] + W




ML with Manually Engineered Features

X = [Xq, X)] KI\ p(x) = [%1 5 %5 , X132 ]




ML Concepts & Notation

» A (labeled) example (X, y) consists of:
— Instance / observation / raw feature vector X.
— Labely.

« Examples:
1. Image classification in Computer Vision (CV):

; ! Instance x = ?
label y = ?

2. Language Modeling (LM) in Natural Language Processing (NLP):

* “I went to the Data Science International Summer 7
1 Sl e e ’Ill NNNNNNNNN
Instance X = eat‘ T \Eamp
- school




Image classification (CV)

/

[lowliOjSue.l | uolsl

/ 1IBNAUOD

\

uolssalboy
21151607

P(0) = .02

P(1) = .04

P(2) = .65

P(3) = .05

P(4) = .04

P(5) = .01

\

P(6) = .07 |

P(7) = .08

P(8) = .02

P(9) = .02

39 |



P(aardvark) = .02

P(semester) = .09

Logistic
Regression

contextual word embedding \m
P(school) = .24

- ) P(vacation) = .07
Neural Network

RNN, LSTM, P(the) = .0001
Transformer,
Mamba, ... —

\_ J

E E E E/ word embeddings
Data Science International Summer 2 %




ML Concepts & Notation

A training dataset is a set of (training) examples (X;,t;), (X,,t5), ...
(Xnotn):
— The data matrix X contains all instance vectors Xy, X, ..., Xy FOW-
wise.

— The label vectory = [y, ¥, ..., Yal-

A test dataset is a set of (test) examples (Xy:1,Yne1)s ---» XnsnmYnem):
— Must be unseen, i.e. new, i.e. different from the training examples!

A development dataset ...




ML Concepts & Notation

« There is a function f that maps an instance x to its label y = f(x).
— fis unknown / not given.
— But we observe samples from f: (X{, y1=f(Xy)), (X2,¥>), ... Xn:Yn)-

« Learning means finding a model h that maps an instance x to a label
h(x) = f(x), 1.e. close to the true label of x.

— Machine learning = finding a model h that approximates well the
unknown function f.

— Machine learning = function approximation.




ML Concepts & Notation

» Machine learning is inductive:

— Inductive hypothesis: if a model performs well on training examples,
It 1s expected to also perform well on unseen (test) examples.

 Assume within-distribution test examples.

« The model h is often specified through a set of parameters w:
— X I1s mapped by the model to h(x, w).

« The objective function J(w) captures how poorly the model does on the
training dataset:

— Want to find w = argmin J(w)
w

« Machine learning = optimization.

43.
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Fitting vs. Generalization

- Fitting performance = how well the model does on training
examples.

» Generalization performance = how well the model does on
unseen (test) examples.

« We prefer finding patterns to memorizing examples!
=5 Overflttlng Under-fitting Optimal-fitting Over-fitting

» Add Regularization. 3 SN i
— Underfitting: et et "N "Wan

* Increase Capacity.

Classification




Underfitting vs. Overfitting

 Underfitting = model does not do well on training data:

— Low capacity (too few params) or Training issues (too little
training).

« QOverfitting = model does well on training, poorly on test.
— Can be mitigated by tuning hyper-parameters.
» Perceptron: E (number of epochs).
 Logistic regression: A (strength of L, regularization).

* Neural networks: number of layers, number of neurons on
each layer, number of CNN filters, A, dropout rate, gradient
descent hyper-parameters (momentum, learning rate cooling
schedule), number of epochs, ...




Overfitting with Polynomail Curve Fitting

—©— Training
—©— Test

Error or Loss

Poly degree (hyperparameter) values




Regularization = Any Method that Alleviates
Overfitting

Parameter norm penalties (strength A of L, or L, term).
Dataset augmentation.

Dropout (dropout rate)

Ensembles.

Semi-supervised learning.

Early stopping (limit number of epochs).

Noise robustness.

Sparse representations.

Adversarial training.




Math and Machine Learning

« Formulating ML algorithms and understanding their basic
behavior requires basic mathematical concepts.
— Linear algebra.
— Calculus.
— Statistics.

 Basic math concepts so far:
— Vector spaces:
 Vectors, dot-products, L1 and L2 norms.
 Orthogonal vectors, hyperplanes.
— Functions, optimization problems.




Math and Machine Learning

 Basic math concepts in this course:
— Linear Algebra:

— Calculus:

— Statistics:




Mathematics for ML and Data Science

» Coursera has a really gentle math introduction for ML,
organized into a sequence of 3 courses:

https://www.coursera.org/specializations/mathematics-for-machine-learning-
and-data-science#courses

— Click on “Linear algebra for ML and Data Science” link.

— Click on “Enroll for free”, then click on the small “Audit the course” link
in the popup window to see the videos for free.



https://www.coursera.org/specializations/mathematics-for-machine-learning-and-data-science
https://www.coursera.org/specializations/mathematics-for-machine-learning-and-data-science
https://www.coursera.org/learn/machine-learning-linear-algebra?specialization=mathematics-for-machine-learning-and-data-science

Supervised Learning

Training

— Learning

Testing

Generalization
Test E | )
[ Model h }Eb&ﬂ Performance




Features

 Learning = finding parameters w = [w,, W,, W3, W,] and t
such that:
Wio(x;) =T, ify; = +1
wlo(x;) <, ify,=—1
where w'o(x) = Wlxqil(x) 1y sz(liz(x) i st(lis(x) T+ W4X(P:1(X)

Red? Quad? Square? Diamond?

\ }
|

Where do these features come from?




Object Recognition: Cats




Pixels as Features?

o(x) = [25, 63, 125, 32, 84, 257, ..., 13,
27,3858, 21310754 73 ..., 91,

N7 N —I-f\-f\ﬁ 11N ™ A AN ] ’9’
Poor recognition accuracy! )8

ger4A 6085788 54 8/ ... 118
11759, 117, 210, 171,584, /2,4.]¢ R

 Learning = finding parameters w = [wy, W,, W, ... W, ]" such that:
wlo(x;) >, if y; = +1 (cat)
wTo(x;) <, if y;=—1 (other)
where W'e(x) = w1X@1(X) + WoX@y(X) + W3Xx@3(X) + ... WXy (X)




ML Concepts & Notation

Often, a raw observation X is pre-processed and further transformed
into a feature vector o(X) = [@1(X), ®(X), ..., P(X)].

— Where do the features ¢, come from?
* Feature engineering, e.g. in polynomial curve fitting:
— manual, can be time consuming (e.g. SIFT).
o (Self-supervised) feature learning, e.g. in modern computer
vision:
— automatic, used in deep learning models.




Machine Learning vs. Deep Learning

®1(X)

P1

P>

@(X)

®1.2(X)

Nk (X).W)




What is Machine Learning?

» Machine Learning = constructing computer programs that
automatically improve with experience:
— Supervised Learning i.e. learning from labeled examples:
« Classification
» Regression
— Unsupervised Learning i.e. learning from unlabeled examples:
 Clustering.
» Dimensionality reduction (visualization).
 Density estimation.
— Reinforcement Learning i.e. learning with delayed feedback.




Supervised Learning

« Task = learn a function f: X — T that maps input instances
X e X to output targets y  V:
— Classification:
« The outputy e Y Is one of a finite set of discrete categories.
— Regression:

« The outputy e Y is continuous, or has a continuous
component.

 Supervision = set of training examples:
(X1,Y1)s (X2,Y2), -+ (Xn,¥n)




Classification vs. Regression
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++ n 1 o?o ]
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Classification: Junk Email Filtering
!Sahami, Dumais & Heckerman, AAAI’98] !

From: Tammy Jordan From: UK National Lottery

Jjordant@oak.cats.ohiou.edu

Subject: Spring 2015 Course Subject: Award Winning Notice

CS690: Machine Learning UK NATIONAL LOTTERY. GOVERNMENT
ACCREDITED LICENSED LOTTERY.

Instructor: Razvan Bunescu REGISTERED UNDER THE UNITED KINGDOM

Email: bunescu@ohio.edu DATAPROTECTION ACT; |

Time and Location: Tue, Thu 9:00 AM , ARC 101 |

Website: http://ace.cs.ohio.edu/~razvan/courses/m16830 We happily announce to you the draws of (UK ,
NATIONAL LOTTERY PROMOTION) International

Course description: programs held in London , England Your email address

Machine Learning is concerned with the design and analysis of  [ReliEIela(=lo RToRT[e I Ma[¥]gg ol g TR N i g RS g =1 R LF10glol<T g
algorithms that enable computers to automatically find patterns  [SSASYATIVRe [ Ao =N (V1o 4 VA o1 U170 o[ ¥ B 5/ BT/ o 1ol
in the data. This introductory course will give an overview ... subsequently won you the lottery in the first category ...

« Emall filtering:
— Provide emails labeled as {Spam, Ham}.
— Train Naive Bayes model to discriminate between the two.

60
T



mailto:edreyes@uknational.co.uk
mailto:jordant@oak.cats.ohiou.edu
mailto:bunescu@ohio.edu
http://ace.cs.ohio.edu/~razvan/courses/cs690

Classification: Handwritten Zip Code
Recognition

[Le Cun et al., Neural Computation ‘8?]

O /|14]|DY
o o712 |

« Handwritten digit recognition:

|

1

|

|

— Provide images of handwritten digits, labeled as {0, 1, ..., 9}. |
— Train Convolutional Neural Network model to recognize digits. ‘
|

|




Classification: Medical Diagnosis
[Krishnapuram et al., GENSIPS’02]

 Cancer diagnosis from gene expression signatures:

— Create database of gene expression profiles (X) from tissues of
known cancer status (Y):

« Human accute leukemia dataset:

— http://www.broadinstitute.org/cgi-bin/cancer/datasets.cqi
 Colon cancer microarray data:

— http://microarray.princeton.edu/oncology

— Train Logistic Regression / SVM / RVM model to classify the gene
expression of a tissue of unknown cancer status.



http://www.broadinstitute.org/cgi-bin/cancer/datasets.cgi
http://microarray.princeton.edu/oncology

Regression: Examples

1. Stock market, oil price, GDP, income prediction:

— Use the current stock market conditions (x e X) to predict
tomorrow’s value of a particular stock (y € Y).

2. Blood glucose level prediction.

3. Chemical processes:

— Predict the yield in a chemical process based on the concentrations
of reactants, temperature and pressure.

 Algorithms:
— Linear Regression, Neural Networks, Support Vector Machines, ...




Unsupervised Learning: Clustering

» Partition unlabeled examples into disjoint clusters such that:
— Examples in the same cluster are similar.

— Examples in different clusters are different.
A




Unsupervised Learning: Clustering

» Partition unlabeled examples into disjoint clusters such that:
— Examples in the same cluster are similar.

— Examples in different clusters are different.
A

* k-Means, need to provide:
A — number of clusters (k = 2)
. ® — similarity measure (Euclidean)
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Unsupervised Learning: Dimensionality
Reduction

« Manifold Learning:

— Data lies on a low-dimensional manifold embedded in a high-
dimensional space.

— Useful for feature extraction and visualization.
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Self-supervised Feature Learning:

Auto-encoders

[25963, 125, 327847257 #8313,
2, 3981213 ¥i0i7, 54, ToR=R01
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93, 44, 69, 85, 68, 54, 87, ..., 11,
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Reinforcement Learning: TD-Gammon
[Tesauro, CACM‘95]

 Learn to play Backgammon:
— Immediate reward:
« +100 if win
« —100 if lose
« 0O for all other states
— Temporal Difference Learning with a Multilayer Perceptron.
— Trained by playing 1.5 million games against itself.

— Played competitively against top-ranked players in international
tournaments.




Reinforcement Learning

* Interaction between agent and environment modeled as a
sequence of actions & states:

— Learn policy for mapping states to actions in order to maximize a
reward.

— Reward may be given only at the end state => delayed reward.
— States may be only partially observable.
— Trade-off between exploration and exploitation.

« Examples:
— Backgammon [Tesauro, CACM*95], helicopter flight [Abbeel, NIPS’07].
— 49 Atari games, using deep RL [Mnih et al., Nature’15].
— AlphaGo [Silver et al., 2016], AlphaZero [Silver et al., 2017], ...




Background readings

Python:
— Introductory Python lecture.

Probability theory:

— Basic probability theory (pp. 12-19) in Pattern Recognition and
Machine Learning.

— Chapter 3 in DL textbook on Probability and Information Theory.
Linear algebra:

— Chapter 2 in DL textbook on Linear Algebra.

— Chapter 2 on Linear Algebra in Mathematics for Machine Learning.
Calculus:

— Basic properties for derivatives, exponentials, and logarithms.
— Chapter 4.3 in DT textbook on Numerical Computation.

7



https://webpages.charlotte.edu/rbunescu/courses/itcs6156/python.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2006/01/Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2006/01/Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf
https://www.deeplearningbook.org/contents/prob.html
https://www.deeplearningbook.org/contents/linear_algebra.html
https://mml-book.github.io/
https://personal.math.ubc.ca/~feldman/m101/formulae.pdf
https://www.deeplearningbook.org/contents/numerical.html
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