Machine Learning ITCS 5356

Introduction

Razvan C. Bunescu Department of Computer Science @ CCI

rbunescu@uncc.edu

How to Solve Computational Problems?

- A computational problem is a task that can be solved by a computer, i.e. by the mechanical application of a sequence of steps, i.e. by computer code.
- Where does the **computer code** come from?
 - Expert Systems (aka rule-based or traditional programming):
 - 1. Experts write rules that capture **patterns** about the problem.
 - 2. Programmers implement the rule-based solution in code.
 - Machine Learning = program computers to *learn* from *experience* to improve performance on a given task.
 - Automatically discover **patterns** from solved problem instances (i.e. *experience*) that enable solving new instances of the problem.
 - Trained ML model is code that does pattern recognition.

We use ML to automate solutions to Computational Problems

- Why use a Machine Learning (ML) approach:
 Because ML is hot? Because ML is The solution?
- Traditional programming may work very well:

What is the solution of $x^2 - 4x + 3$?

How do I get from UNCC campus to the Mint museum uptown?

Spam Filtering is a Computational Problem

From: Tammy Jordan jordant@oak.cats.ohiou.edu Subject: Spring 2015 Course

CS690: Machine Learning

Instructor: Razvan Bunescu Email: <u>bunescu@ohio.edu</u> Time and Location: Tue, Thu 9:00 AM , ARC 101 Website: <u>http://ace.cs.ohio.edu/~razvan/courses/ml6830</u>

Course description:

Machine Learning is concerned with the design and analysis of algorithms that enable computers to automatically find patterns in the data. This introductory course will give an overview ... From: UK National Lottery edreyes@uknational.co.uk Subject: Award Winning Notice

UK NATIONAL LOTTERY. GOVERNMENT ACCREDITED LICENSED LOTTERY. REGISTERED UNDER THE UNITED KINGDOM DATA PROTECTION ACT;

We happily announce to you the draws of (UK NATIONAL LOTTERY PROMOTION) International programs held in London, England Your email address attached to ticket number :3456 with serial number :7576/06 drew the lucky number 4-2-274, which subsequently won you the lottery in the first category ...

- Example rules or patterns for an expert systems approach:
 - "MONEY" appears in the text => Spam.
 - What if email sent by grandmother?

How to Automate Solutions to Computational Problems?

- Expert Systems approach:
 - Cognitively demanding:
 - Difficult for humans to reason with many useful but imprecise features that are indicative (signals) of spam or not spam:
 - Words, phrases, images, meta-data, time series, ...
 - Need to combine a large number of signals, figure out their relative importance in determining spam vs. ham label.
 - Brittle: Always going to miss some useful features or patterns.
 - "All grammars leak." (Edward Sapir).
 - Spam filtering is adversarial, new features need to be added over time.
 - + Often much more interpretable than ML approach!
 - + Often better at systematic generalization too ...

How to Automate Solutions to Computational Problems?

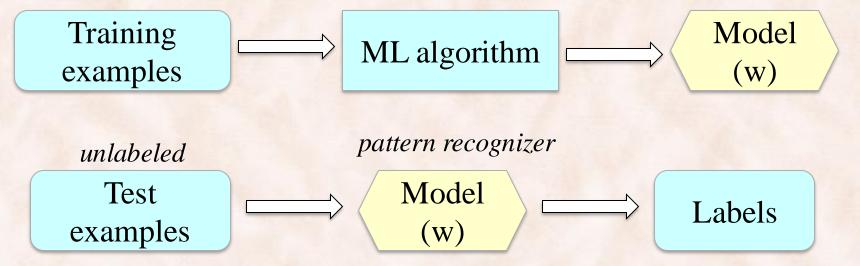
- Machine Learning (ML) approach:
 - **1. Data acquisition**: create a large enough dataset of *labeled examples*:
 - Email is the *example*, the *label* is spam (+1) vs. not spam (-1).
 - Collecting labels is easier than writing rules!
 - 2. Feature engineering: Represent examples as *feature vectors*, each feature has a *weight*.
 - 3. Learn the weights such that the model prediction (weighted combination of features) matches the labels of training examples.

What is Machine Learning?

- Machine Learning = constructing computer programs that *learn* from *experience* to perform well on a given task.
 - **Supervised Learning** i.e. discover **patterns** from labeled examples that enable predictions on unseen examples.

labeled

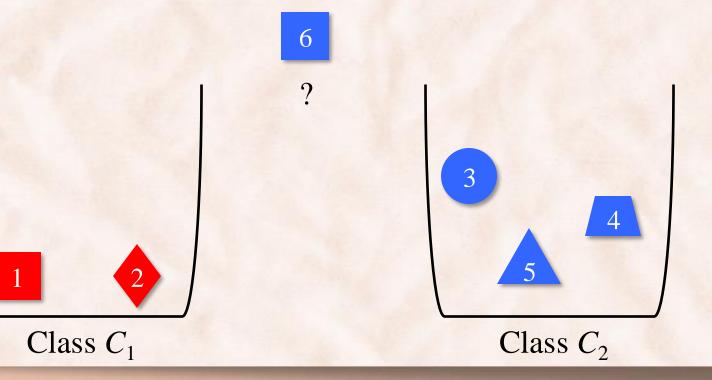
pattern recognizer



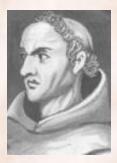
Human Learning

M_1 : x is Red => $x \in C_1$

M₂: *x* is a Square or *x* is a Diamond $=> x \in C_1$ M₃: *x* is Red and *x* is a Quadrilateral $=> x \in C_1$



Occam's Razor



William of Occam (1288 – 1348) English Franciscan friar, theologian and philosopher.

"Entia non sunt multiplicanda praeter necessitatem"– Entities must not be multiplied beyond necessity.

i.e. Do not make things needlessly complicated.i.e. Prefer the simplest hypothesis that fits the data.

Occam's Razor vs. Kolmogorov Complexity, Intelligence & Science

- Kolmogorov Complexity = the length of the shortest program that generates the data.
 - 1, 2, 4, 7, 11, 16, 22, 29, 37, 46, 56, ...
 - 1, 3, 6, 11, 18, **29**, ...
 - 1, 2, 3, 5, 5, 8, 7, 11, 9, ...
- **Intelligence** = the ability to apply Occam's Razor.
 - <u>http://www.vetta.org/documents/Machine_Super_Intelligence.pdf</u>
- Science = discover the simplest descriptions of our world.
 <u>https://doi.org/10.1111/nyas.15086</u>

ML Objective

• Find a model M

that is *simple* + that *fits the training data*.

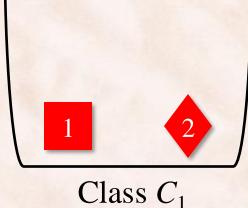
 $\mathbf{M} = \underset{M}{\operatorname{argmin}} Complexity(\mathbf{M}) + Error(\mathbf{M}, Data)$

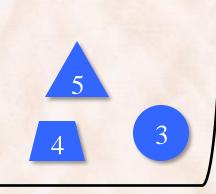
- **Inductive hypothesis**: Models that perform well on training examples are expected to do well on test (unseen) examples.
- Occam's Razor: Simpler models are expected to do better than complex models on test examples (assuming similar training performance).

Example

M_1 : x is Red => $x \in C_1$

M₂: x is a Square or x is a Diamond $=> x \in C_1$ M₃: x is Red and x is a Quadrilateral $=> x \in C_1$

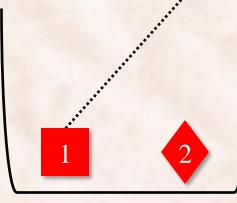




Class C_2

Feature Vectors

Features	x ₁	X ₂	X ₃	X 4	X 5
Red?	1	1	0	0	0
Quad?	1	1	0	1	0
Square?	1	0	0	0	0
Diamond?	0	1	0	0	0
Label (y)	$y_1 = +1$	$y_2 = +1$	$y_3 = -1$	$y_4 = -1$	$y_5 = -1$



4 3

Class C_2

Class C_1

Learning with a Linear Classifier

Features	X ₁	X ₂	X ₃	X ₄	X 5
Red?	1	1	0	0	0
Quad?	1	1	0	1	0
Square?	1	0	0	0	0
Diamond?	0	1	0	0	0
Label (y)	y ₁ = +1	y ₂ = +1	$y_3 = -1$	$y_4 = -1$	$y_5 = -1$

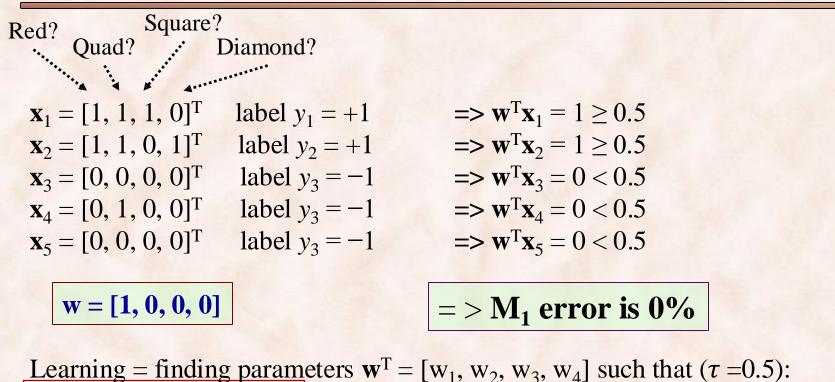
$\mathbf{x}_1 = [1, 1, 1, 0]$	$\mathbf{x}_2 = [1, 1, 0, 1]$	$\mathbf{x}_3 = [0, 0, 0, 0]$	•••
y ₁ = +1	$y_2 = +1$	$y_3 = -1$	

Learning = finding parameters $\mathbf{w}^{T} = [\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3}, \mathbf{w}_{4}]$ and τ such that:

- $\mathbf{w}^{\mathrm{T}} \mathbf{x}_i \geq \tau$, if $\mathbf{y}_i = +1$
- $\mathbf{w}^{\mathrm{T}} \mathbf{x}_i < \tau$, if $\mathbf{y}_i = -1$

where $\mathbf{w}^{\mathrm{T}} \mathbf{x} = w_1 x_1 + w_2 x_2 + w_3 x_3 + w_4 x_4$ $\mathbf{w} = [w_1, w_2, w_3, w_4]$ $\mathbf{x} = [x_1, x_2, x_3, x_4]$

Model M_1 : x_i is Red => y_i = +1

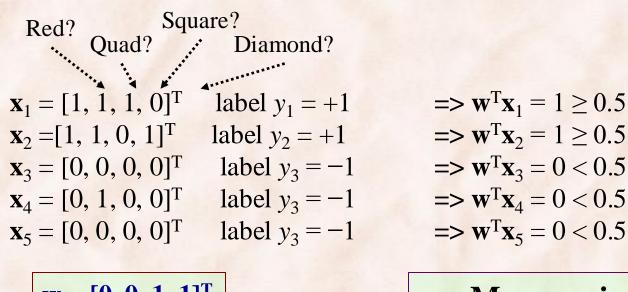


• $\mathbf{w}^{\mathrm{T}} \mathbf{x}_{i} \ge 0.5$, if $y_{i} = +1$ • $\mathbf{w}^{\mathrm{T}} \mathbf{x}_{i} < 0.5$, if $y_{i} = -1$

where $\mathbf{w}^{T} \mathbf{x} = w_{1} x_{1} + w_{2} x_{2} + w_{3} x_{3} + w_{4} x_{4}$

 $\mathbf{w} = [w_1, w_2, w_3, w_4]$ $\mathbf{x} = [x_1, x_2, x_3, x_4]$

M_2 : x_i is Square or Diamond => y_i = +1



 $w = [0, 0, 1, 1]^T$ = > M_2 error is 0%

Learning = finding parameters $\mathbf{w}^T = [w_1, w_2, w_3, w_4]$ such that ($\tau = 0.5$): • $\mathbf{w}^T \mathbf{x}_i \ge 0.5$, if $y_i = +1$ • $\mathbf{w}^T \mathbf{x}_i < 0.5$, if $y_i = -1$

where $\mathbf{w}^{T} \mathbf{x} = w_{1} x_{1} + w_{2} x_{2} + w_{3} x_{3} + w_{4} x_{4}$

 $\mathbf{w}^{\mathrm{T}} = [\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3}, \mathbf{w}_{4}]$ $\mathbf{x} = [x_{1}, x_{2}, x_{3}, x_{4}]$

M_1 or M_2 ?

- Model M_1 : x_i is Red => y_i = +1
 - $\mathbf{w}^{(1)} = [1, 0, 0, 0]^{\mathrm{T}}$
 - Error = 0%
- Model M₂: x_i is Square or Diamond => y_i = +1
 - $\mathbf{w}^{(2)} = [0, 0, 1, 1]^{\mathrm{T}}$
 - Error = 0%
- Which one should we choose?
 - Which one is expected to perform better on unseen (new) examples?

ML Objective

• Find a model w that is *simple* and that *fits the training data*.

$\hat{\mathbf{w}} = \underset{\mathbf{w}}{\operatorname{arg\,min}} \operatorname{Complexity}(\mathbf{w}) + \operatorname{Error}(\mathbf{w}, Data)$

M_1 or M_2 ?

- Model M_1 : x_i is Red => y_i = +1
 - $\mathbf{w}^{(1)} = [1, 0, 0, 0]^{\mathrm{T}}$
 - Error = 0%
- Model M₂: x_i is Square or Diamond => y_i = +1
 - $\mathbf{w}^{(2)} = [0, 0, 1, 1]^{\mathrm{T}}$
 - Error = 0%

 $\hat{\mathbf{w}} = \underset{\mathbf{w}}{\operatorname{arg\,min}} \operatorname{Complexity}(\mathbf{w}) + \operatorname{Error}(\mathbf{w}, Data)$ $\|\mathbf{w}\|_{0} \text{ i.e. } \# \text{ non-zero values}$ $\operatorname{Complexity}(\mathbf{w}) = ? \qquad \|\mathbf{w}\|_{1} \text{ i.e. sum of absolute values}$ $\|\mathbf{w}\|_{2}^{2} \text{ i.e sum of squared values}$

ML Objectives

• Find a model w that is *simple* and that *fits the training data*. $\hat{\mathbf{w}} = \underset{\mathbf{w}}{\operatorname{arg\,min}} \operatorname{Complexity}(\mathbf{w}) + \operatorname{Error}(\mathbf{w}, Data)$

Ridge Regression:

$$\underset{\mathbf{w}}{\operatorname{argmin}} \quad \frac{1}{2} \|\mathbf{w}\|^2 + \frac{1}{2} \overset{N}{\underset{n=1}{\overset{N}{\overset{}}}} \{y(x_n, \mathbf{w}) - t_n\}^2$$

M

Logistic Regression:

$$\operatorname{argmin} \frac{\alpha}{2} \|\mathbf{w}\|^2 - \sum_{n=1}^N \ln p(t_n | x_n)$$

ML Objectives

Upper bound on the number of

misclassified training examples

Support Vector Machines:

 $\underset{\mathbf{w}}{\operatorname{argmin}} \quad \frac{1}{2} \|\mathbf{w}\|^2 + C \overset{N}{\underset{n=1}{\overset{N}{\overset{N}{\overset{}}}}} X_n$

subject to:

$$t_n(\mathbf{w}^T \varphi(\mathbf{x}_n) + b) \ge 1 - \xi_n, \quad \forall n \in \{1, \dots, N\}$$
$$\xi_n \ge 0$$

Bias $w_0 = -$ **Threshold** τ

 $\mathbf{w}^{\mathrm{T}} \mathbf{x} = w_1 x_1 + w_2 x_2 + w_3 x_3 + w_4 x_4 \ge \tau$

 $<=> w_1 x_1 + w_2 x_2 + w_3 x_3 + w_4 x_4 - \tau \ge 0$

Define the intercept or bias $w_0 = -\tau$.

 $<=>w_1x_1 + w_2x_2 + w_3x_3 + w_4x_4 + w_0 \ge 0$

 $h(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + w_0 \ge 0$ where: $\mathbf{w}^T = [w_1 w_2 w_3 w_4]$ $\mathbf{x} = [x_1 x_2 x_3 x_4]$ $h(\mathbf{x}) = \mathbf{w}^T \mathbf{x} \ge 0$ where:

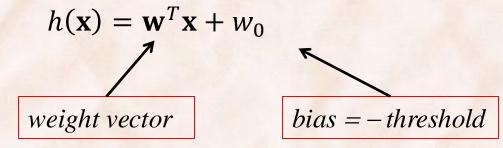
 $\mathbf{w}^{\mathrm{T}} = \begin{bmatrix} w_0 & w_1 & w_2 & w_3 & w_4 \end{bmatrix}$ $\mathbf{x} = \begin{bmatrix} 1 & x_1 & x_2 & x_3 & x_4 \end{bmatrix}$

Geometric Interpretation

- Example **x** is a feature vector $\mathbf{x} = [x_1 x_2 \dots x_K]$.
 - Example x is a point in a K-dimensional feature space.
- Parameters w form a vector w^T = [w₁ w₂ ... w_K].
 Parameters w are a point in a K-dimensional feature space.
- What does it mean that $h(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + w_0 > 0$?

Linear Discriminant Functions: Two classes (K = 2)

• Use a linear function of the input vector:



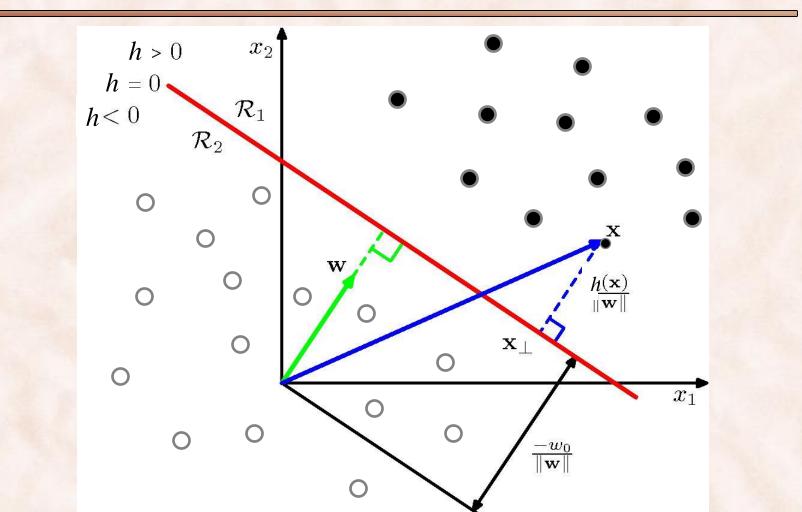
• Decision:

 $\mathbf{x} \in C_1$ if $h(\mathbf{x}) \ge 0$, otherwise $\mathbf{x} \in C_2$.

 \Rightarrow decision boundary is hyperplane $h(\mathbf{x}) = 0$.

- Properties:
 - w is orthogonal to vectors lying within the decision surface.
 - $-w_0$ controls the location of the decision hyperplane.

Geometric Interpretation



 $h(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + w_0 = w_1 x_1 + w_2 x_2 + w_0$

Linear Models for Classification

- We want to use a linear function of the feature vector: $h(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + w_0$
- How to find w automatically? Use ML!
 - Perceptron.
 - Logistic Regression.
- What if the data is not linearly separable? Make it!
 - Engineer new features (LR) or use kernels (Perceptron).
 - Learn new features (Neural Networks).

Machine Learning (most of ML pre-2006)

• Hope raw data **x** is linearly separable.

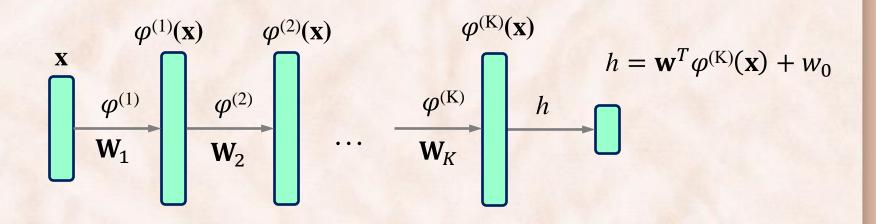
$$h(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + w_0$$

Use a Perceptron or LR or SVMs to learn w.

 Engineer features φ(x), aim to make data linearly separable.

Deep Learning

A raw observation vector **x** is pre-processed and further transformed into a sequence of higher-level <u>feature vectors</u> φ(**x**) = [φ⁽¹⁾(**x**), φ⁽²⁾(**x**), ..., φ^(K)(**x**)]^T that are **learned**.



Linear Models: $h(\mathbf{x}) = \mathbf{w}^T \mathbf{x}$

- Given N training examples $(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots (\mathbf{x}_N, y_N)$ where:
 - Labels $y_j \in \{-1, +1\}$.
 - Each example \mathbf{x}_j is assumed to also contain a bias feature set to 1, corresponding to parameter w_0 .
- Find parameter vector w such the model h(x) = w^T x fits the training examples:
 - $\mathbf{w}^T \mathbf{x}_n > 0$ for all positive examples $(y_n = +1)$
 - $\mathbf{w}^T \mathbf{x}_n < 0$ for all negative examples $(y_n = -1)$

1. **initialize** parameters
$$\mathbf{w} = 0$$

2. **for** $n = 1 \dots N$
3. $h_n = \mathbf{w}^T \mathbf{x}_n$
4. **if** $h_n \ge 0$ and $y_n = -1$
5. $\mathbf{w} = \mathbf{w} - \mathbf{x}_n$
6. **if** $h_n \le 0$ and $y_n = +1$
7. $\mathbf{w} = \mathbf{w} + \mathbf{x}_n$
Repeat:
a) until convergence.
b) for a number of epochs E.

What is the impact of the perceptron update on the score $\mathbf{w}^{\mathrm{T}}\mathbf{x}_{n}$ of the misclassified example \mathbf{x}_{n} ?

1. **initialize** parameters
$$\mathbf{w} = 0$$

2. **for** $n = 1 \dots N$
3. $h_n = \mathbf{w}^T \mathbf{x}_n$
4. **if** $h_n y_n \le 0$ **then**
5. $\mathbf{w} = \mathbf{w} + y_n \mathbf{x}_n$
Repeat:
a) until convergence.
b) for a number of epochs E.

Loop invariant: w is a weighted sum of training vectors:

$$\mathbf{w} = \sum_{n} \alpha_{n} y_{n} \mathbf{x}_{n} \implies \mathbf{w}^{T} \mathbf{x} = \sum_{n} \alpha_{n} y_{n} \mathbf{x}_{n}^{T} \mathbf{x}$$

1. initialize parameters
$$\mathbf{w} = 0$$
 $sgn(h) = +1$ if $h > 0$,
 0 if $h = 0$,
 -1 if $h < 0$ 2. for $n = 1 \dots N$ -1 if $h < 0$ 3. $\hat{y}_n = sgn(\mathbf{w}^T \mathbf{x}_n)$
if $\hat{y}_n \neq y_n$ then
5. $\mathbf{w} = \mathbf{w} + y_n \mathbf{x}_n$ Repeat:
a) until convergence.
b) for a number of epochs E.

Theorem [Rosenblatt, 1962]:

If the training dataset is linearly separable, the perceptron learning algorithm is guaranteed to find a solution in a finite number of steps.

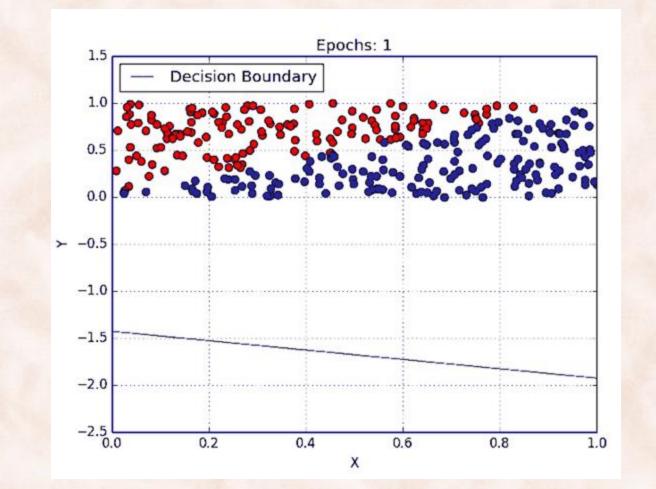
• see Theorem 1 (Block, Novikoff) in [Freund & Schapire, 1999].

initialize parameters w = 0for epoch $e = 1 \dots E$ mistakes = 0for example $n = 1 \dots N$ $\hat{y}_n = sgn(\mathbf{w}^{\mathrm{T}}\mathbf{x}_n)$ if $\hat{y}_n \neq y_n$ then $\mathbf{w} = \mathbf{w} + y_n \mathbf{X}_n$ mistakes = mistakes + 1**if** mistakes = 0break Converged!

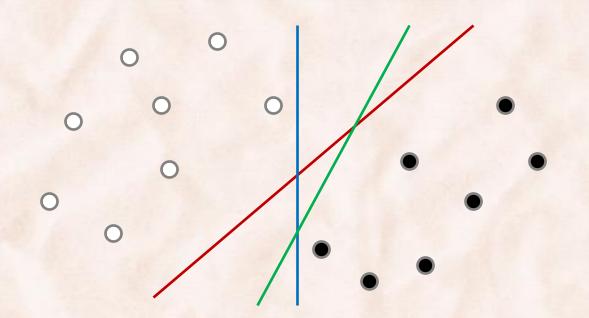
sgn(h) = +1 if h > 0, 0 if h = 0, -1 if h < 0

1 epoch = one pass over all training examples.

The Perceptron Algorithm

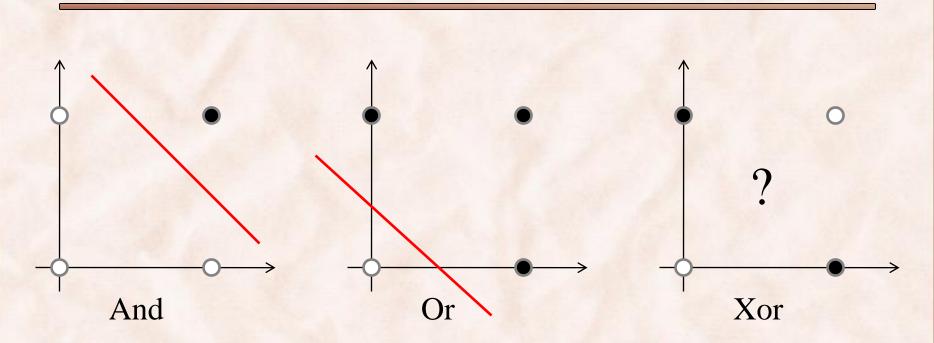


Classifiers & Margin

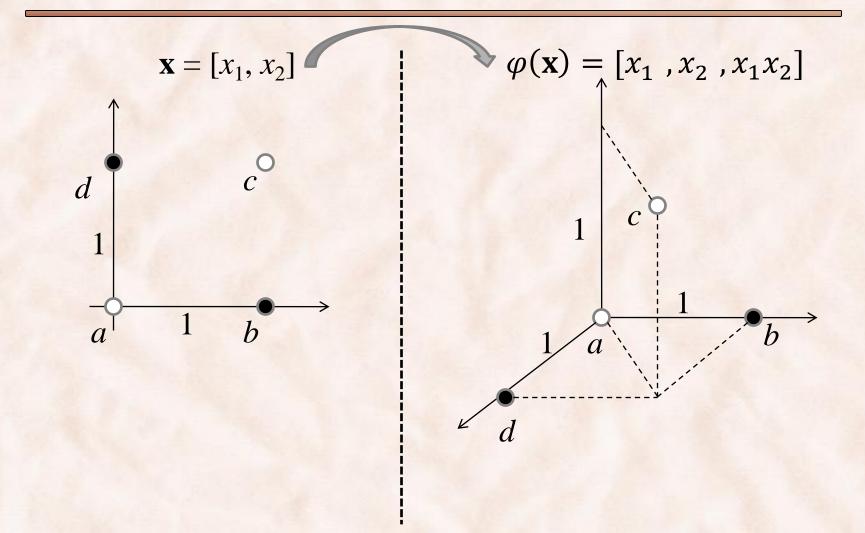


- Which classifier has the smallest generalization error?
 - The one that maximizes the margin [Computational Learning Theory]
 - **margin** = the distance between the decision boundary and the closest sample.

Linear vs. Non-linear Classifiers



ML with Manually Engineered Features



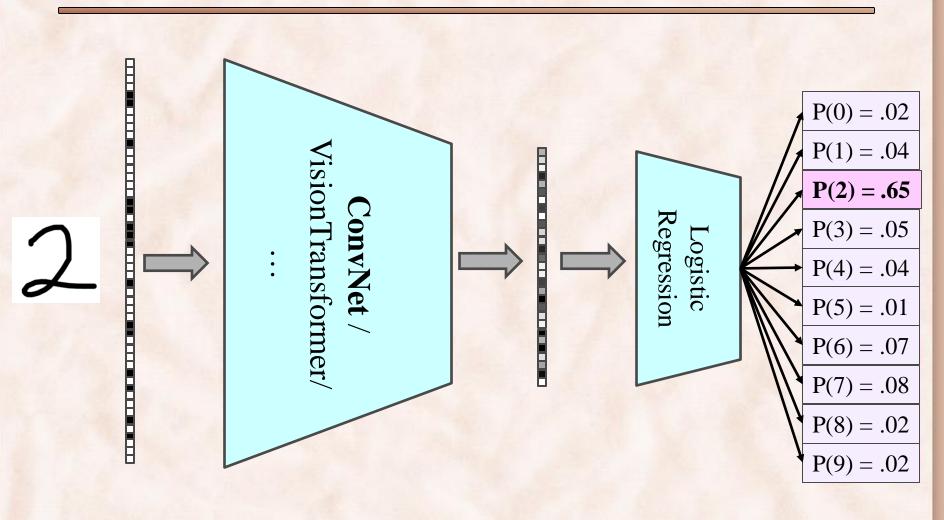
- A (labeled) <u>example</u> (\mathbf{x}, y) consists of:
 - <u>Instance</u> / <u>observation</u> / <u>raw feature</u> vector x.
 - <u>Label</u> y.
- Examples:
 - 1. Image classification in **Computer Vision** (CV):

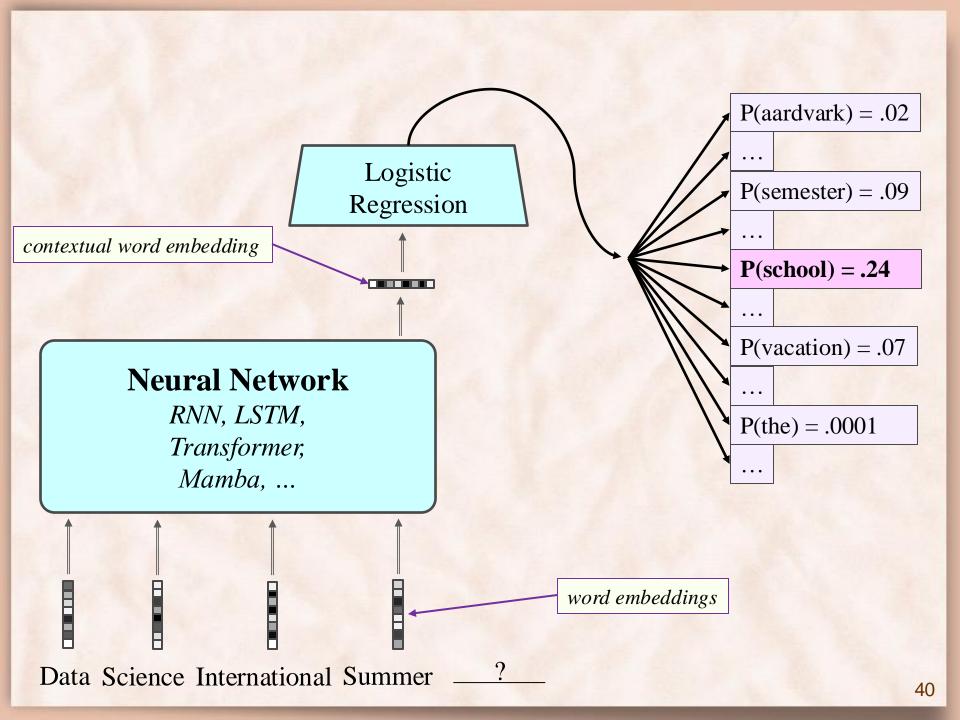
 $\begin{array}{l} \textbf{abel } y = ? \\ \textbf{abel } y = ? \end{array}$

- 2. Language Modeling (LM) in Natural Language Processing (NLP):
 - "I went to the Data Science International Summer ______

instance $\mathbf{x} = ?$ label y = ?abel y = ?eatschoolcamp38

Image classification (CV)





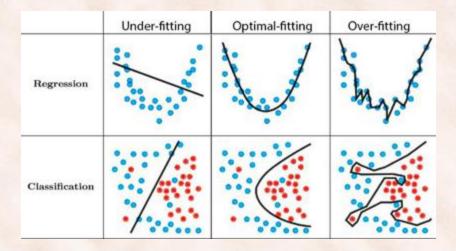
- A <u>training dataset</u> is a set of (training) examples $(\mathbf{x}_1, t_1), (\mathbf{x}_2, t_2), \dots$ (\mathbf{x}_N, t_N) :
 - The <u>data matrix</u> X contains all instance vectors $\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_N$ rowwise.
 - The label vector $\mathbf{y} = [y_1, y_2, \dots, y_N]$.
- A <u>test dataset</u> is a set of (test) examples $(\mathbf{x}_{N+1}, y_{N+1}), \dots, (\mathbf{x}_{N+M}, y_{N+M})$:
 - Must be unseen, i.e. new, i.e. different from the training examples!
- A development dataset ...

- There is a function f that maps an instance x to its label y = f(x).
 - -f is unknown / not given.
 - But we observe samples from $f: (\mathbf{x}_1, y_1 = f(\mathbf{x}_1)), (\mathbf{x}_2, y_2), \dots (\mathbf{x}_N, y_N)$.
- Learning means finding a <u>model</u> *h* that maps an instance **x** to a label $h(\mathbf{x}) \approx f(\mathbf{x})$, i.e. close to the true label of **x**.
 - Machine learning = finding a model *h* that approximates well the unknown function *f*.
 - Machine learning = <u>function approximation</u>.

- Machine learning is <u>inductive</u>:
 - <u>Inductive hypothesis</u>: if a model performs well on training examples, it is expected to also perform well on unseen (test) examples.
 - Assume within-distribution test examples.
- The model *h* is often specified through a set of parameters w:
 - x is mapped by the model to h(x, w).
- The <u>objective function</u> $J(\mathbf{w})$ captures how poorly the model does on the training dataset:
 - Want to find $\widehat{\mathbf{w}} = \operatorname{argmin} J(\mathbf{w})$
 - Machine learning = <u>optimization</u>.

Fitting vs. Generalization

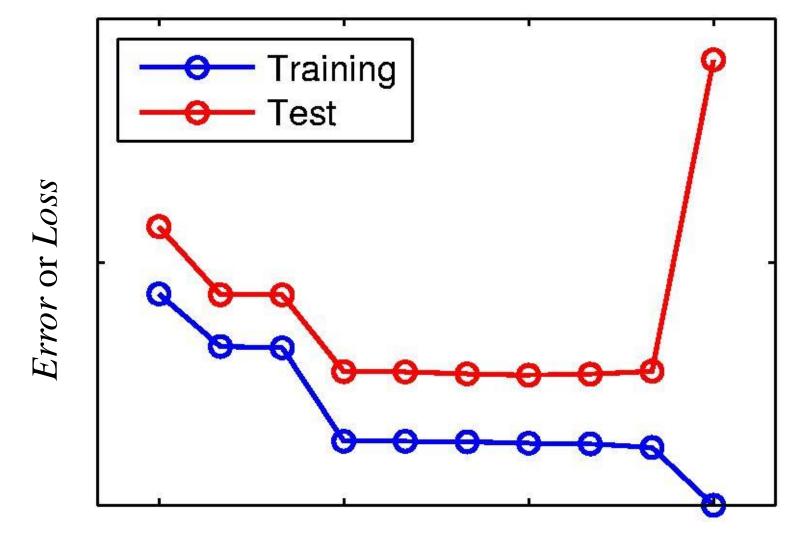
- <u>Fitting</u> performance = how well the model does on training examples.
- <u>Generalization</u> performance = how well the model does on unseen (test) examples.
- We prefer finding patterns to memorizing examples!
 - Overfitting:
 - Add Regularization.
 - Underfitting:
 - Increase Capacity.



Underfitting vs. Overfitting

- **Underfitting** = model does not do well on training data:
 - Low capacity (too few params) or Training issues (too little training).
- **Overfitting** = model does well on training, poorly on test.
 - Can be mitigated by tuning hyper-parameters.
 - **Perceptron**: E (number of epochs).
 - **Logistic regression**: λ (strength of L₂ regularization).
 - Neural networks: number of layers, number of neurons on each layer, number of CNN filters, λ, dropout rate, gradient descent hyper-parameters (momentum, learning rate cooling schedule), number of epochs, ...

Overfitting with Polynomail Curve Fitting



Poly degree (hyperparameter) values

Regularization = Any Method that Alleviates Overfitting

- **Parameter norm penalties** (strength λ of L_1 or L_2 term).
- Dataset augmentation.
- **Dropout** (dropout rate)
- Ensembles.
- Semi-supervised learning.
- Early stopping (limit number of epochs).
- Noise robustness.
- Sparse representations.
- Adversarial training.

Math and Machine Learning

- Formulating ML algorithms and understanding their basic behavior requires <u>basic mathematical concepts</u>.
 - Linear algebra.
 - Calculus.
 - Statistics.
- Basic math concepts so far:
 - Vector spaces:
 - Vectors, dot-products, L1 and L2 norms.
 - Orthogonal vectors, hyperplanes.
 - Functions, optimization problems.

Math and Machine Learning

- Basic math concepts in this course:
 - Linear Algebra:

– Calculus:

- Statistics:

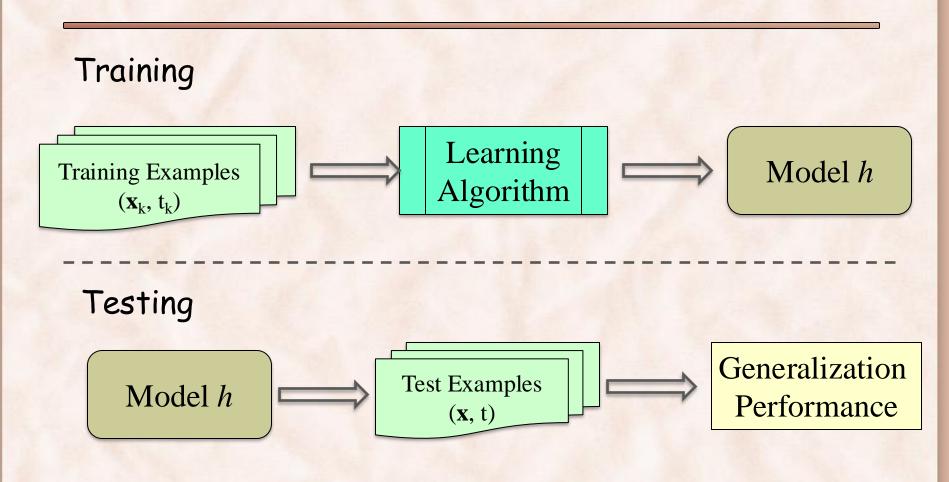
Mathematics for ML and Data Science

• Coursera has a really gentle math introduction for ML, organized into a sequence of 3 courses:

https://www.coursera.org/specializations/mathematics-for-machine-learningand-data-science#courses

- Click on "Linear algebra for ML and Data Science" link.
- Click on "Enroll for free", then click on the small "Audit the course" link in the popup window to see the videos for free.

Supervised Learning



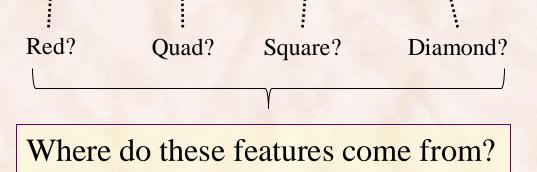
Features

• Learning = finding parameters $\mathbf{w} = [w_1, w_2, w_3, w_4]$ and τ such that:

```
\mathbf{w}^{\mathrm{T}} \boldsymbol{\varphi}(\mathbf{x}_{\mathrm{i}}) \geq \tau, if y_i = +1
```

```
\mathbf{w}^{\mathrm{T}} \boldsymbol{\varphi}(\mathbf{x}_{\mathrm{i}}) < \tau, \text{ if } y_{i} = -1
```

where $\mathbf{w}^{\mathrm{T}} \boldsymbol{\varphi}(\mathbf{x}) = \mathbf{w}_1 \times \boldsymbol{\varphi}_1(\mathbf{x}) + \mathbf{w}_2 \times \boldsymbol{\varphi}_2(\mathbf{x}) + \mathbf{w}_3 \times \boldsymbol{\varphi}_3(\mathbf{x}) + \mathbf{w}_4 \times \boldsymbol{\varphi}_4(\mathbf{x})$



Object Recognition: Cats

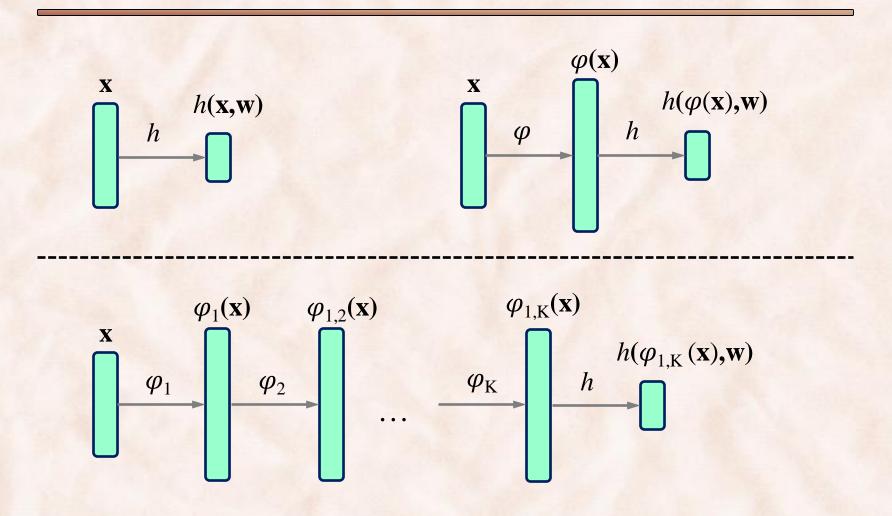
Pixels as Features?

$$\varphi(\mathbf{x}) = [25, 63, 125, 32, 84, 257, ..., 13, 27, 39, 8, 213, 107, 54, 73, ..., 91, Poor recognition accuracy! ..., 9, 93, 44, 69, 85, 68, 54, 87, ..., 11, 117, 59, 117, 210, 177, 54, 72, ...]T$$

• Learning = finding parameters $\mathbf{w} = [w_1, w_2, w_3, \dots w_k]^T$ such that: $\mathbf{w}^T \varphi(\mathbf{x}_i) \ge \tau$, if $y_i = +1$ (cat) $\mathbf{w}^T \varphi(\mathbf{x}_i) < \tau$, if $y_i = -1$ (other) where $\mathbf{w}^T \varphi(\mathbf{x}) = w_1 \times \varphi_1(\mathbf{x}) + w_2 \times \varphi_2(\mathbf{x}) + w_3 \times \varphi_3(\mathbf{x}) + \dots + w_k \times \varphi_k(\mathbf{x})$

- Often, a raw observation **x** is pre-processed and further transformed into a feature vector $\varphi(\mathbf{x}) = [\varphi_1(\mathbf{x}), \varphi_1(\mathbf{x}), \dots, \varphi_K(\mathbf{x})]^T$.
 - Where do the <u>features</u> φ_k come from?
 - Feature engineering, e.g. in polynomial curve fitting:
 - manual, can be time consuming (e.g. SIFT).
 - (Self-supervised) feature learning, e.g. in modern computer vision:
 - automatic, used in deep learning models.

Machine Learning vs. Deep Learning



What is Machine Learning?

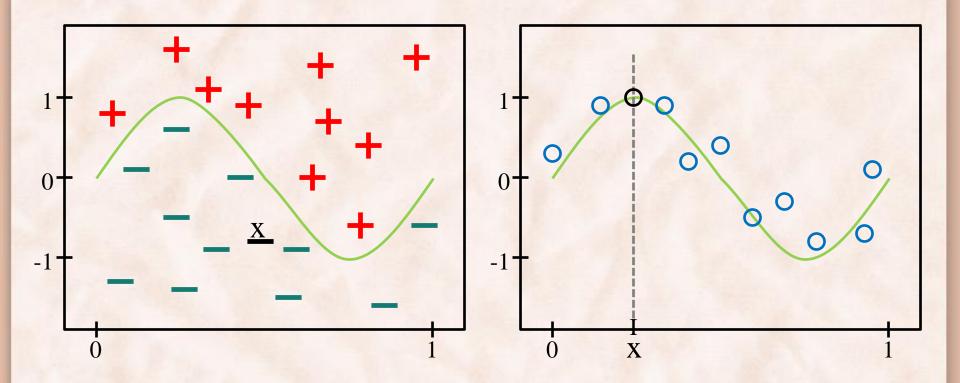
- **Machine Learning** = constructing computer programs that *automatically improve with experience*:
 - Supervised Learning i.e. learning from labeled examples:
 - Classification
 - Regression
 - Unsupervised Learning i.e. learning from unlabeled examples:
 - Clustering.
 - Dimensionality reduction (visualization).
 - Density estimation.
 - Reinforcement Learning i.e. learning with delayed feedback.

Supervised Learning

- Task = learn a function $f : X \rightarrow T$ that maps input instances $\mathbf{x} \in X$ to output targets $y \in Y$:
 - Classification:
 - The output $y \in Y$ is one of a finite set of discrete categories.
 - Regression:
 - The output y ∈ Y is continuous, or has a continuous component.
- Supervision = set of training examples:

 $(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots (\mathbf{x}_n, y_n)$

Classification vs. Regression



Classification: Junk Email Filtering

[Sahami, Dumais & Heckerman, AAAI'98]

From: Tammy Jordan jordant@oak.cats.ohiou.edu Subject: Spring 2015 Course

CS690: Machine Learning

Instructor: Razvan Bunescu Email: <u>bunescu@ohio.edu</u> Time and Location: Tue, Thu 9:00 AM , ARC 101 Website: <u>http://ace.cs.ohio.edu/~razvan/courses/ml6830</u>

Course description:

Machine Learning is concerned with the design and analysis of algorithms that enable computers to automatically find patterns in the data. This introductory course will give an overview ...

• Email filtering:

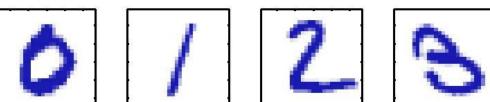
- Provide emails labeled as {Spam, Ham}.
- Train *Naïve Bayes* model to discriminate between the two.

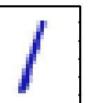
From: UK National Lottery edreyes@uknational.co.uk Subject: Award Winning Notice

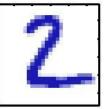
UK NATIONAL LOTTERY. GOVERNMENT ACCREDITED LICENSED LOTTERY. REGISTERED UNDER THE UNITED KINGDOM DATA PROTECTION ACT;

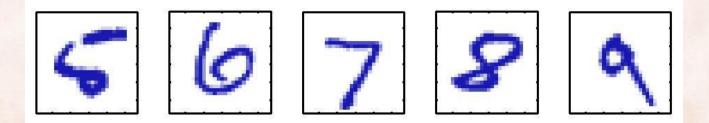
We happily announce to you the draws of (UK NATIONAL LOTTERY PROMOTION) International programs held in London, England Your email address attached to ticket number :3456 with serial number :7576/06 drew the lucky number 4-2-274, which subsequently won you the lottery in the first category ...

Classification: Handwritten Zip Code Recognition [Le Cun et al., Neural Computation '89]









- Handwritten digit recognition: •
 - Provide images of handwritten digits, labeled as $\{0, 1, ..., 9\}$.
 - Train Convolutional Neural Network model to recognize digits.

Classification: Medical Diagnosis

[Krishnapuram et al., GENSIPS'02]

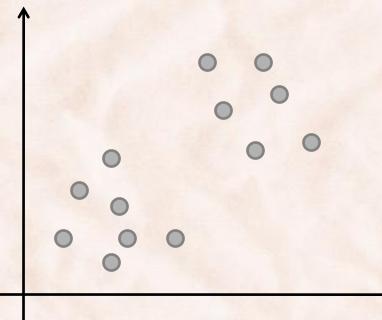
- Cancer diagnosis from gene expression signatures:
 - Create database of gene expression profiles (X) from tissues of known cancer status (Y):
 - Human accute leukemia dataset:
 - http://www.broadinstitute.org/cgi-bin/cancer/datasets.cgi
 - Colon cancer microarray data:
 - http://microarray.princeton.edu/oncology
 - Train Logistic Regression / SVM / RVM model to classify the gene expression of a tissue of unknown cancer status.

Regression: Examples

- 1. Stock market, oil price, GDP, income prediction:
 - Use the current stock market conditions $(x \in X)$ to predict tomorrow's value of a particular stock $(y \in Y)$.
- 2. Blood glucose level prediction.
- 3. Chemical processes:
 - Predict the yield in a chemical process based on the concentrations of reactants, temperature and pressure.
- Algorithms:
 - Linear Regression, Neural Networks, Support Vector Machines, ...

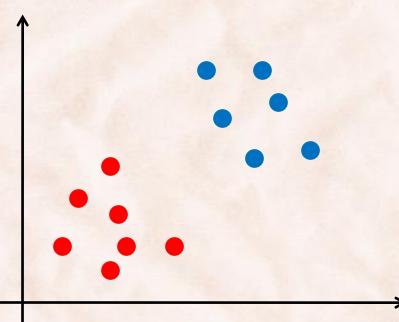
Unsupervised Learning: Clustering

- Partition unlabeled examples into disjoint clusters such that:
 - Examples in the same cluster are similar.
 - Examples in different clusters are different.



Unsupervised Learning: Clustering

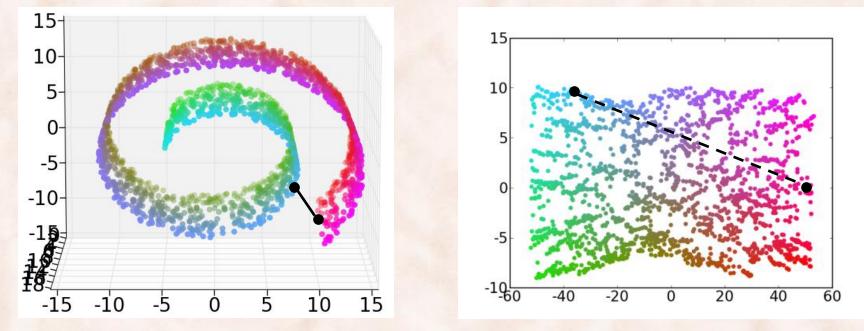
- Partition unlabeled examples into disjoint clusters such that:
 - Examples in the same cluster are similar.
 - Examples in different clusters are different.



- k-Means, need to provide:
 number of clusters (k = 2)
 - similarity measure (Euclidean)

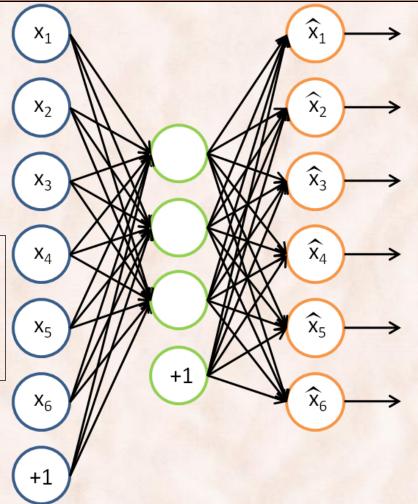
Unsupervised Learning: Dimensionality Reduction

- Manifold Learning:
 - Data lies on a low-dimensional manifold embedded in a highdimensional space.
 - Useful for *feature extraction* and *visualization*.



Self-supervised Feature Learning: Auto-encoders

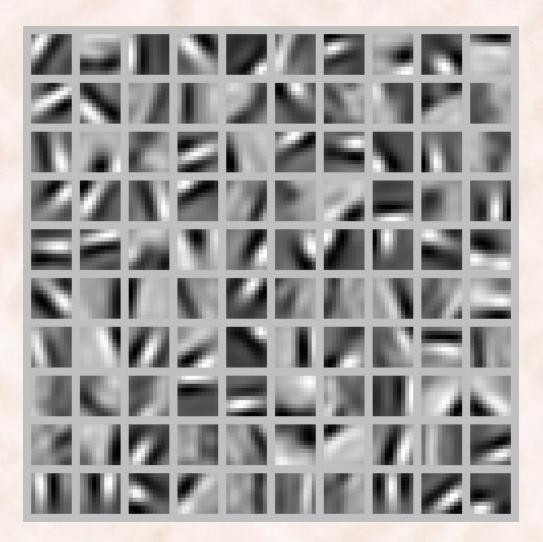
[25, 63, 125, 32, 84, 257, ..., 13, 27, 39, 8, 213, 107, 54, 73, ..., 91 67, 59, 72, 33, 112, 54, 35, ..., 9 18, 37, 18, 142, 162, 54, 53, ..., 28 93, 44, 69, 85, 68, 54, 87, ..., 11, 117, 59, 117, 210, 177, 54, 72, ...]



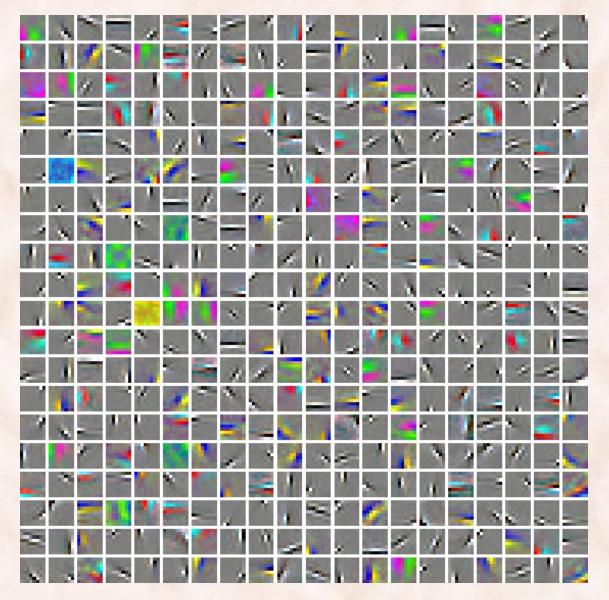
[25, 63, 125, 32, 84, 257, ..., 13, 27, 39, 8, 213, 107, 54, 73, ..., 91 67, 59, 72, 33, 112, 54, 35, ..., 9 18, 37, 18, 142, 162, 54, 53, ..., 28 93, 44, 69, 85, 68, 54, 87, ..., 11, 117, 59, 117, 210, 177, 54, 72, ...]

Input

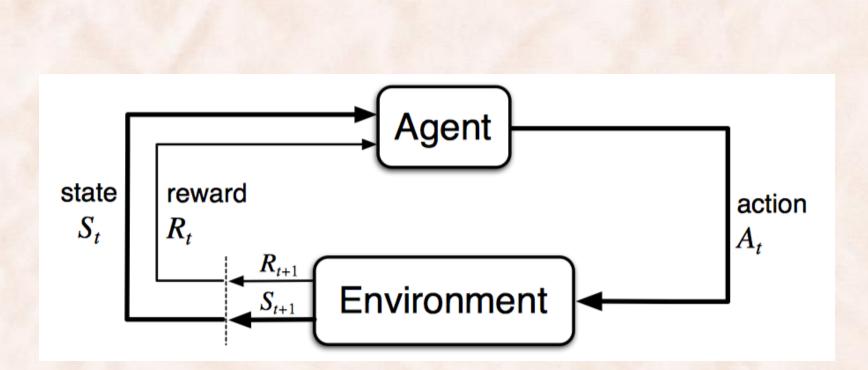
Learned Features (Representations)

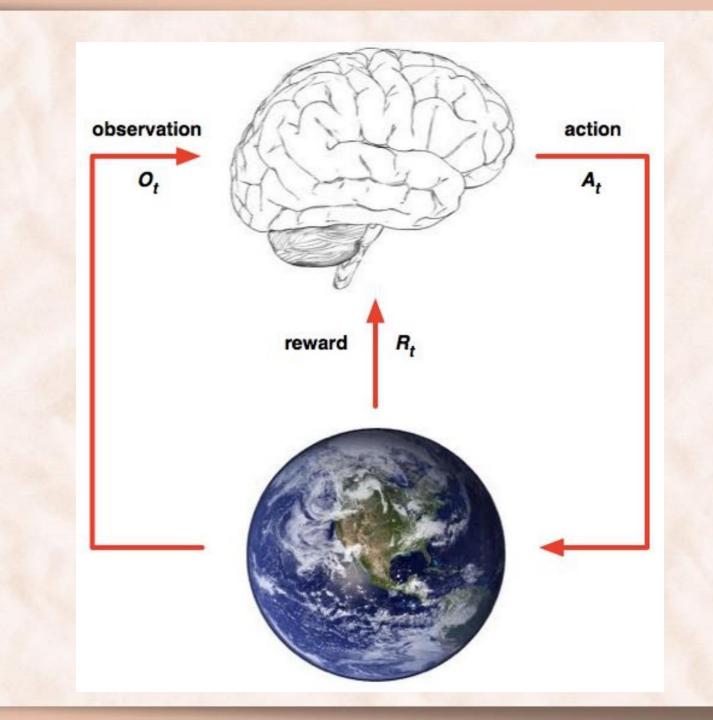


Learned Features (Representations)



Reinforcement Learning





Reinforcement Learning: TD-Gammon

[Tesauro, CACM'95]

- Learn to play Backgammon:
 - Immediate reward:
 - +100 if win
 - -100 if lose
 - 0 for all other states
 - Temporal Difference Learning with a Multilayer Perceptron.
 - Trained by playing 1.5 million games against itself.
 - Played competitively against top-ranked players in international tournaments.

Reinforcement Learning

- Interaction between agent and environment modeled as a sequence of *actions & states*:
 - Learn *policy* for mapping states to actions in order to maximize a *reward*.
 - Reward may be given only at the end state => delayed reward.
 - States may be only *partially observable*.
 - Trade-off between *exploration* and *exploitation*.
- Examples:
 - Backgammon [Tesauro, CACM'95], helicopter flight [Abbeel, NIPS'07].
 - 49 Atari games, using deep RL [Mnih et al., Nature'15].
 - AlphaGo [Silver et al., 2016], AlphaZero [Silver et al., 2017], ...

Background readings

• Python:

- Introductory <u>Python lecture</u>.
- Probability theory:
 - Basic probability theory (pp. 12-19) in <u>Pattern Recognition and</u> <u>Machine Learning</u>.
 - Chapter 3 in DL textbook on Probability and Information Theory.

Linear algebra:

- Chapter 2 in DL textbook on Linear Algebra.
- Chapter 2 on Linear Algebra in Mathematics for Machine Learning.

• Calculus:

- Basic properties for <u>derivatives</u>, exponentials, and logarithms.
- Chapter 4.3 in DT textbook on <u>Numerical Computation</u>.

