ITCS 5356: Introduction to Machine Learning

Basic Linear Algebra

Razvan C. Bunescu

Department of Computer Science @ CCI

rbunescu@charlotte.edu

Slides adapted from 6.837 (Patrick Nicholas at MIT), MATH240 (Ryan Blair at UPenn), ITCS4156 (Minwoo Lee at UNCC), CS545 (Asa Ben-Hur at CSU), 10-601 (Matt Gormely at CMU)

Notations

- Training data samples: $X \in \mathbb{R}^{N \times D}$
- The number of data samples: N
- The number of attributes: D
- The target label: $\mathbf{y} \in \mathbb{R}^{N \times K}$
- The dimension of target label: K
- Data: $\boldsymbol{D} = [\boldsymbol{X}, \boldsymbol{y}] \in \mathbb{R}^{N \times (D+K)}$
- The *i*-th sample pair: $(x^{(i)}, y^{(i)})$
- Test sample pair: (x', y')
- Label predicted: \hat{y}

i.e. predicted by function $f: \hat{y} = f(x')$

Linear Algebra: Matrix Operations

Data to discover prediction function f

• $\widehat{\mathbf{y}}^{(i)} = f(\mathbf{x}^{(i)})$

• Let
$$\mathbf{x}^{(i)} = \begin{bmatrix} x_0^{(i)} \\ x_1^{(i)} \\ x_2^{(i)} \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$$
 and $\mathbf{y}^{(i)} = 6$

- What can be a good *f*?
 - Linear formulation $f(\mathbf{x}) = ax_0 + bx_1 + cx_2$
 - *a*, *b*, *c* are the parameters or weights.
 - $-(a, b, c) = (1,2,1) \text{ or } (2,1,2) \text{ or } (1,1,3) \text{ or } (0,0,6) \text{ or } \dots$

Data to discover function f

• $\widehat{\mathbf{y}} = f(\mathbf{X})$

• Let
$$\mathbf{X} = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 2 \end{bmatrix}$$
 and $\mathbf{y} = \begin{bmatrix} 6 \\ 4 \\ 5 \end{bmatrix}$

- What can be a good *f*?
 - If using linear formulation $f(x) = ax_0 + bx_1 + cx_2$
 - (a, b, c) = (1, 2, 1)

How can we model such solutions?

Linear Algebra

Matrix & Vector Operations

- Basic Operations
- Dot Product, Norm, Cosine
- Transpose
- Inverse
- Determinants
- Trace
- Rank & Linear Independence

Basic Operations

• Scalar multiplication:

– Multiply a matrix with a number.

• Distribute (broadcast) scalar multiplication to all entries.

$$3 \cdot \begin{bmatrix} 1 & 2 & 3 \\ 0 & -1 & -2 \end{bmatrix} = \begin{bmatrix} 3 \cdot 1 & 3 \cdot 2 & 3 \cdot 3 \\ 3 \cdot 0 & 3 \cdot -1 & 3 \cdot -2 \end{bmatrix}$$
$$= \begin{bmatrix} 3 & 6 & 9 \\ 0 & -6 & -6 \end{bmatrix}$$

Basic Operations

- The **transpose** A^{T} :
 - Rows of A become columns of A^{T} and columns of A become rows of A^{T} .

$$A_{ij}^T = A_{ji}$$

- Definition:
 - A matrix is symmetric if $A^{\top} = A$
 - A matrix is square if it is of size $n \times n$
 - A matrix is **diagonal** if it is square and the only non-zero entries are a_{ii} for some *i*.

Definitions

- A matrix is symmetric if $A^{\top} = A$
- A matrix is square if it is of size $n \times n$
- A matrix is **diagonal** if it is square and the only non-zero entries are of the form a_{ii} for some *i*
- The **identity matrix** of dimension n, denoted I_n , is the $n \times n$ diagonal matrix where all the diagonal entries are 1.

Basic Operations

Addition and Subtraction:

- Both matrices must have same dimensions.
- Add or subtract element-wise.

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} + \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} a+e & b+f \\ c+g & d+h \end{bmatrix}$$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} - \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} a-e & b-f \\ c-g & d-h \end{bmatrix}$$

Matrix Properties

Let A and B be two $m \times n$ matrices.

Let k and p be two scalars.

Let **0** be the $m \times n$ matrix of all 0's.

A + B = B + AA + (B + C) = (A + B) + Ck(A+B) = kA + kB(k+p)A = kA + pA $A + \mathbf{0} = A$ $A - A = \mathbf{0}$ $kA = \mathbf{0} \Rightarrow k = 0 \text{ or } A = \mathbf{0}$

Basic Operations

- **Multiplication** $C = A \cdot B$ or C = AB:
 - Only possible if dimensions are $(m \times n) \cdot (n \times p)$.
 - Product dimensions for C are $(m \times p)$
 - Multiply each row in A by each column in B (row-column dot product).

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} ae+bg & af+bh \\ ce+dg & cf+dh \end{bmatrix}$$

Basic Operations

• Is AB = BA?

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} ae+bg & \dots \\ \dots & \dots \end{bmatrix}$$

$$\begin{bmatrix} e & f \\ g & h \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} ea + fc & \dots \\ \dots & \dots \end{bmatrix}$$

Matrix Properties

Let A and B be two $m \times n$ matrices.

Let k and p be two scalars.

Let **0** be the $m \times n$ matrix of all 0's.

A(BC) = (AB)CA(B+C) = AB + AC(A+B)C = AC + BCk(AB) = (kA)B = A(kB) $I_m \cdot A = A$ $A \cdot I_n = A$ $kA = \mathbf{0} \Rightarrow k = 0 \text{ or } A = \mathbf{0}$ $(A^{\mathsf{T}})^{\mathsf{T}} = A$ $(kA)^{\mathsf{T}} = kA^{\mathsf{T}}$ $(A+B)^{\mathsf{T}} = A^{\mathsf{T}} + B^{\mathsf{T}}$ $(AB)^{\mathsf{T}} = B^{\mathsf{T}}A^{\mathsf{T}}$

Vector Operations

- A vector is a $d \times 1$ matrix:
 - A point in a *d* dimensional space.
 - A directed segment connected the origin with this point

Vector Operations

• Dot product:

$$a \cdot b = a^{\mathsf{T}}b = [a \ b \ c] \begin{bmatrix} d \\ e \\ f \end{bmatrix} = ad + be + cf$$

the dot product is a matrix multiplication

• Magnitude or Euclidean / L2 norm:

$$||a|| = \sqrt{a^{\mathsf{T}}a} = \sqrt{a^2 + b^2 + c^2}$$

the magnitude is the square root of the dot product of a vector with itself.

• Angle:

$$\cos(\theta) = \frac{a^{\mathsf{T}}b}{\|a\|\|b\|}$$

the cosine of the angle between two vectors is the dot product between their normalized versions.

Inverse of a Matrix

- Identity matrix (I)
 - $-A \cdot I = I \cdot A = A$

 $I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

- Some matrices have an **inverse**:
 - $-A \cdot A^{-1} = A^{-1} \cdot A = I$
 - Both A and A^{-1} must be square.
- Properties of inversion operator:
 - $(A^{-1})^{-1} = A$
 - $(AB)^{-1} = B^{-1} A^{-1}$

Determinant of a Matrix

- A real number associated with a square matrix:
 - If det(A) = 0, then A has no inverse.

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \qquad \det(A) = ad - bc \qquad A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

$$\det \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} = a \cdot \det \begin{bmatrix} e & f \\ h & i \end{bmatrix} - b \cdot \det \begin{bmatrix} d & f \\ g & i \end{bmatrix} + c \cdot \det \begin{bmatrix} d & e \\ g & h \end{bmatrix}$$

 See <u>Laplace expansion</u> for recursive computation of determinants, or <u>Leibniz formula</u> based on permutations.

Orthonormal Basis

- A set of vectors B in a vector space V is called a **basis** iff every vector in V can be written as a linear combination of basis vectors from B.
 - Orthonormal basis: Orthogonal + Normal
 - *Orthogonal* basis: if all pairs of basis vectors are orthogonal, i.e. their dot-product is zero.
 - Normal basis: is all basis vectors have magnitude of one.

Orthogonal basis vectorsNormal basis vectors $x \cdot y = 0$ $\|x\| = 1$ $x \cdot z = 0$ $\|y\| = 1$ $y \cdot z = 0$ $\|z\| = 1$

Trace of a Matrix

• The **trace** of a square matrix A is the sum of the diagonal entries of A.

$$A = \begin{bmatrix} 1 & 4 & -1 \\ -2 & -3 & 2 \\ 3 & -4 & 7 \end{bmatrix}$$

tr(A) = 1 + (-3) + 7 = 5

Linearly Independence

- The vectors $v_1, v_2, ..., v_m$ are **linearly dependent** if there exist scalars $a_1, a_2, ..., a_m$, not all zero, such that $a_1v_1 + a_2v_2 + \cdots + a_mv_m = 0$.
- The vectors $v_1, v_2, ..., v_m$ are **linearly independent** if $a_1v_1 + a_2v_2 + \cdots + a_mv_m = 0$ implies $a_1 = a_2 = \cdots = a_m = 0$.

Rank of a MAtrix

- The **rank** of an $m \times n$ matrix A is the maximum number of linearly independent rows.
 - It is also the maximum number of linearly independent columns.

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$
 rank(A) = 2

$$-row_1 + 2 row_2 - row_3 = 0$$

Matrix Invertibility

- A square $n \times n$ matrix A is invertible iff rank(A) = N.
- A square $n \times n$ matrix A is invertible iff $det(A) \neq 0$.

$\begin{bmatrix} 1 \\ 3 \end{bmatrix}$	2] 4]	 Columns are linearly independent => rank(A) = 2 => A is invertible.
-		

• $det(A) = 1 \cdot 4 - 3 \cdot 2 = -2 \neq 0 => A$ is invertible

[1	1	2]	•	The 3 columns are NOT linearly independent $(rank(A) = 2)$
2	1	3		=> A is not invertible.
L3	1	4	•	$det(A) = 1 \cdot 1 \cdot 4 - 1 \cdot 1 \cdot 4 - 1 \cdot 2 \cdot 4 + 1 \cdot 3 \cdot 3 + 2 \cdot 2 \cdot$
				$1 - 2 \cdot 3 \cdot 1 = 0 \Rightarrow$ A is not invertible.

Euclidean Distance

• The Euclidean distance between two vectors **x** and **y** is:

$$d(\mathbf{x}, \mathbf{y}) = \left\|\mathbf{x} - \mathbf{y}\right\|_{2} = \sqrt{(\mathbf{x} - \mathbf{y})^{T}(\mathbf{x} - \mathbf{y})}$$

• Compute the distance between two vectors A and B below:

$$A = \begin{bmatrix} 2\\0\\1 \end{bmatrix} \qquad B = \begin{bmatrix} 1\\2\\3 \end{bmatrix} \qquad d(A,B) = ?$$

Supplemental Readings

• Chapter 2 in DL textbook on Linear Algebra.