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Supervised Learning

• Task = learn an (unknown) function f : X → Y that maps 

input instances x  X to output targets y = f(x)  Y:

– Classification:

• The output y  Y is one of a finite set of discrete categories.

– Regression:

• The output y  Y is continuous, or has a continuous 

component.

• Target function f(x) is known (only) through (noisy) set of 

training examples:

  (x1,y1), (x2,y2), … (xn,yn)
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Supervised Learning 

• Task = learn an (unknown) function f : X → Y that maps 

input instances x  X to output targets y = f(x)  Y:

– function f(x)  is known (only) through (noisy) set of training 

examples:

• Training data: (x1,y1), (x2,y2), … (xn,yn)

• Task = build a function h(x) such that:

– h matches f well on the training data:

=> h is able to fit data that it has seen.

– h also matches target f well on test data:

=> h is able to generalize to unseen data.
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Parametric Approaches to Supervised 

Learning 

• Task = build a function h(x) such that:

– h matches f well on the training data:

=> h is able to fit data that it has seen.

– h also matches f well on test data:

=> h is able to generalize to unseen data.

• Task = choose h from a “nice” class of functions that 

depend on a vector of parameters w:

– h(x)  hw(x)  h(w,x)

– what classes of functions are “nice”?

• linear ⊂ convex ⊂ continuous ⊂ differentiable ⊂ …
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Linear Regression

1. (Simple) Linear Regression

– House price prediction as a function of floor size.

2. Multiple Linear Regression

– House price prediction as a function of floor size, age, bedrooms.

– Normal equations.
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House Price Prediction

• Given the floor size in square feet, predict the selling price:

– x is the size, y is the price

– Need to learn a function h such that ො𝑦 = h(x)  ≈  f(x) = 𝑦.

• Is this classification or regression?

– Regression, because price is real valued.

• and there are many possible prices.

– (Simple) linear regression, because one input value.

• Would a problem with only two labels 0.5 and 1.0 still be 

regression?
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House Prices in Athens
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50 houses, randomly selected from the 106 

houses or townhomes:

• sold recently in Athens, OH.

• built 1990 or later.



House Prices in Athens
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House Prices in Athens
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Linear Regression

• Use a linear function approximation:

– ො𝑦 = hw(x) = wTx = [w0, w1]
T[1, x] = w1x+w0.

• w0 is the intercept (or the bias term).

• w1 controls the slope.

• How do we find the best line?

– What do we mean by the “best”?

• How do we quantify how good a line is?

– Quantify the error that a line makes.

» How?
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Which line is better?
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Sum-of-Squares Error Function
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Linear Regression

• Use a linear function approximation:

– ො𝑦 = hw(x) = wTx = [w0, w1]
T[1, x] = w1x+w0.

• w0 is the intercept (or the bias term).

• w1 controls the slope.

• Learning = optimization:

– Find w that obtains the best fit on the training data, i.e. find w that 

minimizes the sum of square errors:

 

ෝ𝐰 = argmin
 𝐰

𝐽(𝐰)
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Minimizing Sum-of-Squares Error

• Minimizing the Sum-of-Squares error function:

• How do we find w that minimizes J(w)?

– How do we find the minimum of a function that is convex and differentiable?

• Find the parameters w that make the gradient equal ∇𝐽 𝐰  to 0.
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why squared?
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What is the gradient of a function?



Mathematical Intermission: Differentiation

15



In class: Find solution by solving ∇𝐽 𝐰 = 𝟎
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Minimizing Sum-of-Squares Error

• Sum-of-Squares error function:

• How do we find w* that minimizes E(w)?

• Least Square solution is found by solving a system of 2 linear equations:
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Multiple Linear Regression

• Q: What if one feature is insufficient for good performance?

– Example: house prices depend not only on floor size, but also 

number of bedrooms, age, location, …

• A: Use Multiple Linear Regression.

x = [x0, x1, …, xM]T

ො𝑦 = hw(x) = wTx

• Training examples: (x(1), y1), (x
(2), y2), … (x(N), yN)
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Multiple Linear Regression

• Learning = minimize the Sum-of-Squares error function:

• How do we find the minimum of a function that is convex 

and differentiable?
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Homework: Solve ∇𝐽 𝐰 = 𝟎
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Multiple Linear Regression

• Learning = minimize the Sum-of-Squares error function:

• Computing the gradient ∇J(w) and setting it to zero:

• Solving for w yields

– Prove it (homework).
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pseudo-inverse of X.



Normal Equations

• Solution is 

• X is the data matrix, or the design matrix:

• y = [y1, y2, …, yN]T is the vector of labels.
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Evaluation Measures

• Root Mean Square Error (RMSE):

• Mean Absolute Error (MAE):
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