ITCS 5356: Introduction to Machine Learning

Linear Regression

Razvan C. Bunescu Department of Computer Science @ CCI

rbunescu@uncc.edu

Supervised Learning

- **Task** = learn an (unknown) function $f : X \rightarrow Y$ that maps input instances $\mathbf{x} \in X$ to output targets $y = f(\mathbf{x}) \in Y$:
 - Classification:
 - The output $y \in Y$ is one of a finite set of discrete categories.
 - Regression:
 - The output y ∈ Y is continuous, or has a continuous component.
- Target function f(x) is known (only) through (noisy) set of training examples:

 $(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots (\mathbf{x}_n, y_n)$

Supervised Learning

- **Task** = learn an (unknown) function $f : X \rightarrow Y$ that maps input instances $\mathbf{x} \in X$ to output targets $y = f(\mathbf{x}) \in Y$:
 - function f(x) is known (only) through (noisy) set of training examples:
 - Training data: $(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots (\mathbf{x}_n, y_n)$
- **Task** = build a function $h(\mathbf{x})$ such that:
 - *h* matches *f* well on the *training data*:
 - =>h is able to fit data that it has seen.
 - h also matches target f well on test data:
 => h is able to generalize to unseen data.

Parametric Approaches to Supervised Learning

- **Task** = build a function $h(\mathbf{x})$ such that:
 - -h matches f well on the training data:
 - =>h is able to fit data that it has seen.
 - -h also matches f well on test data:
 - =>h is able to generalize to unseen data.
- Task = choose h from a "nice" class of functions that depend on a vector of parameters w:

 $-h(\mathbf{x}) \equiv h_{\mathbf{w}}(\mathbf{x}) \equiv h(\mathbf{w},\mathbf{x})$

- what classes of functions are "nice"?
 - <u>linear</u> \subset convex \subset continuous \subset differentiable \subset ...

Linear Regression

1. (Simple) Linear Regression

- House price prediction as a function of *floor size*.

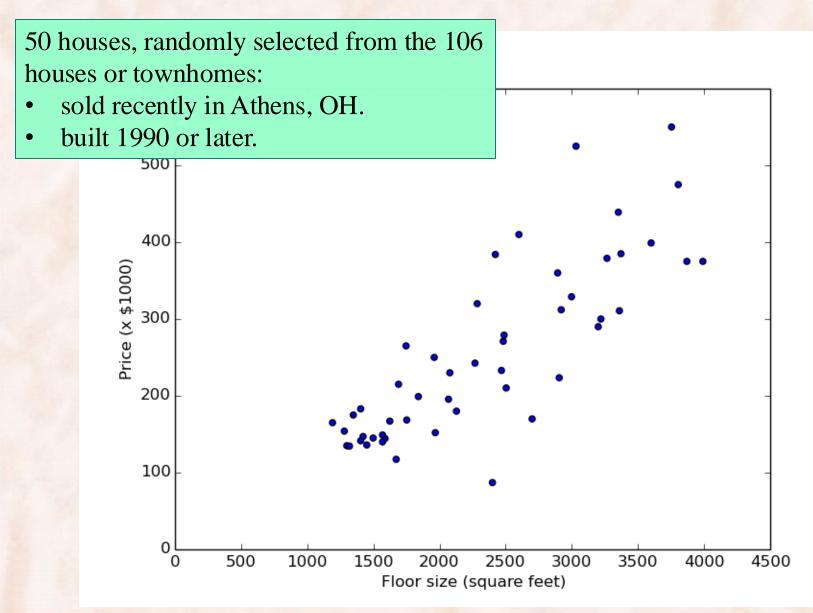
2. Multiple Linear Regression

- House price prediction as a function of *floor size*, *age*, *bedrooms*.
- Normal equations.

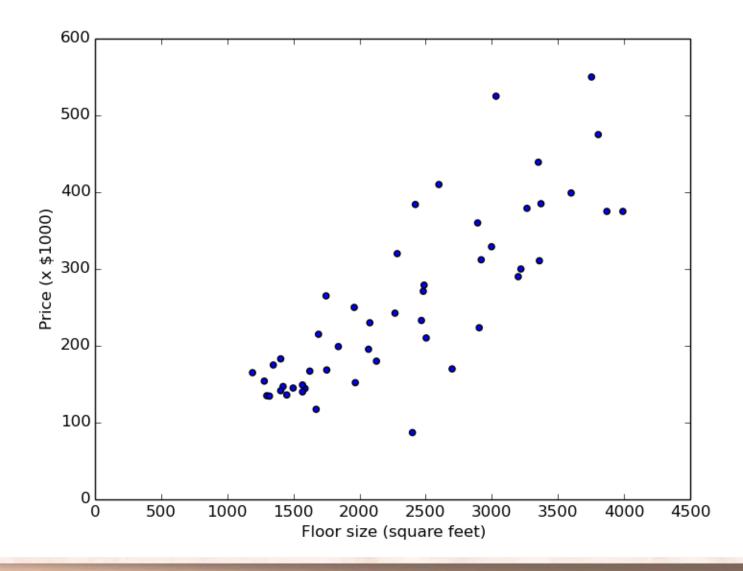
House Price Prediction

- Given the floor *size* in square feet, predict the selling price:
 - -x is the size, y is the price
 - Need to learn a function h such that $\hat{y} = h(x) \approx f(x) = y$.
- Is this classification or regression?
 - **Regression**, because price is real valued.
 - and there are many possible prices.
 - (Simple) linear regression, because one input value.
 - Would a problem with only two labels 0.5 and 1.0 still be regression?

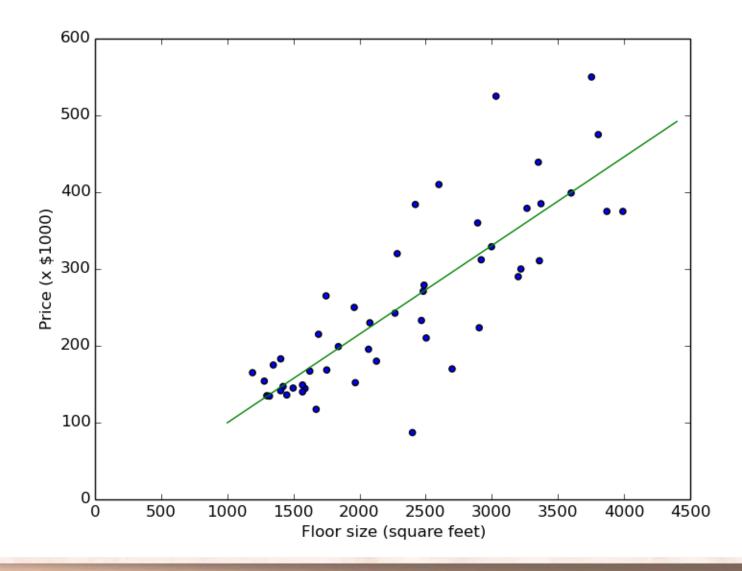
House Prices in Athens



House Prices in Athens



House Prices in Athens

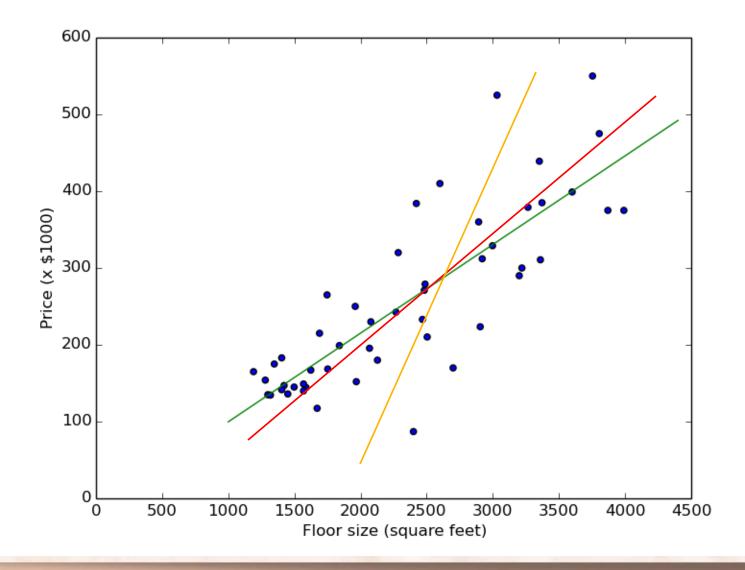


Linear Regression

- Use a linear function approximation:
 - $\hat{y} = h_{\mathbf{w}}(\mathbf{x}) = \mathbf{w}^{\mathrm{T}}\mathbf{x} = [w_0, w_1]^{\mathrm{T}}[1, x] = w_1 x + w_0.$
 - w_0 is the intercept (or the bias term).
 - w_1 controls the slope.
- How do we find the best line?
 - What do we mean by the "best"?
 - How do we quantify how good a line is?
 - Quantify the error that a line makes.

» How?

Which line is better?

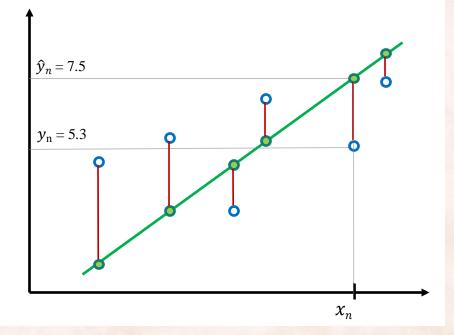


11

Sum-of-Squares Error Function

 $\hat{y}_n = h_{\mathbf{w}}(\mathbf{x}_n) = \mathbf{w}^{\mathrm{T}} \mathbf{x}_n = [w_0, w_1] \cdot [1, x_n] = w_1 x_n + w_0$

 $J(\mathbf{w})$ is the objective function:



$$J(\mathbf{w}) = \frac{1}{2N} \sum_{n=1}^{N} (\hat{y}_n - y_n)^2$$
$$= \frac{1}{2N} \sum_{n=1}^{N} (\mathbf{w}^T \mathbf{x}_n - y_n)^2$$

Learning means find **w** that minimizes the objective function, i.e. the **cost**:

 $\widehat{\boldsymbol{w}} = \underset{\mathbf{w}}{\operatorname{arg\,min}} J(\mathbf{w})$

Linear Regression

- Use a linear function approximation:
 - $\hat{y} = h_{\mathbf{w}}(\mathbf{x}) = \mathbf{w}^{\mathrm{T}}\mathbf{x} = [w_0, w_1]^{\mathrm{T}}[1, x] = w_1 x + w_0.$
 - w_0 is the intercept (or the bias term).
 - w_1 controls the slope.
- Learning = optimization:
 - Find w that obtains the best fit on the training data, i.e. find w that minimizes the sum of square errors:

$$J(\mathbf{w}) = \frac{1}{2N} \sum_{n=1}^{N} (\hat{y}_n - y_n)^2 = \frac{1}{2N} \sum_{n=1}^{N} (\mathbf{w}^T \mathbf{x}_n - y_n)^2$$

 $\widehat{\mathbf{w}} = \underset{\mathbf{w}}{\operatorname{argmin}} J(\mathbf{w})$

Minimizing Sum-of-Squares Error

• Minimizing the Sum-of-Squares error function:

$$J(\mathbf{w}) = \frac{1}{2N} \sum_{n=1}^{N} (\mathbf{w}^T \mathbf{x}_n - y_n)^2$$

$$\widehat{\mathbf{w}} = \underset{\mathbf{w}}{\operatorname{arg\,min}} J(\mathbf{w})$$

- How do we find w that minimizes $J(\mathbf{w})$?
 - How do we find the minimum of a function that is **convex** and **differentiable**?
 - Find the parameters w that make the gradient equal $\nabla J(\mathbf{w})$ to 0.

What is the **gradient** of a function?

why squared?

Mathematical Intermission: Differentiation

In class: Find solution by solving $\nabla J(\mathbf{w}) = \mathbf{0}$

Minimizing Sum-of-Squares Error

• Sum-of-Squares error function:

$$J(\mathbf{w}) = \frac{1}{2N} \sum_{n=1}^{N} (h_{\mathbf{w}}(\mathbf{x}_{n}) - y_{n})^{2}$$

• How do we find **w*** that minimizes *E*(**w**)?

$$\widehat{\mathbf{w}} = \underset{\mathbf{w}}{\operatorname{arg\,min}} J(\mathbf{w})$$

• Least Square solution is found by solving a system of 2 linear equations:

$$w_0 N + w_1 \sum_{n=1}^{N} x_n = \sum_{n=1}^{N} y_n$$

$$w_0 \sum_{n=1}^{N} x_n + w_1 \sum_{n=1}^{N} x_n^2 = \sum_{n=1}^{N} y_n x_n$$

Multiple Linear Regression

- Q: What if one feature is insufficient for good performance?
 - Example: house prices depend not only on *floor size*, but also number of *bedrooms*, *age*, *location*, ...
- A: Use Multiple Linear Regression. $\mathbf{x} = [x_0, x_1, ..., x_M]^T$ $\hat{y} = h_{\mathbf{w}}(\mathbf{x}) = \mathbf{w}^T \mathbf{x}$
- Training examples: $(\mathbf{x}^{(1)}, y_1), (\mathbf{x}^{(2)}, y_2), \dots (\mathbf{x}^{(N)}, y_N)$

Multiple Linear Regression

• **Learning** = minimize the **Sum-of-Squares** error function:

$$\widehat{\mathbf{w}} = \arg\min_{\mathbf{w}} J(\mathbf{w}) \qquad J(\mathbf{w}) = \frac{1}{2N} \sum_{n=1}^{N} (\widehat{y}_n - y_n)^2$$

$$=\frac{1}{2N}\sum_{n=1}^{N} (\mathbf{w}^T \mathbf{x}_n - y_n)^2$$

• How do we find the minimum of a function that is **convex** and **differentiable**?

Homework: Solve $\nabla J(\mathbf{w}) = \mathbf{0}$

Multiple Linear Regression

• Learning = minimize the Sum-of-Squares error function:

$$\widehat{\mathbf{w}} = \arg\min_{\mathbf{w}} J(\mathbf{w}) \qquad J(\mathbf{w}) = \frac{1}{2N} \sum_{n=1}^{N} \left(\mathbf{w}^T \mathbf{x}^{(n)} - y_n \right)^2$$

• Computing the gradient $\nabla J(\mathbf{w})$ and setting it to zero:

$$\sum_{n=1}^{N} \left(\mathbf{w}^{\mathrm{T}} \mathbf{x}^{(n)} - t_n \right) \, \mathbf{x}^{(n)} = 0$$

The Moore-Penrose pseudo-inverse of X.

- Solving for w yields $\mathbf{w} = (X^T X)^{-1} X^T \mathbf{y}$
 - Prove it (homework).

Normal Equations

- Solution is $\mathbf{w} = (X^T X)^{-1} X^T \mathbf{y}$
- X is the data matrix, or the **design matrix**:

$$X = \begin{pmatrix} \mathbf{x}^{(1)^{\mathrm{T}}} \\ \mathbf{x}^{(2)^{\mathrm{T}}} \\ \vdots \\ \vdots \\ \mathbf{x}^{(N)^{\mathrm{T}}} \end{pmatrix} = \begin{pmatrix} x_{0}^{(1)} x_{1}^{(1)} \dots x_{M}^{(1)} \\ x_{0}^{(2)} x_{1}^{(2)} \dots x_{M}^{(2)} \\ \vdots \\ \vdots \\ \vdots \\ \mathbf{x}_{0}^{(N)} x_{1}^{(N)} \dots x_{M}^{(N)} \end{pmatrix} \qquad For poly fit: \\ \begin{pmatrix} 1 x_{1} x_{1}^{2} \dots x_{1}^{M} \\ 1 x_{2} x_{2}^{2} \dots x_{2}^{M} \\ \vdots \\ \vdots \\ 1 x_{N} x_{N}^{2} \dots x_{N}^{M} \end{pmatrix}$$

• $\mathbf{y} = [y_1, y_2, ..., y_N]^T$ is the vector of labels.

Evaluation Measures

• Root Mean Square Error (RMSE):

$$RMSE(\mathbf{w}) = \sqrt{\frac{1}{N} \sum_{n=1}^{N} (\hat{y}_n - y_n)^2} = \sqrt{\frac{1}{N} \sum_{n=1}^{N} (\mathbf{w}^T \mathbf{x}_n - y_n)^2}$$

Mean Absolute Error (MAE):

$$MAE(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} |\hat{y}_n - y_n| = \frac{1}{N} \sum_{n=1}^{N} |\mathbf{w}^T \mathbf{x}_n - y_n|$$