ITCS 5356: Intro to Machine Learning

Logistic Regression

Razvan C. Bunescu
Department of Computer Science (@ CCI

razvan.bunescu@charlotte.edu

mailto:razvan.bunescu@charlotte.edu

Supervised Learning

=

Training

Training Examples HE:} Leamlng I:__> Model A
o 57 Algorithm

|

Testing

Test Examples H |:> [Model 4 } L:.f) Generalization
(X, y) Performance

Supervised Learning

Task = learn an (unknown) function f: X — Y that maps
input instances x € X to output targets y = f(x) € Y:
— Classification:
* The output y € Y 1s one of a finite set of discrete categories.
— Regression:

* The output y € Y is continuous, or has a continuous
component.

Target function f(x) 1s known (only) through (noisy) set of
training examples:

(Xlayl)a (X29y2)9 g (Xnayn)

Parametric Approaches to Supervised
Learning

Task = build a function A4(x) such that:
— & matches f well on the training data:
=> J 1s able to fit data that it has seen.
— h also matches f well on test data:
=> J 1s able to generalize to unseen data.

Task = choose £ from a “nice” class of functions that
depend on a vector of parameters w:

— h(X) = hy(x) = h(W,X)
— what classes of functions are “nice”?

e [inear C convex C continuous C differentiable C ...

Three Parametric Approaches to
Classification

1) Discriminant Functions: scoring function /- X — T that
directly assigns a vector x to a specific class C,.

— Inference and decision combined into a single learning
problem.

— Linear Discriminant: the decision surface is a
hyperplane n X:

 Perceptron
* Support Vector Machines

e Fisher ‘s Linear Discriminant

Three Parametric Approaches to
Classification

2) Probabilistic Discriminative Models: directly model the
posterior class probabilities p(C, | x).

— Inference and decision are separate.
— Less data needed to estimate p(C, | xX) than p(x |C)).
— Can accommodate many overlapping features.

* Logistic Regression

e (Conditional Random Fields

Three Parametric Approaches to
Classification

=

3) Probabilistic Generative Models:

— Model class-conditional p(x |C;) as well as the priors
p(C,), then use Bayes’s theorem to find p(C, | x).

« or model p(x,C)) directly, then marginalize to obtain the
posterior probabilities p(C,, | X).

— Inference and decision are separate.

— Can use p(x) for outlier or novelty detection.

— Need to model dependencies between features.
* Naive Bayes.
e Hidden Markov Models.

Neurons

Soma is the central part of the neuron:
* where the input signals are combined.

Dendrites are cellular extensions:
* where majority of the input occurs.

Axon i1s a fine, long projection:
* carries nerve signals to other neurons.

Synapses are molecular structures between
axon terminals and other neurons:
* where the communication takes place.

Neuron Models
https://www.research.ibm.com/software/IBMResearch/multimedia/IJCNN2013.neuron-
model.pdf year Model Name Reference

1907 Integrate and fire [13]
1943 McCulloch and Pitts [11]
1952 Hodgkin-Huxley [12]
1958 Perceptron [14]
1961 Fitzhugh-Nagumo [15]
1965 Leaky integrate-and-fire [16] |
1981 Morris-Lecar [17]
1986 Quadratic integrate-and-fire [18]
1989 Hindmarsh-Rose [19]
1998 Time-varying integrate-and-fire model [20]
1999 Wilson Polynomial [21]
2000 Integrate-and-fire or burst [22]
2001 Resonate-and-fire [23]
2003 Izhikevich [24]
2003 Exponential integrate-and-fire [25]
2004 Generalized integrate-and-fire [26]
2005 Adaptive exponential integrate-and-fire [27]
2009 Mihalas-Neibur [28] 9

Spiking/LIF Neuron Function

http://ee.princeton.edu/research/prucnal/sites/default/files/06497478.pdf

xl(t)\

w,,T,

xi(t)

— LYY

» [o

Wy, Ty

x(t)”

(b)

Fig. 2. (a) llustration and (b) functional description of a leaky integrate-and-
fire neuron. Weighted and delayed input signals are summed into the input
current I,,,, (t), which travel to the soma and perturb the internal state variable,
the voltage V. Since V is hysteric, the soma performs integration and then
applies a threshold to make a spike or no-spike decision. After a spike is
released, the voltage V' is reset to a value Vi.s.¢. The resulting spike is sent to
other neurons in the network.

10

Neuron Models
https://www.research.ibm.com/software/IBMResearch/multimedia/IJCNN2013.neuron-
model.pdf year Model Name Reference

1907 Integrate and fire [13]
1943 McCulloch and Pitts [11]
1952 Hodgkin-Huxley [12]
1958 Perceptron [14]
1961 Fitzhugh-Nagumo [15]
1965 Leaky integrate-and-fire [16]
1981 Morris-Lecar [17]
1986 Quadratic integrate-and-fire [18]
1989 Hindmarsh-Rose [19]
1998 Time-varying integrate-and-fire model [20]
1999 Wilson Polynomial [21]
2000 Integrate-and-fire or burst [22]
2001 Resonate-and-fire [23]
2003 Izhikevich [24]
2003 Exponential integrate-and-fire [25]
2004 Generalized integrate-and-fire [26]
2005 Adaptive exponential integrate-and-fire [27]
2009 Mihalas-Neibur [28] 11

McCulloch-Pitts Neuron Function

X0 1 Wo activation | output
function
xl‘ it
W 2 _wa= f @ hy(x) =f2)
X2‘ ws Z A f(Z)

Algebraic interpretation:

— The output of the neuron is a linear combination of inputs from other neurons,
rescaled by the synaptic weights.

« weights w; correspond to the synaptic weights (activating or inhibiting).
* summation corresponds to combination of signals in the soma.

— It is often transformed through an activation / output function.

Activation Functions

A

. 1
unit step f(z) ={ (1) iii :8
Perceptron
ramp f(z) = max(0, z)
logistic f(z) = : ReLU

|

identity f(z2)=z

Logistic Regression

Linear Regression

Linear Regression

X0 Wo activation
: > function
e Wy 2 wa 1 f -@
@ N A’ F @ P =y wx,
X3

* Polynomial curve fitting 1s Linear Regression:

Xtmtio(x) =il Xy . M y = wix

e What error/cost function to minimize?
N

1
J(w) = 5N Z ($n, — V)% Use normal equations or gradient descent

n=1

14

Perceptron

X0(1 Wo activation
function
* g ~
%) 2 3 s | ;.
WX

@ LR 5]

: Foyo) 1 if2<0 1

1 ifz=0

X3

» Assume classes'C = {c;, ¢,} = {+1, =1}.

e Training set 1s (X;, y;), (X5, Vo), ..

Xl I i, ,]

y (XI’D yl’l)'

y = sgn(w'x) =sgn(wy + w; x; + ... + wyx,)

ifw' x>0
otherwise

N

a linear discriminant function

158

Linear Discriminant Functions

Use a linear function of the input vector:
h(x) = w' o (x) + wg

weight vector bias = —threshold

Decision:
x € C;if h(x) >0, otherwise x € C,.

= decision boundary is hyperplane /(x) = 0.

Properties:
— w 1s orthogonal to vectors lying within the decision surface.

— w, controls the location of the decision hyperplane.

16
e

Geometric Interpretation

h >0 T
h =0

From Perceptron to Logistic Regression

[—

* Features x =[1, x{, x5, X3, ..., Xg]

* Weights w = [w,, Wi, Wy, W3, ..., Wk]

Discriminant function model Probabilistic discriminative model
Perceptron Logistic Regression

Training: Find w to fit training data. Training: Find w to fit training data.
Inference: Compute h(x) = w’x Inference: Compute z = w'x
Decision: Decision:

« if h(x) = 0 output label +1 « if z = 0 output label 1

* else output label -1 * else output label 0

1
1+exp(—2z)

Take logit z, compute probabilistic output p(y = 1|x) = 6(z) =

18

Logistic Regression for Binary Classification

=OF & activation
0
function

x1 g—"" a

o 2 > o/ g
x, @ Z=E WX . § = 1

W3 f(z)= t 1+exp(-w'x)

1+exp(-2z)

X3

« Used for binary classification:
 Labels C={C,, C,} ={1, 0}
o Output C, if and only if y =o(w'x)>0.5

; Training set 1s (Xlayl)a (X29y2)9 e (XNayN)'
X = [, % ot e |

195
D —————

Activation / Output Functions f

unit step f(z)= {

Perceptron

0 1fz<0 l

1 1fz=0

1 f2)

1
l+¢°¢

logistic f(z) =

Logistic Regression

>
25 Ewl.xi

Logistic Regression for Binary Classification

* Model output can be interpreted as posterior class
probabilities:

1

Prob. of +ve clasas: § = p(y = 1|x) = a(w'x,,) = 1+ exp(—w7x,,)
_ n

Prob. of —veclass: 1—9=p(y=0|x) =1—-0c(w'x,) = c(—w'x,)

Linear decision boundary
o WInferenecs /

— Output +ve class if § = 0.5, else output —ve class.

 assuming uniform misclassification costs ...

Example: Text Classification

 Input:
— a document x, represented as a feature vector
X = [Xq, X5,..., %]

— a fixed set of classes C= {cy, ¢y,..., Cr}

* QOutput:
— apredicted class y € C
* binary classification: prediction y € {c,, ¢,}

The film is absolutely gorgeous. It's one that you really must
see on the biggest, best screen you can find, preferably in a
theater with really great sound. The seats were shaking at
some points. There is so much spectacle here, it's a little
overwhelming at times. And it’s all so well-crafted. Other than
the lack of sweat — still odd for such a hot planet — Arrakis
feels real and we see much more of it this time around.

Example: Sentiment Analysis

For feature x,, weight w, tells how important x; 1s for the
positive label:

x; ="review contains ‘gorgeous’: w;= +10
x; ="review contains abysmal’" Wi =10
X, =‘review contains ‘mediocre’ Wi 4

Logistic Regression for Text Classification

=

 Input observation:

— Document vector x = [x;, x,,..., X,]

* Weights:

— One per feature: w = [w;, w,,..., w,]

e Output:
— Binary logistic regression:
 predicted class y € {0,1}
— Multinomial logistic regression:
« predictedclass y € {0, 1, 2, ...}

Classification with Logistic Regression

For each feature x;, weight w; tells us importance of x;

— Plus we'll have a bias b (we called it w, earlier ...)

We'll sum up all the weighted features and the bias:
n

Z wix; | +b

i—I1

If this sum 1s high, we say y = 1; if low, then y =0

A\
|

Za—8V e b

From logit z to probability p

(s

* Problem: z isn't a probability, it's just a number!

e Solution: use a function of z that goes from 0 to 1.

— the logistic sigmoid.

The very useful logistic sigmoid

Making probabilities with sigmoids

Py=1) = o(w-x+b)
1
l+exp(—(w-x+b))

Py=0) = 1—oc(w-x+b)
1
 14exp(—(w-x+D))

4 exp(—(w-x+0b)) L @ n)

=l

l+exp(—(w-x+b))

Turning a probability into a classifier

=

« We’ll compute wix+b

* And then we’ll pass it through the sigmoid function:
o(w'x+b)

* And we’ll just treat it as a probability.

1 if P(y=1|x)>0.5 #ffwx+b>0

§ LSdICUONNE { 0 otherwise iffwx+b<0

0.5 here 1s called the decision threshold

The LR Classifier

Sentiment Analysis: Does y =1 or y = 07?

=

It's hokey . There are virtually no surprises , and the writing 1s
second-rate . So why was it so enjoyable ? For one thing , the
cast 1s great . Another nice touch 1s the music . I was

overcome with the urge to get off the couch and start dancing .
It sucked me in , and it 'll do the same to you .

-~ X3:1 §§§§§§§§
It's(aokey) There are Vlrtually@’surprlses and the writing isGecond-ratd.
So Why was it so@€njoyable ? For one thing , the cast is
). Anothe touch is the music @zvas overcome with the urge to get off
the co\uch and start,dancmg It sucked @m ,\a\nd it'll do the same to @O .

-—
-~ -

\ \ P

X1=3 x5=0 Xg=4.19 X
Var Definition Value in Fig. 5.2
X1 count(positive lexicon) € doc) 3
X count(negative lexicon) € doc) 2
“ { 1 if “no” € doc 1
0 otherwise
x4 count(1st and 2nd pronouns € doc) 3
. { 1 if “I” €doc 0
> 0 otherwise

x¢ log(word count of doc) In(66) =4.19

Classifying Sentiment for Input x

Var Definition Value in Fig. 5.2
X1 count(positive lexicon) € doc) 3
b)) count(negative lexicon) € doc) 2
. <’ 1 if “no” € doc !
| O otherwise
x4 count(lst and 2nd pronouns € doc) 3
. <(1 if “!” € doc 0
| 0 otherwise
x¢ log(word count of doc) In(66) =4.19

Suppose W = [2.5,—5.0,—1.2,0.5,2’.0,0.7]

b=0.1

33

Classifying Sentiment for Input x

p(+x) =P =1|x) = o(w-x+b)
= o([2.5,-5.0,—1.2,0.5,2.0,0.7] -[3,2,1,3,0,4.19] + 0.1)
= 0(.833)

.70 (5.6)

|
=

p(—=|x) =P =0lx) = 1—0c(w-x+b)
= 0.30

34

(Binary) Logistic Regression: Summary

=

e (@Gi1ven as input;
— a set of classes: (+ve sentiment, —ve sentiment)
— a vector x of features [x{, x,, ..., X,]
— x,= count("awesome").
— X, = log(number of words 1n review).

— a vector w of weights [w, w,, ..., w,]

* Logistic Regression computes as output:

P(y=1) = o(w-x+Db)
1
1_|_e—(w-x—|-b)

35
e

Wait, where did the w come from?

=

* Supervised learning for classification:

— We know the correct label y (either 0 or 1) for each training x.

— What the system produces is an estimate y = p(y = 1|x)

* Training: we want to set w and b to minimize the distance
between our estimate) and the true y.

— We need a distance estimator: a loss function or a cost function
* Cross-Entropy loss = Negative Log-Likelihood (NLL)

— We need an optimization algorithm to update w and b to
minimize the loss.

* Stochastic Gradient Descent (SGD)

Logistic Regression for Binary Classification

* Model output can be interpreted as class probabilities:

1

Prob. of +ve class: y=ply=1|x) = G(WTXn) = 1 + exp(wix)
_ n

Prob. of —veclass: 1—9=p(y =0|x) =1 —-0o(W'x,,)) = o(—w'x,,)

 How do we train a logistic regression model, 1.€. how do
we find parameters w and b?

— What cost function to minimize?

Logistic Regression Learning

=

* Learning = finding the “right” parameters w™ = [wy, wy, ..., wg]

— Find w that minimizes a cost function J(w) which measures the
misfit between y,, and y,,.

— Expect that if model performing well on training examples x,,
— same model will perform well on arbitrary test examples x € X.

e Least Squares cost function?

N
1
JW) == o= ¥)?
n=1

— Differentiable => can use gradient descent v

— Non-convex => not guaranteed to find the global optimum X

Maximum Likelithood Estimation

Maximum Likelihood Estimation (MLE): find parameters
that maximize the likelihood of the labels y = [y4, V3,..., Yn]
N

* The likelihood function is: p(y|w,X) = (v, |W, X,,)

=1

* The negative log-likelihood (cross entropy) loss:

N
L(w) = —Inp(y|lw) = — z Inp(yn|x5)
n=1

b 4

1
PO = 1Ix) = o(w'xy) =

1+ exp(—w'x,)

Maximum Likelithood Estimation

=

Training setis D= {{(x,, y,) |y, € {0,1},n € 1...N}
We have defined 9, = p(y,, = 1]x;,) = o(W'x,,)

Maximum Likelihood Estimation (MLE) principle: find parameters that
maximize the likelihood of the labels.

N
+ The likelihood is p(y|lw) = | | $,”"(1 — §,)t)

h A

n=1

» The negative log-likelihood (cross entropy) cost function:

N
LW) = ~Inp(yIw) = = > yaIny + (1 =) In(1 =)

n=1

MLE for Logistic Regression

[

 The MLE optimization problem 1is:

W = argmin J(w) = argmin|— In p(y|w) RS
W w

 MLE solution is given by VL(w) =0

— Solve numerically with gradient based methods:

-1 convex in w

 Stochastic gradient descent, conjugate gradient, L-BFGS, ...

N
L Grdien L (W Z G Soyx

n=1

 If we separate bias b=w, from w, what is VL(b)?

Interlude on Gradient Descent

=

* Need to find parameters w that minimize the negative log-

likelihood loss:

w

N
W = arg min|— z Inp(y,|X,,)
n=1

method to compute loss L(w)

e the loss L(w)

params W

GD-based optimizers
(SGD, ADAM, ...)

method to compute gradient VL(w)

Overfitting

A model that perfectly matches the training data may have
a problem.

[t may also overfit to the data, modeling noise:

— A random word that perfectly predicts y (it happens to only occur
in one class) will get a very high weight.

— Failing to generalize to a test set without this word.

A good model should be able to generalize.

Overfitting

This movie drew me 1n, and 1t'll
do the same to you.

I can't tell you how much I hated
this movie. It sucked.

Useful or harmless features:

X1 = "this"
X2 ="movie
X3 = "hated"

X4 ="drew me 1n"

4gram features that just "memorize"
training set and might cause problems:

X5 = "the same to you"
X7 ="tell you how much"

Overfitting

=

* 4-gram model on tiny data will just memorize the data:

— 100% accuracy on the trainino set
capacity = how many params in 4-gram model?

e But lt Wlll be surprised b761 F-ZIAII> 111 UIC (TS Udtd.

— Low accuracy on test set.

* Models that are too powerful can overfit the data:

— Fitting the details of the training data so exactly that the model
doesn't generalize well to the test set.

* How to avoid overfitting?
— L2 and L1 Regularization in logistic regression.
— SGD and Dropout in neural networks.

Regularized Logistic Regression

Use a Gaussian prior over the parameters:

W= [wy, ... wyl"

(M+1)/2
p(w)=N(@0,a'T) = (ﬂj exp{— oA WTW}
270 %

Bayes’ Theorem:

p(ylw)p(w)

T < p(y|lw)p(w)

p(wly) =
MAP solution:

W = argmax p(w|y)
w

= argmax p(y|w)p(w)
46
L —————— N —

Regularized Logistic Regression

(s

» MAP solution:
W = argmax p(y|w)p(w)

= arg min — In p(y|w) — In p(w)
W

a
= argmin — Inp(y|lw) — =w'w
w 2

> still convex in w

-
-
-
-
-
-
-
-
-
-
-
-
5

=|arg min Lp(w) + L,,(W)
W

N
1
Lp(w) = Nz Inyn + (1 = yp) In(1 =)
= N data term
L, (W) = % wiw (we also average)
W 2 T > regularization term

Regularized Logistic Regression

MAP (maximum likelihood + L, regularization) solution:

w = argmin Lp(w) + L-(W)
A"

A is also called decay

A

N
1 A
= argmin— 2> Inp(nlxy) + 5 Iw]
w N / 2
n=

/

MAP solution 1s given by VL(w) =0

9, = o(wl'x, + b)

1 N
V(W)= VLy(W) + VLcW) = = ¥ (5 = Yn) X + AW

n=1

Cannot solve analytically => solve numerically using (stochastic)
gradient descent [PRML 3.1.3], conjugate gradient, L-BFGS, ...

Wait, where does A come from?

/

N
1 -
w = argmin—~ > Inp(ylx,) + Wl
w N] 2
n=

A

Vi

solved using e.g. SGD

\

need to set A before training

e Cannot train A together with parameters w, why?

 We call 4 a hyper-parameter.

— We tune A before training w.

Hyperparameter Tuning:
_how to select a good value for hyperparam A?

« Put aside an independent validation set.

» Sclect parameters giving best performance on validation set.

InA € {-40,-35,-30,-25,-20,-15}

7 2 11N

Validation Training
In A -40 -35 -30 25 -20 -15

Loss 1.05 0.30 0.25 0.27 0.52 0.55

K-fold Cross-Validation

https://scikit-learn.org/stable/modules/cross_validation.html

All Data

Training data Test data

Foldl || Fold2 || Fold3 || Fold4 | Fold5 | \

Splitl | Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Split2 | Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

> Finding Parameters
Split3 | Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Split4 | Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Split5 | Fold 1 Fold 2 Fold 3 Fold 4 Fold5 |/

Final evaluation { Test data

94

https://scikit-learn.org/stable/modules/cross_validation.html

K-fold Cross-Validation

=

» Split the training data into K folds and try a wide range of
tunning parameter values:
— split the data into K folds of roughly equal size
— 1iterate over a set of values for 4
o jterateoverk=1,2, ..., K
— use all folds except k for training
— validate (calculate test error) in the k-th fold
* loss[A] = average loss over the K folds

— choose the value of A that gives the smallest loss.

https://scikit-learn.org/stable/modules/generated/sklearn.linear model.LassoCV.html

Model Evaluation

[

 K-fold evaluation:

— randomly partition dataset in K equally sized subsets P, P,, ... P

U for'cachsfiold™®in o 1, 288 1

e teston P, trainon P, U ... UP,,

WP s SR

— compute average error/accuracy across K folds.

run 1

run 2

run 3

__ 4-fold evaluation

run 4 _|

Implementation: Vectorization of LR

e Version 1: Compute gradient component-wise.

N
1
VL(W) :N z (Vn — Yn)Xn
n=1

grad = np.zeros(K)

for n in range(N):

h = Slgm01d(Wd0t(X[n])) // This NumPy code assumes examples stored in rows of X.

temp =h — y[n]
for k in range(K):
grad[k] = grad[k] + temp * X[k,n] / N

def sigmoid(x):
return 1 / (1 + np.exp(—x))

Implementation: Vectorization of LR

=

* Version 2: Compute gradient, partially vectorized.

N
1
VL(W) :N z (Vn — Yn)Xn
n=1

grad = np.zeros(K)
for n in range(N): // This NumPy code assumes examples stored in rows of X.
grad = grad + (sigmoid(w.dot(X[n])) — y[n]) * X[n] /N

def sigmoid(x):
return 1 / (1 + np.exp(—x))

Implementation: Vectorization of LR

(s

* Version 3: Compute gradient, vectorized.

VL(W) =— z (Vn — Yn)Xn

grad = X.T.dot(sigmoid(X.dot(w) —y)) / N

def sigmoid(x):
return 1 / (1 + np.exp(—x))

Vectorization of LR with Separate Bias

=

* Separate the bias b from the weight vector w.

« Compute gradient separately with respect to w and b:
9, = o(w'x,, + b)

N
: . > 1 "
— Gradient with respect to w is:| VL(w) == z (Y, — V) Xp
n=1

grad w= X.T.dot(sigmoid(X.dot(w) + b) —y) /N

N
3 ; : : i 1 "
Gradient with respect to bias bis: | Aj (b) = — Nz D — M)
n=1

grad b=+# YOUR CODE HERE ©

Vectorization of LR with Regularization

* Only the gradient with respect to w changes:

— never use L, regularization on bias.

N
1
VL(w) = N z (Vn — Yn) Xp + AW
n=1

grad = X.T.dot(sigmoid(X.dot(w) + b) —y) / N + aw

Binary Logistic Regression in sklearn

scikit-learn.org/stable/modules/linear model.html#logistic-regression

scikit-learn.org/stable/modules/generated/sklearn.linear model.LogisticRegression.html

11.11.1. Binary Case 1.1.11.3. Solvers

For notational ease, we assume that the target y; takes values in the set {0, 1} for data point 2. Once The solvers implemented in the class LogisticRegression are “Ibfgs”, “liblinear’, “newton-cg",
fitted, the predict_proba method of LogisticRegression predicts the probability of the positive class “newton-cholesky’, “sag” and “saga":

P(y; = 1|X;) as) .) A)
The following table summarizes the penalties and multinomial multiclass supported by each solver:

1
p(X;) = expit(X;w + wy) = . Solvers
P(l) P (‘ 0) 1+ exp(—Xiw - ’UJQ)
Penalties ‘Ibfgs’ ‘liblinear’ ‘newton- ‘newton- ‘sag’ ‘saga’
As an optimization problem, binary class logistic regression with regularization term r(w) minimizes the , .
cg cholesky
following cost function:
L2 penalty yes no yes no yes yes
1y s s r(w) L1 penalty no yes no no no yes
min = D si (—yilog(B(X:)) — (1 — ;) log(1 — (X)) + 50’)
i=1
Elastic-Net (L1+ L2) no no no no no yes
where s; corresponds to the weights assigned by the user to a specific training sample (the vector s is |
. s . . No penalty (‘none’ es no es es es es
formed by element-wise multiplication of the class weights and sample weights), and the sum P v) 4 y y v y
n
S=3 s Multiclass support
We currently provide four choices for the regularization term r(w) via the penalty argument: multinomial multiclass yes no yes no yes yes
penalty r(w) Behaviors
N 0 Penalize the intercept no yes no no no no
(bad)
1 flwllx
Faster for large datasets no no no no yes yes
£ llwll} = 3w w
Robust to unscaled yes yes yes yes no no
1-—p

ElasticNet 2w w + pllw||y datasets

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/modules/linear_model.html

What if we have K > 2 classes?

Logit score z 1s still the dot product between a weight
vector and the input vector.

But now we have a separate weight vector w, for each
classic = 1.2 W

Z, = WIX

How do we transform z, into a probability p.?

60

What if we have K > 2 classes?

=

* Need a generalization of the sigmoid o called the softmax:
— Softmax takes as input a vector z = [z}, z,, ..., zx] of K values.
— It outputs a probability distribution softmax(z) = p = [py, pa, ..., Px]
* Need each value in the range [0,1].
* Need all the values summing to 1.

softmax([z, z,, ..., Zx]) = [P1> P2s ---» Pi]

exp (z1) exp (z2) - _ % (zx)
’ ’Zleexp(zz')

softmax(z) =

Z?:I exp (z:) | Z?:I exp (z;)

The softmax function

=

e Turns a vector z = [z,2,,...,z;] of k values 1nto probabilities:
z=10.6,1.1,—1.5,1.2,3.2, —1.1]

exp (z1) exp (22) exp (zx)

Z;C:l exp (z;) 7 Zf‘{:l exp (z;) g 25‘{:1 exp (z;)

softmax(z)

[0.055,0.090,0.0067,0.10,0.74,0.010]

softmax(z)

What if we have K > 2 classes?

Logit score z, 1s still the dot product between a weight
vector and the input vector.

But now we have a separate weight vector w, for each
class.a="I" 2, & k

ot s i)
® Y exp(z)

exp(W¢ X)

/]

63

Multinomial Logistic Regression in sklearn

scikit-learn.org/stable/modules/linear model.html#logistic-regression

scikit-learn.org/stable/modules/generated/sklearn.linear model.LogisticRegression.html

For multiclass problems, if you want multinomial, choose ‘newton-cg’, ‘sag’,
‘saga’ or ‘Ibfgs’ for training.

The choice of the algorithm depends on the penalty chosen and on (multinomial)
multiclass support:

solver penalty multinomial multiclass
'Ibfgs’ ‘12" None yes

‘liblinear’ 1" 12" no

'newton-cg’ ‘12 None yes

‘newton-cholesky’ ‘12" None no

‘'sag’ ‘12 None yes

'saga’ ‘elasticnet’, ‘11! 'I2 None yes

64

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/modules/linear_model.html

Temperature

=

* Softmax with a temperature parameter 7' > 0:

e iy = P/
T Y e D)

« When T =1, we get the original softmax distribution.
— What happens when T = 0?
— What happens when T > 1?
— What happens when T < 1?

e T=0and 7> 1 widely used for generation with LLMs!

Softmax Regression = Logistic Regression
for Multiclass Classification

[

e Multiclass classification:
T=4{@7, Co.8, Crhi=41..2;/ K},

* Training set 1s (X;,1), (X2.02), - (XnaVn)-
X =[1, x1, X9, «eep Xpql

Vit -y <4 e . K

e One weight vector per class [PRML 4.3.4]:

exp(W, X)) exp(Wy Xn + bi)
: Ej Pl) W eXp(wJ'TX" + b))

exp(WX)

S

bias parameter inside each w; separate bias parameter b; 66

Softmax Regression (K > 2)

Inference:

C.=arg max p(C, |x)

T
= arg max)

G |y exp(wx)

————
-
-
-
—
-
-
-

= arg max exp(W, X)
C

k

T
= argmax w, X
Ck

Training using:

Maximum Likelihood (ML)

Z(Xx) a normalization
constant

Maximum A Posteriori (MAP) with a Gaussian prior on w.

Softmax Regression

The negative log-likelihood error function is:

El exp(w Xy 2

=71 convex in' w

1 N
E (w)=——1In b A=
p(W)=-—];[pu 3

The Maximum Likelihood solution is:

w,, =argminE,(w)

The gradient 1s (prove it):
1 N
V., E, (W)= —Nz(ék(tn) - p(C, 1x,))X,
n=1

X =l

1
where J,(x) = {O 1s the Kronecker delta function.
X #i 68

Regularized Softmax Regression

=

e The new cost function is:

Ew)=E,(W)+E_(W)

N
P 1 : exp(W{ x) f &
— /W N 7(x) 2

IWI|?

 The new gradient 1s (prove it):

N

1 |
grad= V, E(W)= —NE(ék(rn) -p(C, 1x,))x, +aw,

n=1

Softmax Regression

ML solution 1s given by VE,(w) =0 .
— Cannot solve analytically.

— Solve numerically, by pluging [cost, gradient] = [E(w), VE(W)]
values into general convex solvers:

L-BFGS
Newton methods

conjugate gradient

(stochastic / minibatch) gradient-based methods.
— gradient descent (with / without momentum).
— AdaGrad, AdaDelta
— RMSProp
— ADAM, ...

70
e

Implementation

=

* Need to compute [cost, grad]:

N K

K

1 a
= cost === ¥ 8,,)Inp(C,Ix,)+ =Y Wiw,

n=1 k=1
N

k=1

" grad, =—% (6k(tn)—p(Ckan))xn+(xwk

n=1

=> need to compute, for k=1, ..., K:

= output p(C,1x)=

exp(W, X,))

2 .exp(WJT.xn)
J

Overflow when w,'x,
are too large.

Implementation: Preventing Overflows

=

 Subtract from each product w,'x, the maximum product:

T
C=Maxw, X
L 1<k<K R

When using separate bias b;, replace wi X,, everywhere
with WL X,, + by,.

Vectorization of Softmax with Separate Bias

e Separate the bias b, from the weight vector w,.

« Compute gradient separately with respect to w, and b, :
— Gradient with respect to w;, 1s:

1 N
grad,=-— ¥ (3,(t,)- p(C,1X,))x, +aw,
n=1

Gradient matrix 1s [grad, | grad, | ... | grady]
""" T, T O | (Culxy = — SXPOWiEXn +by)
— (@Gradient with respect to b, 1s: PitklXn) = =1k eXp(W Xy, + b))
Ab, DN c 1,if tn = k
i _NZ(e(t) = p(Cilxn) 5.t = {O'if b = K
n=) n

Gradient vector i1s Ab =[Ab; | Ab, | ... | Abg]

Vectorization of Softmax

exp(w,fxn + by)

* Need to compute [cost, grad, Ab]: p(cix,) = 5

j=1.K exp(ijxn + bj)

1 N K a K
e St) InpC, 1x)+= VY ww
NEE k(n) p(k n) 2; & v

n=1 k=1

" grad, = %2(5 (t,)-p(C,1x,))X, +aw,

n=1

=> compute ground truth matrix G such that G[k,n] = §,(z,)

56y < [tn=T
from scipy.sparse import coo_matrix 0, if th # K
groundTruth = coo _matrix((np.ones(N, dtype = np.uint§),
(labels, np.arange(N)))).toarray()
74

Vectorization of Softmax

=

 Compute cost———zzé (t)Inp(C, 1x,)+— Ewkwk

nlkl

— Compute matrix of w,7; et 1 exp(WLx,, + by)
kn

Zj=1,_1(exp(WjTXn + bj)

p(Cklxn) =

— Compute matrix of wan 4, = &
C(1,ift, =k
Bre(tn) = {O,if t, #k

— Compute matrix of exp(W} x,, + by — ¢y,).

¢ = max W, X, +by
— Compute matrix of In p(Cr |X,,). lsk<K

— Compute log-likelihood cost using all the above.

Inp(CylX,) = Wix, + b, — In(z exp(ijxn 550
j=1.K 75

Vectorization of Softmax

=

N
« Compute grad, = —%E(ék(tn)—p((fk X,))X, +aw,

n=1

= Gradient matrix = [grad, | grad, | ... | grady]
oy = CPOWERn + By
— Compute matrix of p(Cr[Xy,). PP = 6 j=1.x EXp(W/ X, + b))
sy [Lifta=k
— Compute matrix of gradient of data term. k() =10 Jif tg £ k

— Compute matrix of gradient of regularization term.

— Compute ground truth matrix G such that G[k,n] = §,(¢,)

Vectorization of Softmax

e Useful Numpy functions:
— np.dot()
— np.amax()
— np.argmax()
— np.exp()

— np.sum()

— np.log()
— np.mean()

Implementation: Gradient Checking

Want to minimize J(6), where 6 1s a scalar.

Mathematical definition of derivative:

J(9' 1 g) = J(OE=te)
2&

d :
g/ (9) = 1im

Numerical approximation of derivative:

ij(@)z JO+e)-J(O-¢)
do 2¢€

where € = 0.0001

Implementation: Gradient Checking

=

* If 0 1s a vector of parameters 0,
— Compute numerical derivative with respect to each 6,.
* Create a vector v that is € in position i and 0 everywhere else:
— How do you do this without a for loop in NumPy?
e Compute G,,,(6,) =0 +v) —J(0 —vVv))/2¢

— Aggregate all derivatives G,,,(6;) into numerical gradient G,,(0).

e Compare numerical gradient G,,,,(0) with implementation
of gradient Gy;,,(0):

G (8)-G,, (0)] _
0)+G,,,(0)

<10°

|6

num

