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Supervised Learning

• Task = learn an (unknown) function f : X ® Y that maps 
input instances x Î X to output targets y = f(x) Î Y:
– Classification:

• The output y Î Y is one of a finite set of discrete categories.
– Regression:

• The output y Î Y is continuous, or has a continuous 
component.

• Target function f(x) is known (only) through (noisy) set of 
training examples:

  (x1,y1), (x2,y2), … (xn,yn)
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Parametric Approaches to Supervised 
Learning 

• Task = build a function h(x) such that:
– h matches f well on the training data:

=> h is able to fit data that it has seen.
– h also matches f well on test data:

=> h is able to generalize to unseen data.

• Task = choose h from a “nice” class of functions that 
depend on a vector of parameters w:
– h(x) º hw(x) º h(w,x)
– what classes of functions are “nice”?

• linear ⊂ convex ⊂ continuous ⊂ differentiable ⊂ …
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Three Parametric Approaches to 
Classification

1) Discriminant Functions: scoring function f : X ® T that 
directly assigns a vector x to a specific class Ck.
– Inference and decision combined into a single learning 

problem.
– Linear Discriminant: the decision surface is a 

hyperplane in X:
• Perceptron
• Support Vector Machines
• Fisher ‘s Linear Discriminant
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Three Parametric Approaches to 
Classification

2) Probabilistic Discriminative Models: directly model the 
posterior class probabilities p(Ck | x).
– Inference and decision are separate.
– Less data needed to estimate p(Ck | x) than p(x |Ck).
– Can accommodate many overlapping features.

• Logistic Regression
• Conditional Random Fields
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Three Parametric Approaches to 
Classification

3) Probabilistic Generative Models: 
– Model class-conditional p(x |Ck) as well as the priors 

p(Ck), then use Bayes’s theorem to find p(Ck | x).
• or model p(x,Ck) directly, then marginalize to obtain the 

posterior probabilities p(Ck | x).

– Inference and decision are separate.
– Can use p(x) for outlier or novelty detection.
– Need to model dependencies between features.

• Naïve Bayes.
• Hidden Markov Models.
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Neurons

Soma is the central part of the neuron:
•  where the input signals are combined.

Dendrites are cellular extensions:
•  where majority of the input occurs.

Axon is a fine, long projection:
•  carries nerve signals to other neurons.

Synapses are molecular structures between 
axon terminals and other neurons:
•  where the communication takes place.
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Neuron Models
https://www.research.ibm.com/software/IBMResearch/multimedia/IJCNN2013.neuron-
model.pdf
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Spiking/LIF Neuron Function 
http://ee.princeton.edu/research/prucnal/sites/default/files/06497478.pdf
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Neuron Models
https://www.research.ibm.com/software/IBMResearch/multimedia/IJCNN2013.neuron-
model.pdf
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McCulloch-Pitts Neuron Function

Σ f

1x0

x1

x2

x3

wixi∑
hw(x)

activation / output
function

w0
w1

w2
w3

• Algebraic interpretation:
– The output of the neuron is a linear combination of  inputs from other neurons, 

rescaled by the synaptic weights.
• weights wi correspond to the synaptic weights (activating or inhibiting).
• summation corresponds to combination of signals in the soma.

– It is often transformed through an activation / output function.
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Activation Functions

1

0

f (z) = 1
1+ e−z

logistic

f (z) = 0 if z < 0
1 if z ≥ 0

"
#
$

%$
unit step

f (z) = zidentity

Perceptron

Logistic Regression
Linear Regression

ramp f 𝑧 = max(0, 𝑧)

ReLU
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Linear Regression

• Polynomial curve fitting is Linear Regression:
x = φ(x) = [1, x, x2, ..., xM]T          *𝑦 = wTx

• What error/cost function to minimize?

Σ f

1x0

x1

x2

x3

wixi∑ *𝑦 =

activation
function

w0
w1

w2
w3 f (z) = z wixi∑
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Use normal equations or gradient descent𝐽 𝐰 =
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Perceptron

• Assume classes C = {c1, c2} = {+1, −1}.
• Training set is (x1, y1), (x2, y2), … (xn, yn).

x = [1, x1, x2, ..., xk]T

*𝑦 = sgn(wTx) = sgn(w0 + w1 x1 + … + wk xk)

Σ

1x0

x1

x2

x3

wixi∑
!𝑦

activation
function f

w0
w1

w2
w3 = 1 if wTx > 0

0 otherwise

!
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$#f (z) = 0 if z < 0
1 if z ≥ 0

"
#
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• Use a linear function of the input vector:

• Decision:
x Î C1 if  h(x) ³ 0, otherwise x Î C2.
 Þ decision boundary is hyperplane h(x) = 0.

• Properties:
– w is orthogonal to vectors lying within the decision surface.
– w0 controls the location of the decision hyperplane.
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Linear Discriminant Functions

weight vector bias = - threshold

ℎ 𝐱 = 𝐰&𝜑 𝐱 + 𝑤'



Geometric Interpretation
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From Perceptron to Logistic Regression

• Features x = [1, x1, x2, x3, …, xK]
• Weights w = [w0, w1, w2, w3, …, wK]
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Perceptron

Training:	Find	w	to	fit	training	data.
Inference:	Compute ℎ 𝐱 = 𝐰&𝐱
Decision:
• if ℎ 𝐱 ≥ 0 output label +1
• else output label -1

Logistic	Regression

Training:	Find	w	to	fit	training	data.
Inference:	Compute z = 𝐰&𝐱
Decision:
• if 𝑧 ≥ 0 output label 1
• else output label 0

Discriminant function model Probabilistic discriminative model

Take logit z, compute probabilistic output p(y = 1|x) = σ(z) = #
#()*+(-.)

    



Logistic Regression for Binary Classification

• Used for binary classification:
• Labels C = {C1, C2} = {1, 0}
• Output C1 if and only if  *𝑦 = σ(wTx) > 0.5

• Training set is (x1,y1), (x2,y2), … (xN,yN).
     x = [1, x1, x2, ..., xK]T

    

Σ

1x0

x1

x2

x3

wixi∑ !𝑦

activation
function f

w0
w1

w2
w3 =

1
1+ exp(−wTx)f (z) = 1

1+ exp(−z)

z﹦

19



Activation / Output Functions f

1

0

f (z) = 1
1+ e−z

logistic

f (z) = 0 if z < 0
1 if z ≥ 0

"
#
$
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unit step

Perceptron

Logistic Regression

20

f(z)

wixi∑z =



Logistic Regression for Binary Classification

• Model output can be interpreted as posterior class 
probabilities:

• Inference:
– Output +ve class if *𝑦 ≥ 0.5, else output −ve class.

• assuming uniform misclassification costs …
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Linear decision boundary

*𝑦 = 𝑝 𝑦 = 1 𝐱 = 𝜎 w&𝐱! =
1

1 + exp(−w&𝐱!)

1 − *𝑦 = 𝑝 𝑦 = 0 𝐱 = 1 − 𝜎 w&𝐱! = 𝜎 −w&𝐱!

Prob. of +ve clasas: 

Prob. of −ve class:



Example: Text Classification

• Input:
–  a document x, represented as a feature vector 

  x = [x1, x2,…, xn]
–  a fixed set of classes  C = {c1, c2,…, cK}

• Output:
– a predicted class "𝑦 Î C

• binary classification: prediction "𝑦	Î {c1, c2}
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Example: Sentiment Analysis

• For feature xi, weight wi tells how important xi is for the 
positive label:
• xi ="review contains ‘gorgeous’":      wi =  +10
• xj ="review contains ‘abysmal’":         wj = -10
• xk =“review contains ‘mediocre’":      wk = -2

The film is absolutely gorgeous. It's one that you really must
see on the biggest, best screen you can find, preferably in a
theater with really great sound. The seats were shaking at
some points. There is so much spectacle here, it’s a little
overwhelming at times. And it’s all so well-crafted. Other than
the lack of sweat — still odd for such a hot planet — Arrakis
feels real and we see much more of it this time around.
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Logistic Regression for Text Classification

• Input observation:
– Document vector  x = [x1, x2,…, xn]

• Weights:
– One per feature: w = [w1, w2,…, wn]

• Output:
– Binary logistic regression:

• predicted class  *𝑦	Î {0,1}
– Multinomial logistic regression:

• predicted class *𝑦 Î {0, 1, 2, …}
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Classification with Logistic Regression

• For each feature xi, weight wi tells us importance of xi
– Plus we'll have a bias b (we called it w0 earlier …)

• We'll sum up all the weighted features and the bias:

• If this sum is high, we say y = 1; if low, then y = 0

5.1 • CLASSIFICATION: THE SIGMOID 3

is “positive sentiment” versus “negative sentiment”, the features represent counts
of words in a document, and P(y = 1|x) is the probability that the document has
positive sentiment, while and P(y = 0|x) is the probability that the document has
negative sentiment.

Logistic regression solves this task by learning, from a training set, a vector of
weights and a bias term. Each weight wi is a real number, and is associated with one
of the input features xi. The weight wi represents how important that input feature is
to the classification decision, and can be positive (meaning the feature is associated
with the class) or negative (meaning the feature is not associated with the class).
Thus we might expect in a sentiment task the word awesome to have a high positive
weight, and abysmal to have a very negative weight. The bias term, also called thebias term
intercept, is another real number that’s added to the weighted inputs.intercept

To make a decision on a test instance— after we’ve learned the weights in
training— the classifier first multiplies each xi by its weight wi, sums up the weighted
features, and adds the bias term b. The resulting single number z expresses the
weighted sum of the evidence for the class.

z =

 nX

i=1

wixi

!
+b (5.2)

In the rest of the book we’ll represent such sums using the dot product notation fromdot product

linear algebra. The dot product of two vectors a and b, written as a ·b is the sum of
the products of the corresponding elements of each vector. Thus the following is an
equivalent formation to Eq. 5.2:

z = w · x+b (5.3)

But note that nothing in Eq. 5.3 forces z to be a legal probability, that is, to lie
between 0 and 1. In fact, since weights are real-valued, the output might even be
negative; z ranges from �• to •.

Figure 5.1 The sigmoid function y= 1
1+e�z takes a real value and maps it to the range [0,1].

Because it is nearly linear around 0 but has a sharp slope toward the ends, it tends to squash
outlier values toward 0 or 1.

To create a probability, we’ll pass z through the sigmoid function, s(z). Thesigmoid

sigmoid function (named because it looks like an s) is also called the logistic func-
tion, and gives logistic regression its name. The sigmoid has the following equation,logistic

function
shown graphically in Fig. 5.1:

y = s(z) =
1

1+ e�z (5.4)
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From logit z to probability p

• Problem: z isn't a probability, it's just a number!

• Solution: use a function of z that goes from 0 to 1.
– the logistic sigmoid.
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5.1 • CLASSIFICATION: THE SIGMOID 3

sentiment” versus “negative sentiment”, the features represent counts of words in a
document, P(y = 1|x) is the probability that the document has positive sentiment,
and P(y = 0|x) is the probability that the document has negative sentiment.

Logistic regression solves this task by learning, from a training set, a vector of
weights and a bias term. Each weight wi is a real number, and is associated with one
of the input features xi. The weight wi represents how important that input feature
is to the classification decision, and can be positive (providing evidence that the in-
stance being classified belongs in the positive class) or negative (providing evidence
that the instance being classified belongs in the negative class). Thus we might
expect in a sentiment task the word awesome to have a high positive weight, and
abysmal to have a very negative weight. The bias term, also called the intercept, isbias term

intercept another real number that’s added to the weighted inputs.
To make a decision on a test instance— after we’ve learned the weights in

training— the classifier first multiplies each xi by its weight wi, sums up the weighted
features, and adds the bias term b. The resulting single number z expresses the
weighted sum of the evidence for the class.

z =

 nX

i=1

wixi

!
+b (5.2)

In the rest of the book we’ll represent such sums using the dot product notation fromdot product

linear algebra. The dot product of two vectors a and b, written as a ·b is the sum of
the products of the corresponding elements of each vector. Thus the following is an
equivalent formation to Eq. 5.2:

z = w · x+b (5.3)

But note that nothing in Eq. 5.3 forces z to be a legal probability, that is, to lie
between 0 and 1. In fact, since weights are real-valued, the output might even be
negative; z ranges from �• to •.

Figure 5.1 The sigmoid function y= 1
1+e�z takes a real value and maps it to the range [0,1].

It is nearly linear around 0 but outlier values get squashed toward 0 or 1.

To create a probability, we’ll pass z through the sigmoid function, s(z). Thesigmoid

sigmoid function (named because it looks like an s) is also called the logistic func-
tion, and gives logistic regression its name. The sigmoid has the following equation,logistic

function
shown graphically in Fig. 5.1:

y = s(z) =
1

1+ e�z =
1

1+ exp(�z)
(5.4)

(For the rest of the book, we’ll use the notation exp(x) to mean ex.) The sigmoid
has a number of advantages; it takes a real-valued number and maps it into the range



The very useful logistic sigmoid
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Making probabilities with sigmoids

4 CHAPTER 5 • LOGISTIC REGRESSION

[0,1], which is just what we want for a probability. Because it is nearly linear around
0 but flattens toward the ends, it tends to squash outlier values toward 0 or 1. And
it’s differentiable, which as we’ll see in Section 5.8 will be handy for learning.

We’re almost there. If we apply the sigmoid to the sum of the weighted features,
we get a number between 0 and 1. To make it a probability, we just need to make
sure that the two cases, p(y = 1) and p(y = 0), sum to 1. We can do this as follows:

P(y = 1) = s(w · x+b)

=
1

1+ exp(�(w · x+b))

P(y = 0) = 1�s(w · x+b)

= 1� 1
1+ exp(�(w · x+b))

=
exp(�(w · x+b))

1+ exp(�(w · x+b))
(5.5)

The sigmoid function has the property

1�s(x) = s(�x) (5.6)

so we could also have expressed P(y = 0) as s(�(w · x+b)).
Now we have an algorithm that given an instance x computes the probability

P(y = 1|x). How do we make a decision? For a test instance x, we say yes if the
probability P(y = 1|x) is more than .5, and no otherwise. We call .5 the decision
boundary:decision

boundary

ŷ =

⇢
1 if P(y = 1|x)> 0.5
0 otherwise

5.1.1 Example: sentiment classification
Let’s have an example. Suppose we are doing binary sentiment classification on
movie review text, and we would like to know whether to assign the sentiment class
+ or � to a review document doc. We’ll represent each input observation by the 6
features x1...x6 of the input shown in the following table; Fig. 5.2 shows the features
in a sample mini test document.

Var Definition Value in Fig. 5.2
x1 count(positive lexicon) 2 doc) 3
x2 count(negative lexicon) 2 doc) 2

x3

⇢
1 if “no” 2 doc
0 otherwise 1

x4 count(1st and 2nd pronouns 2 doc) 3

x5

⇢
1 if “!” 2 doc
0 otherwise 0

x6 log(word count of doc) ln(66) = 4.19

Let’s assume for the moment that we’ve already learned a real-valued weight for
each of these features, and that the 6 weights corresponding to the 6 features are
[2.5,�5.0,�1.2,0.5,2.0,0.7], while b = 0.1. (We’ll discuss in the next section how
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exp(�(w · x+b))

1+ exp(�(w · x+b))
(5.5)

The sigmoid function has the property

1�s(x) = s(�x) (5.6)

so we could also have expressed P(y = 0) as s(�(w · x+b)).
Now we have an algorithm that given an instance x computes the probability

P(y = 1|x). How do we make a decision? For a test instance x, we say yes if the
probability P(y = 1|x) is more than .5, and no otherwise. We call .5 the decision
boundary:decision

boundary

ŷ =

⇢
1 if P(y = 1|x)> 0.5
0 otherwise

5.1.1 Example: sentiment classification
Let’s have an example. Suppose we are doing binary sentiment classification on
movie review text, and we would like to know whether to assign the sentiment class
+ or � to a review document doc. We’ll represent each input observation by the 6
features x1...x6 of the input shown in the following table; Fig. 5.2 shows the features
in a sample mini test document.

Var Definition Value in Fig. 5.2
x1 count(positive lexicon) 2 doc) 3
x2 count(negative lexicon) 2 doc) 2

x3

⇢
1 if “no” 2 doc
0 otherwise 1

x4 count(1st and 2nd pronouns 2 doc) 3

x5

⇢
1 if “!” 2 doc
0 otherwise 0

x6 log(word count of doc) ln(66) = 4.19

Let’s assume for the moment that we’ve already learned a real-valued weight for
each of these features, and that the 6 weights corresponding to the 6 features are
[2.5,�5.0,�1.2,0.5,2.0,0.7], while b = 0.1. (We’ll discuss in the next section how

=
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Turning a probability into a classifier

• We’ll compute wTx+b

• And then we’ll pass it through the sigmoid function:
       σ(wTx+b)

• And we’ll just treat it as a probability.

0.5 here is called the decision threshold 

iff wTx+b > 0
iff wTx+b ≤ 0
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The sigmoid has a number of advantages; it take a real-valued number and maps
it into the range [0,1], which is just what we want for a probability. Because it is
nearly linear around 0 but has a sharp slope toward the ends, it tends to squash outlier
values toward 0 or 1. And it’s differentiable, which as we’ll see in Section 5.8 will
be handy for learning.

We’re almost there. If we apply the sigmoid to the sum of the weighted features,
we get a number between 0 and 1. To make it a probability, we just need to make
sure that the two cases, p(y = 1) and p(y = 0), sum to 1. We can do this as follows:

P(y = 1) = s(w · x+b)

=
1

1+ e�(w·x+b)

P(y = 0) = 1�s(w · x+b)

= 1� 1
1+ e�(w·x+b)

=
e�(w·x+b)

1+ e�(w·x+b) (5.5)

Now we have an algorithm that given an instance x computes the probability
P(y = 1|x). How do we make a decision? For a test instance x, we say yes if the
probability P(y = 1|x) is more than .5, and no otherwise. We call .5 the decision
boundary:decision

boundary

ŷ =
⇢

1 if P(y = 1|x)> 0.5
0 otherwise

5.1.1 Example: sentiment classification
Let’s have an example. Suppose we are doing binary sentiment classification on
movie review text, and we would like to know whether to assign the sentiment class
+ or � to a review document doc. We’ll represent each input observation by the
following 6 features x1...x6 of the input; Fig. 5.2 shows the features in a sample mini
test document.

Var Definition Value in Fig. 5.2
x1 count(positive lexicon) 2 doc) 3
x2 count(negative lexicon) 2 doc) 2

x3

⇢
1 if “no” 2 doc
0 otherwise 1

x4 count(1st and 2nd pronouns 2 doc) 3

x5

⇢
1 if “!” 2 doc
0 otherwise 0

x6 log(word count of doc) ln(64) = 4.15

Let’s assume for the moment that we’ve already learned a real-valued weight
for each of these features, and that the 6 weights corresponding to the 6 features
are [2.5,�5.0,�1.2,0.5,2.0,0.7], while b = 0.1. (We’ll discuss in the next section
how the weights are learned.) The weight w1, for example indicates how important

Prediction

29



4 CHAPTER 5 • LOGISTIC REGRESSION

The sigmoid has a number of advantages; it take a real-valued number and maps
it into the range [0,1], which is just what we want for a probability. Because it is
nearly linear around 0 but has a sharp slope toward the ends, it tends to squash outlier
values toward 0 or 1. And it’s differentiable, which as we’ll see in Section 5.8 will
be handy for learning.

We’re almost there. If we apply the sigmoid to the sum of the weighted features,
we get a number between 0 and 1. To make it a probability, we just need to make
sure that the two cases, p(y = 1) and p(y = 0), sum to 1. We can do this as follows:

P(y = 1) = s(w · x+b)

=
1

1+ e�(w·x+b)

P(y = 0) = 1�s(w · x+b)

= 1� 1
1+ e�(w·x+b)

=
e�(w·x+b)

1+ e�(w·x+b) (5.5)

Now we have an algorithm that given an instance x computes the probability
P(y = 1|x). How do we make a decision? For a test instance x, we say yes if the
probability P(y = 1|x) is more than .5, and no otherwise. We call .5 the decision
boundary:decision

boundary

ŷ =
⇢

1 if P(y = 1|x)> 0.5
0 otherwise

5.1.1 Example: sentiment classification
Let’s have an example. Suppose we are doing binary sentiment classification on
movie review text, and we would like to know whether to assign the sentiment class
+ or � to a review document doc. We’ll represent each input observation by the
following 6 features x1...x6 of the input; Fig. 5.2 shows the features in a sample mini
test document.

Var Definition Value in Fig. 5.2
x1 count(positive lexicon) 2 doc) 3
x2 count(negative lexicon) 2 doc) 2

x3

⇢
1 if “no” 2 doc
0 otherwise 1

x4 count(1st and 2nd pronouns 2 doc) 3

x5

⇢
1 if “!” 2 doc
0 otherwise 0

x6 log(word count of doc) ln(64) = 4.15

Let’s assume for the moment that we’ve already learned a real-valued weight
for each of these features, and that the 6 weights corresponding to the 6 features
are [2.5,�5.0,�1.2,0.5,2.0,0.7], while b = 0.1. (We’ll discuss in the next section
how the weights are learned.) The weight w1, for example indicates how important
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is “positive sentiment” versus “negative sentiment”, the features represent counts
of words in a document, and P(y = 1|x) is the probability that the document has
positive sentiment, while and P(y = 0|x) is the probability that the document has
negative sentiment.

Logistic regression solves this task by learning, from a training set, a vector of
weights and a bias term. Each weight wi is a real number, and is associated with one
of the input features xi. The weight wi represents how important that input feature is
to the classification decision, and can be positive (meaning the feature is associated
with the class) or negative (meaning the feature is not associated with the class).
Thus we might expect in a sentiment task the word awesome to have a high positive
weight, and abysmal to have a very negative weight. The bias term, also called thebias term
intercept, is another real number that’s added to the weighted inputs.intercept

To make a decision on a test instance— after we’ve learned the weights in
training— the classifier first multiplies each xi by its weight wi, sums up the weighted
features, and adds the bias term b. The resulting single number z expresses the
weighted sum of the evidence for the class.

z =

 nX

i=1

wixi

!
+b (5.2)

In the rest of the book we’ll represent such sums using the dot product notation fromdot product

linear algebra. The dot product of two vectors a and b, written as a ·b is the sum of
the products of the corresponding elements of each vector. Thus the following is an
equivalent formation to Eq. 5.2:

z = w · x+b (5.3)

But note that nothing in Eq. 5.3 forces z to be a legal probability, that is, to lie
between 0 and 1. In fact, since weights are real-valued, the output might even be
negative; z ranges from �• to •.

Figure 5.1 The sigmoid function y= 1
1+e�z takes a real value and maps it to the range [0,1].

Because it is nearly linear around 0 but has a sharp slope toward the ends, it tends to squash
outlier values toward 0 or 1.

To create a probability, we’ll pass z through the sigmoid function, s(z). Thesigmoid

sigmoid function (named because it looks like an s) is also called the logistic func-
tion, and gives logistic regression its name. The sigmoid has the following equation,logistic

function
shown graphically in Fig. 5.1:

y = s(z) =
1

1+ e�z (5.4)

z = w⋅ x + b

"𝑦 =
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Sentiment Analysis: Does y = 1 or y = 0?

It's hokey . There are virtually no surprises , and the writing is 
second-rate . So why was it so enjoyable ? For one thing , the 
cast is great . Another nice touch is the music . I was 
overcome with the urge to get off the couch and start dancing . 
It sucked me in , and it 'll do the same to you .
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 It's hokey . There are virtually no surprises , and the writing is second-rate . 
So why was it so enjoyable  ? For one thing , the cast is
 great . Another nice touch is the music . I was overcome with the urge to get off
 the couch and start dancing .  It sucked me in , and it'll do the same to you  .

x1=3 x6=4.19

x3=1

x4=3x5=0

x2=2

Figure 5.2 A sample mini test document showing the extracted features in the vector x.

Given these 6 features and the input review x, P(+|x) and P(�|x) can be com-
puted using Eq. 5.5:

p(+|x) = P(Y = 1|x) = s(w · x+b)
= s([2.5,�5.0,�1.2,0.5,2.0,0.7] · [3,2,1,3,0,4.19]+0.1)
= s(.833)
= 0.70 (5.6)

p(�|x) = P(Y = 0|x) = 1�s(w · x+b)
= 0.30

Logistic regression is commonly applied to all sorts of NLP tasks, and any property
of the input can be a feature. Consider the task of period disambiguation: deciding
if a period is the end of a sentence or part of a word, by classifying each period
into one of two classes EOS (end-of-sentence) and not-EOS. We might use features
like x1 below expressing that the current word is lower case and the class is EOS
(perhaps with a positive weight), or that the current word is in our abbreviations
dictionary (“Prof.”) and the class is EOS (perhaps with a negative weight). A feature
can also express a quite complex combination of properties. For example a period
following an upper case word is likely to be an EOS, but if the word itself is St. and
the previous word is capitalized, then the period is likely part of a shortening of the
word street.

x1 =

⇢
1 if “Case(wi) = Lower”
0 otherwise

x2 =

⇢
1 if “wi 2 AcronymDict”
0 otherwise

x3 =

⇢
1 if “wi = St. & Case(wi�1) = Cap”
0 otherwise

Designing features: Features are generally designed by examining the training
set with an eye to linguistic intuitions and the linguistic literature on the domain. A
careful error analysis on the training set or devset of an early version of a system
often provides insights into features.

For some tasks it is especially helpful to build complex features that are combi-
nations of more primitive features. We saw such a feature for period disambiguation
above, where a period on the word St. was less likely to be the end of the sentence
if the previous word was capitalized. For logistic regression and naive Bayes these
combination features or feature interactions have to be designed by hand.feature

interactions
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nearly linear around 0 but has a sharp slope toward the ends, it tends to squash outlier
values toward 0 or 1. And it’s differentiable, which as we’ll see in Section 5.8 will
be handy for learning.

We’re almost there. If we apply the sigmoid to the sum of the weighted features,
we get a number between 0 and 1. To make it a probability, we just need to make
sure that the two cases, p(y = 1) and p(y = 0), sum to 1. We can do this as follows:

P(y = 1) = s(w · x+b)

=
1

1+ e�(w·x+b)

P(y = 0) = 1�s(w · x+b)

= 1� 1
1+ e�(w·x+b)

=
e�(w·x+b)

1+ e�(w·x+b) (5.5)

Now we have an algorithm that given an instance x computes the probability P(y =
1|x). How do we make a decision? For a test instance x, we say yes if the probability
P(y = 1|x) is more than .5, and no otherwise. We call .5 the decision boundary:decision

boundary

ŷ =

⇢
1 if P(y = 1|x)> 0.5
0 otherwise

5.1.1 Example: sentiment classification
Let’s have an example. Suppose we are doing binary sentiment classification on
movie review text, and we would like to know whether to assign the sentiment class
+ or � to a review document doc. We’ll represent each input observation by the 6
features x1...x6 of the input shown in the following table; Fig. 5.2 shows the features
in a sample mini test document.

Var Definition Value in Fig. 5.2
x1 count(positive lexicon) 2 doc) 3
x2 count(negative lexicon) 2 doc) 2

x3

⇢
1 if “no” 2 doc
0 otherwise 1

x4 count(1st and 2nd pronouns 2 doc) 3

x5

⇢
1 if “!” 2 doc
0 otherwise 0

x6 log(word count of doc) ln(66) = 4.19

Let’s assume for the moment that we’ve already learned a real-valued weight for
each of these features, and that the 6 weights corresponding to the 6 features are
[2.5,�5.0,�1.2,0.5,2.0,0.7], while b = 0.1. (We’ll discuss in the next section how
the weights are learned.) The weight w1, for example indicates how important a
feature the number of positive lexicon words (great, nice, enjoyable, etc.) is to
a positive sentiment decision, while w2 tells us the importance of negative lexicon
words. Note that w1 = 2.5 is positive, while w2 =�5.0, meaning that negative words
are negatively associated with a positive sentiment decision, and are about twice as
important as positive words.
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nearly linear around 0 but has a sharp slope toward the ends, it tends to squash outlier
values toward 0 or 1. And it’s differentiable, which as we’ll see in Section 5.8 will
be handy for learning.

We’re almost there. If we apply the sigmoid to the sum of the weighted features,
we get a number between 0 and 1. To make it a probability, we just need to make
sure that the two cases, p(y = 1) and p(y = 0), sum to 1. We can do this as follows:

P(y = 1) = s(w · x+b)

=
1

1+ e�(w·x+b)

P(y = 0) = 1�s(w · x+b)

= 1� 1
1+ e�(w·x+b)

=
e�(w·x+b)

1+ e�(w·x+b) (5.5)

Now we have an algorithm that given an instance x computes the probability P(y =
1|x). How do we make a decision? For a test instance x, we say yes if the probability
P(y = 1|x) is more than .5, and no otherwise. We call .5 the decision boundary:decision

boundary

ŷ =

⇢
1 if P(y = 1|x)> 0.5
0 otherwise

5.1.1 Example: sentiment classification
Let’s have an example. Suppose we are doing binary sentiment classification on
movie review text, and we would like to know whether to assign the sentiment class
+ or � to a review document doc. We’ll represent each input observation by the 6
features x1...x6 of the input shown in the following table; Fig. 5.2 shows the features
in a sample mini test document.

Var Definition Value in Fig. 5.2
x1 count(positive lexicon) 2 doc) 3
x2 count(negative lexicon) 2 doc) 2

x3

⇢
1 if “no” 2 doc
0 otherwise 1

x4 count(1st and 2nd pronouns 2 doc) 3

x5

⇢
1 if “!” 2 doc
0 otherwise 0

x6 log(word count of doc) ln(66) = 4.19

Let’s assume for the moment that we’ve already learned a real-valued weight for
each of these features, and that the 6 weights corresponding to the 6 features are
[2.5,�5.0,�1.2,0.5,2.0,0.7], while b = 0.1. (We’ll discuss in the next section how
the weights are learned.) The weight w1, for example indicates how important a
feature the number of positive lexicon words (great, nice, enjoyable, etc.) is to
a positive sentiment decision, while w2 tells us the importance of negative lexicon
words. Note that w1 = 2.5 is positive, while w2 =�5.0, meaning that negative words
are negatively associated with a positive sentiment decision, and are about twice as
important as positive words.
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The sigmoid has a number of advantages; it take a real-valued number and maps
it into the range [0,1], which is just what we want for a probability. Because it is
nearly linear around 0 but has a sharp slope toward the ends, it tends to squash outlier
values toward 0 or 1. And it’s differentiable, which as we’ll see in Section 5.8 will
be handy for learning.

We’re almost there. If we apply the sigmoid to the sum of the weighted features,
we get a number between 0 and 1. To make it a probability, we just need to make
sure that the two cases, p(y = 1) and p(y = 0), sum to 1. We can do this as follows:

P(y = 1) = s(w · x+b)

=
1

1+ e�(w·x+b)

P(y = 0) = 1�s(w · x+b)

= 1� 1
1+ e�(w·x+b)

=
e�(w·x+b)

1+ e�(w·x+b) (5.5)

Now we have an algorithm that given an instance x computes the probability
P(y = 1|x). How do we make a decision? For a test instance x, we say yes if the
probability P(y = 1|x) is more than .5, and no otherwise. We call .5 the decision
boundary:decision

boundary

ŷ =
⇢

1 if P(y = 1|x)> 0.5
0 otherwise

5.1.1 Example: sentiment classification
Let’s have an example. Suppose we are doing binary sentiment classification on
movie review text, and we would like to know whether to assign the sentiment class
+ or � to a review document doc. We’ll represent each input observation by the
following 6 features x1...x6 of the input; Fig. 5.2 shows the features in a sample mini
test document.

Var Definition Value in Fig. 5.2
x1 count(positive lexicon) 2 doc) 3
x2 count(negative lexicon) 2 doc) 2

x3

⇢
1 if “no” 2 doc
0 otherwise 1

x4 count(1st and 2nd pronouns 2 doc) 3

x5

⇢
1 if “!” 2 doc
0 otherwise 0

x6 log(word count of doc) ln(64) = 4.15

Let’s assume for the moment that we’ve already learned a real-valued weight
for each of these features, and that the 6 weights corresponding to the 6 features
are [2.5,�5.0,�1.2,0.5,2.0,0.7], while b = 0.1. (We’ll discuss in the next section
how the weights are learned.) The weight w1, for example indicates how important

w =

b = 0.1

Suppose
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 It's hokey . There are virtually no surprises , and the writing is second-rate . 
So why was it so enjoyable  ? For one thing , the cast is
 great . Another nice touch is the music . I was overcome with the urge to get off
 the couch and start dancing .  It sucked me in , and it'll do the same to you  .

x1=3 x6=4.19

x3=1

x4=3x5=0

x2=2

Figure 5.2 A sample mini test document showing the extracted features in the vector x.

Given these 6 features and the input review x, P(+|x) and P(�|x) can be com-
puted using Eq. 5.5:

p(+|x) = P(Y = 1|x) = s(w · x+b)
= s([2.5,�5.0,�1.2,0.5,2.0,0.7] · [3,2,1,3,0,4.19]+0.1)
= s(.833)
= 0.70 (5.6)

p(�|x) = P(Y = 0|x) = 1�s(w · x+b)
= 0.30

Logistic regression is commonly applied to all sorts of NLP tasks, and any property
of the input can be a feature. Consider the task of period disambiguation: deciding
if a period is the end of a sentence or part of a word, by classifying each period
into one of two classes EOS (end-of-sentence) and not-EOS. We might use features
like x1 below expressing that the current word is lower case and the class is EOS
(perhaps with a positive weight), or that the current word is in our abbreviations
dictionary (“Prof.”) and the class is EOS (perhaps with a negative weight). A feature
can also express a quite complex combination of properties. For example a period
following an upper case word is likely to be an EOS, but if the word itself is St. and
the previous word is capitalized, then the period is likely part of a shortening of the
word street.

x1 =

⇢
1 if “Case(wi) = Lower”
0 otherwise

x2 =

⇢
1 if “wi 2 AcronymDict”
0 otherwise

x3 =

⇢
1 if “wi = St. & Case(wi�1) = Cap”
0 otherwise

Designing features: Features are generally designed by examining the training
set with an eye to linguistic intuitions and the linguistic literature on the domain. A
careful error analysis on the training set or devset of an early version of a system
often provides insights into features.

For some tasks it is especially helpful to build complex features that are combi-
nations of more primitive features. We saw such a feature for period disambiguation
above, where a period on the word St. was less likely to be the end of the sentence
if the previous word was capitalized. For logistic regression and naive Bayes these
combination features or feature interactions have to be designed by hand.feature

interactions

34

5.1 • CLASSIFICATION: THE SIGMOID 5

 It's hokey . There are virtually no surprises , and the writing is second-rate . 
So why was it so enjoyable  ? For one thing , the cast is
 great . Another nice touch is the music . I was overcome with the urge to get off
 the couch and start dancing .  It sucked me in , and it'll do the same to you  .

x1=3 x6=4.19

x3=1

x4=3x5=0

x2=2

Figure 5.2 A sample mini test document showing the extracted features in the vector x.

Given these 6 features and the input review x, P(+|x) and P(�|x) can be com-
puted using Eq. 5.5:

p(+|x) = P(Y = 1|x) = s(w · x+b)
= s([2.5,�5.0,�1.2,0.5,2.0,0.7] · [3,2,1,3,0,4.19]+0.1)
= s(.833)
= 0.70 (5.6)

p(�|x) = P(Y = 0|x) = 1�s(w · x+b)
= 0.30

Logistic regression is commonly applied to all sorts of NLP tasks, and any property
of the input can be a feature. Consider the task of period disambiguation: deciding
if a period is the end of a sentence or part of a word, by classifying each period
into one of two classes EOS (end-of-sentence) and not-EOS. We might use features
like x1 below expressing that the current word is lower case and the class is EOS
(perhaps with a positive weight), or that the current word is in our abbreviations
dictionary (“Prof.”) and the class is EOS (perhaps with a negative weight). A feature
can also express a quite complex combination of properties. For example a period
following an upper case word is likely to be an EOS, but if the word itself is St. and
the previous word is capitalized, then the period is likely part of a shortening of the
word street.

x1 =

⇢
1 if “Case(wi) = Lower”
0 otherwise

x2 =

⇢
1 if “wi 2 AcronymDict”
0 otherwise

x3 =

⇢
1 if “wi = St. & Case(wi�1) = Cap”
0 otherwise

Designing features: Features are generally designed by examining the training
set with an eye to linguistic intuitions and the linguistic literature on the domain. A
careful error analysis on the training set or devset of an early version of a system
often provides insights into features.

For some tasks it is especially helpful to build complex features that are combi-
nations of more primitive features. We saw such a feature for period disambiguation
above, where a period on the word St. was less likely to be the end of the sentence
if the previous word was capitalized. For logistic regression and naive Bayes these
combination features or feature interactions have to be designed by hand.feature

interactions



(Binary) Logistic Regression: Summary

• Given as input:
– a set of classes:  (+ve sentiment, −ve sentiment)
– a vector x of features [x1, x2, …, xn]

– x1= count("awesome").
– x2 = log(number of words in review).

– a vector w of weights [w1, w2, …, wn]

• Logistic Regression computes as output:
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The sigmoid has a number of advantages; it take a real-valued number and maps
it into the range [0,1], which is just what we want for a probability. Because it is
nearly linear around 0 but has a sharp slope toward the ends, it tends to squash outlier
values toward 0 or 1. And it’s differentiable, which as we’ll see in Section 5.8 will
be handy for learning.

We’re almost there. If we apply the sigmoid to the sum of the weighted features,
we get a number between 0 and 1. To make it a probability, we just need to make
sure that the two cases, p(y = 1) and p(y = 0), sum to 1. We can do this as follows:

P(y = 1) = s(w · x+b)

=
1

1+ e�(w·x+b)

P(y = 0) = 1�s(w · x+b)

= 1� 1
1+ e�(w·x+b)

=
e�(w·x+b)

1+ e�(w·x+b) (5.5)

Now we have an algorithm that given an instance x computes the probability
P(y = 1|x). How do we make a decision? For a test instance x, we say yes if the
probability P(y = 1|x) is more than .5, and no otherwise. We call .5 the decision
boundary:decision

boundary

ŷ =
⇢

1 if P(y = 1|x)> 0.5
0 otherwise

5.1.1 Example: sentiment classification
Let’s have an example. Suppose we are doing binary sentiment classification on
movie review text, and we would like to know whether to assign the sentiment class
+ or � to a review document doc. We’ll represent each input observation by the
following 6 features x1...x6 of the input; Fig. 5.2 shows the features in a sample mini
test document.

Var Definition Value in Fig. 5.2
x1 count(positive lexicon) 2 doc) 3
x2 count(negative lexicon) 2 doc) 2

x3

⇢
1 if “no” 2 doc
0 otherwise 1

x4 count(1st and 2nd pronouns 2 doc) 3

x5

⇢
1 if “!” 2 doc
0 otherwise 0

x6 log(word count of doc) ln(64) = 4.15

Let’s assume for the moment that we’ve already learned a real-valued weight
for each of these features, and that the 6 weights corresponding to the 6 features
are [2.5,�5.0,�1.2,0.5,2.0,0.7], while b = 0.1. (We’ll discuss in the next section
how the weights are learned.) The weight w1, for example indicates how important
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Wait, where did the w come from?

• Supervised learning for classification:
– We know the correct label y (either 0 or 1) for each training x. 
– What the system produces is an estimate *𝑦 = 𝑝(𝑦 = 1|𝐱)	

• Training: we want to set w and b to minimize the distance 
between our estimate "𝑦 and the true y.

– We need a distance estimator: a loss function or a cost function
• Cross-Entropy loss = Negative Log-Likelihood (NLL)

– We need an optimization algorithm to update w and b to 
minimize the loss.

• Stochastic Gradient Descent (SGD)
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Logistic Regression for Binary Classification

• Model output can be interpreted as class probabilities:

• How do we train a logistic regression model, i.e. how do 
we find parameters w and b?
– What cost function to minimize?
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*𝑦 = 𝑝 𝑦 = 1 𝐱 = 𝜎 w&𝐱! =
1

1 + exp(−w&𝐱!)

1 − *𝑦 = 𝑝 𝑦 = 0 𝐱 = 1 − 𝜎 w&𝐱! = 𝜎 −w&𝐱!

Prob. of +ve class: 

Prob. of −ve class:



Logistic Regression Learning

• Learning = finding the “right” parameters wT = [w0, w1, … , wK]
– Find w that minimizes a cost function J(w) which measures the 

misfit between *𝑦! and 𝑦!.
– Expect that if model performing well on training examples xn 

 Þ same model will perform well on arbitrary test examples x Î X.

• Least Squares cost function?

– Differentiable => can use gradient descent ✓
– Non-convex => not guaranteed to find the global optimum  ✗
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𝐽 𝐰 =
1
2𝑁

1
!"#

$

*𝑦! − 	𝑦𝑛 %



Maximum Likelihood Estimation

Maximum Likelihood Estimation (MLE): find parameters 
that maximize the likelihood of the labels

• The likelihood function is:

• The negative log-likelihood (cross entropy) loss:

𝑝 𝐲 𝐰, X = 	(
!"#

$

𝑝(𝑦!|𝐰, 𝐱!)

𝐿 𝐰 = − ln 𝑝 𝐲 𝐰 = −2
!"#

$

ln 𝑝(𝑦!|𝐱!)
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𝐲 = [𝑦#, 𝑦%,…, 𝑦$]

𝑝 𝑦! = 1 𝐱 = 𝜎 w&𝐱! =
1

1 + exp(−w&𝐱!)



Maximum Likelihood Estimation

Training set is D = {áxn, ynñ | yn Î {0,1}, n Î 1…N}

We have defined *𝑦! = 𝑝 𝑦! = 1 𝐱! = 𝜎 w&𝐱!

Maximum Likelihood Estimation (MLE) principle: find parameters that 
maximize the likelihood of the labels.

• The likelihood is

• The negative log-likelihood (cross entropy) cost function:
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𝑝(𝐲|𝐰) =T
!"#

$

*𝑦!
0!(1 − *𝑦!)(#-0!)

𝐿 𝐰 = − ln 𝑝 𝐲 𝐰 = −1
!"#

$

𝑦! ln *𝑦! + 1 − 𝑦! ln(1 − *𝑦!)



MLE for Logistic Regression

• The MLE optimization problem is:

• MLE solution is given by ÑL(w) = 0
– Solve numerically with gradient based methods:

• Stochastic gradient descent, conjugate gradient, L-BFGS, ...

– Gradient is 

• If we separate bias b=w0 from w, what is ∇L(b)?  

convex in w
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X𝐰 = argmin
𝐰

𝐽(𝐰) = argmin
𝐰

− ln 𝑝 𝐲 𝐰

ÑL(w) =1
!"#

$

( *𝑦! − 𝑦!)𝐱!



the loss 𝐿 𝐰

Interlude on Gradient Descent

• Need to find parameters w that minimize the negative log-
likelihood loss:

42

(𝐰 = argmin
𝐰
−0
$%&

'

ln 𝑝(𝑦$|𝐱$)	

method to compute loss 𝐿 𝐰

method to compute gradient ∇𝐿 𝐰

GD-based optimizers
(SGD, ADAM, …) params X𝐰



Overfitting

• A model that perfectly matches the training data may have 
a problem.

• It may also overfit to the data, modeling noise: 
– A random word that perfectly predicts y (it happens to only occur 

in one class) will get a very high weight. 
– Failing to generalize to a test set without this word. 

• A good model should be able to generalize.
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Overfitting

This movie drew me in, and it'll 
do the same to you.

X1 = "this"
X2 = "movie
X3 = "hated"

I can't tell you how much I hated 
this movie. It sucked.

X5 = "the same to you"
X7 = "tell you how much"

X4 = "drew me in"

+

-

Useful or harmless features:

4gram features that just "memorize" 
training set and might cause problems:

44



Overfitting

• 4-gram model on tiny data will just memorize the data:
– 100% accuracy on the training set.

• But it will be surprised by novel 4-grams in the test data:
– Low accuracy on test set.

• Models that are too powerful can overfit the data:
– Fitting the details of the training data so exactly that the model 

doesn't generalize well to the test set.
• How to avoid overfitting?

– L2 and L1 Regularization in logistic regression.
– SGD and Dropout in neural networks.

45

capacity = how many params in 4-gram model?



Regularized Logistic Regression

• Use a Gaussian prior over the parameters:
 w = [w1, … , wM]T

• Bayes’ Theorem:

• MAP solution:
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𝑝 𝐰 𝐲 =
𝑝 𝐲 𝐰 𝑝(𝐰)

𝑝(𝐲)
∝ 𝑝 𝐲 𝐰 𝑝(𝐰)

X𝐰 = argm𝑎𝑥
𝐰

𝑝 𝐰 𝐲

= argm𝑎𝑥
𝐰

𝑝 𝐲 𝐰 𝑝(𝐰)



Regularized Logistic Regression

• MAP solution:

data term
(we also average)

regularization term
47

X𝐰 = argmax
𝐰

𝑝 𝐲 𝐰 𝑝(𝐰)

= argmin
𝐰
− ln 𝑝 𝐲 𝐰 − ln 𝑝(𝐰)

= argmin
𝐰
− ln 𝑝 𝐲 𝐰 −

𝛼
2
𝐰&𝐰

= argmin
𝐰
	𝐿2(𝐰) + 𝐿3(𝐰)

𝐿2 𝐰 = −
1
𝑁
1
!"#

$

𝑦! ln *𝑦! + 1 − 𝑦! ln(1 − *𝑦!)

𝐿3 𝐰 =
𝜆
2
𝐰&𝐰

still convex in w



Regularized Logistic Regression

• MAP (maximum likelihood + L2 regularization) solution:

• MAP solution is given by ÑL(w) = 0

 ÑL(w) =  ÑLD(w) + ÑLC(w)

• Cannot solve analytically => solve numerically using (stochastic) 
gradient descent [PRML 3.1.3], conjugate gradient, L-BFGS, …

*𝑦! = 𝜎 w&𝐱! + 𝑏

= argmin
𝐰
−
1
𝑁
1
!"#

$

ln 𝑝 𝑦! 𝐱! +
𝜆
2
𝐰 %
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=
1
𝑁1
!"#

$

( *𝑦! − 𝑦!) 𝐱! + 𝜆𝐰

𝐰 = argmin
𝐰
𝐿2 𝐰 + 𝐿4 𝐰 	 𝜆 is also called decay



Wait, where does 𝜆 come from?

• Cannot train 𝜆 together with parameters w, why?

• We call 𝜆 a hyper-parameter.

– We tune 𝜆 before training w.
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𝐰 = argmin
𝐰
−
1
𝑁
1
!"#

$

ln 𝑝 𝑦! 𝐱! +
𝜆
2
𝐰 %

solved using e.g. SGD need to set 𝜆 before training



Hyperparameter Tuning:
how to select a good value for hyperparam 𝜆?

• Put aside an independent validation set.
• Select parameters giving best performance on validation set.
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Validation Training

!"#$%&$%#$'&$'#$(&)*+ −−−−−−∈λ

ln l -40 -35 -30 -25 -20 -15
Loss 1.05 0.30 0.25 0.27 0.52 0.55



K-fold Cross-Validation
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https://scikit-learn.org/stable/modules/cross_validation.html

https://scikit-learn.org/stable/modules/cross_validation.html


K-fold Cross-Validation

• Split the training data into K folds and try a wide range of 
tunning parameter values:
– split the data into K folds of roughly equal size
– iterate over a set of values for 𝜆

• iterate over k = 1, 2, ..., K
– use all folds except k for training
– validate (calculate test error) in the k-th fold

• loss[𝜆] = average loss over the K folds
– choose the value of 𝜆 that gives the smallest loss.
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https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LassoCV.html



Model Evaluation

• K-fold evaluation:
– randomly partition dataset in K equally sized subsets P1, P2, … Pk

– for each fold i in {1, 2, …, k}:
• test on Pi, train on P1 È … È Pi-1 È Pi+1 È … È Pk

– compute average error/accuracy across K folds.
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4-fold evaluation



Implementation: Vectorization of LR

• Version 1: Compute gradient component-wise.

grad = np.zeros(K)
for n in range(N):

h = sigmoid(w.dot(X[n]))
temp = h − y[n]
for k in range(K):
 grad[k] = grad[k] + temp * X[k,n] / N

def sigmoid(x):
    return 1 / (1 + np.exp(−x)) 
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ÑL(w) =
1
𝑁
1
!"#

$

( *𝑦! − 𝑦!)𝐱!

// This NumPy code assumes examples stored in rows of X.



Implementation: Vectorization of LR

• Version 2: Compute gradient, partially vectorized.

grad = np.zeros(K)
for n in range(N):

grad = grad + (sigmoid(w.dot(X[n])) − y[n]) * X[n] / N

def sigmoid(x):
    return 1 / (1 + np.exp(−x)) 
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ÑL(w) =
1
𝑁1
!"#

$

( *𝑦! − 𝑦!)𝐱!

// This NumPy code assumes examples stored in rows of X.



Implementation: Vectorization of LR

• Version 3: Compute gradient, vectorized.

grad = X.T.dot(sigmoid(X.dot(w) − y)) / N

def sigmoid(x):
    return 1 / (1 + np.exp(−x)) 
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ÑL(w) =
1
𝑁1
!"#

$

( *𝑦! − 𝑦!)𝐱!



Vectorization of LR with Separate Bias

• Separate the bias b from the weight vector w.
• Compute gradient separately with respect to w and b:

– Gradient with respect to w is:

– Gradient with respect to bias b is: Δ𝐿(𝑏) = −
1
𝑁2
"#$

%

!𝑦" − 𝑦"
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!𝑦" = 𝜎(𝐰&𝐱" + 𝑏)

ÑL(w) =
1
𝑁
1
!"#

$

(𝑦! − *𝑦!)𝐱!

grad_w = X.T.dot(sigmoid(X.dot(w) + b) − y) / N

grad_b = # YOUR CODE HERE J



Vectorization of LR with Regularization

• Only the gradient with respect to w changes:
– never use L2 regularization on bias.
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ÑL(w) =
1
𝑁
1
!"#

$

( *𝑦! − 𝑦!) 𝐱! + 𝜆𝐰

grad = X.T.dot(sigmoid(X.dot(w) + b) − y) / N + ⍺w 



Binary Logistic Regression in sklearn
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scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html

scikit-learn.org/stable/modules/linear_model.html#logistic-regression

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/modules/linear_model.html


What if we have K > 2 classes?

60

• Logit score z is still the dot product between a weight 
vector and the input vector.

• But now we have a separate weight vector wc for each 
class c = 1, 2, …, k

• How do we transform 𝑧6 into a probability 𝑝6?

𝑧6 = 𝐰67𝐱



What if we have K > 2 classes?

• Need a generalization of the sigmoid σ called the softmax:
– Softmax takes as input a vector z = [z1, z2, ..., zK] of K values. 
– It outputs a probability distribution softmax(z) = p = [p1, p2, ..., pK] 

• Need each value in the range [0,1].
• Need all the values summing to 1.
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distributed according to a Gaussian distribution with mean µ = 0. In a Gaussian
or normal distribution, the further away a value is from the mean, the lower its
probability (scaled by the variance s ). By using a Gaussian prior on the weights, we
are saying that weights prefer to have the value 0. A Gaussian for a weight q j is

1q
2ps2

j

exp

 
�
(q j �µ j)2

2s2
j

!
(5.27)

If we multiply each weight by a Gaussian prior on the weight, we are thus maximiz-
ing the following constraint:

q̂ = argmax
q

MY

i=1

P(y(i)|x(i))⇥
nY

j=1

1q
2ps2

j

exp

 
�
(q j �µ j)2

2s2
j

!
(5.28)

which in log space, with µ = 0, and assuming 2s2 = 1, corresponds to

q̂ = argmax
q

mX

i=1

logP(y(i)|x(i))�a
nX

j=1

q 2
j (5.29)

which is in the same form as Eq. 5.24.

5.6 Multinomial logistic regression

Sometimes we need more than two classes. Perhaps we might want to do 3-way
sentiment classification (positive, negative, or neutral). Or we could be assigning
some of the labels we will introduce in Chapter 8, like the part of speech of a word
(choosing from 10, 30, or even 50 different parts of speech), or the named entity
type of a phrase (choosing from tags like person, location, organization).

In such cases we use multinomial logistic regression, also called softmax re-
multinomial

logistic
regression gression (or, historically, the maxent classifier). In multinomial logistic regression

the target y is a variable that ranges over more than two classes; we want to know
the probability of y being in each potential class c 2C, p(y = c|x).

The multinomial logistic classifier uses a generalization of the sigmoid, called
the softmax function, to compute the probability p(y = c|x). The softmax functionsoftmax
takes a vector z = [z1,z2, ...,zk] of k arbitrary values and maps them to a probability
distribution, with each value in the range (0,1), and all the values summing to 1.
Like the sigmoid, it is an exponential function.

For a vector z of dimensionality k, the softmax is defined as:

softmax(zi) =
exp(zi)Pk
j=1 exp(z j)

1  i  k (5.30)

The softmax of an input vector z = [z1,z2, ...,zk] is thus a vector itself:

softmax(z) =

"
exp(z1)Pk
i=1 exp(zi)

,
exp(z2)Pk
i=1 exp(zi)

, ...,
exp(zk)Pk
i=1 exp(zi)

#
(5.31)

softmax([z1, z2, ..., zK]) = [p1, p2, ..., pK]



The softmax function

• Turns a vector z = [z1,z2,...,zk] of k values into probabilities:

5.6 • MULTINOMIAL LOGISTIC REGRESSION 15

For a vector z of dimensionality k, the softmax is defined as:

softmax(zi) =
ezi

Pk
j=1 ez j

1  i  k (5.32)

The softmax of an input vector z = [z1,z2, ...,zk] is thus a vector itself:

softmax(z) =

"
ez1

Pk
i=1 ezi

,
ez2

Pk
i=1 ezi

, ...,
ezk

Pk
i=1 ezi

#
(5.33)

The denominator
Pk

i=1 ezi is used to normalize all the values into probabilities.
Thus for example given a vector:

z = [0.6,1.1,�1.5,1.2,3.2,�1.1]

the result softmax(z) is

[0.055,0.090,0.0067,0.10,0.74,0.010]

Again like the sigmoid, the input to the softmax will be the dot product between
a weight vector w and an input vector x (plus a bias). But now we’ll need separate
weight vectors (and bias) for each of the K classes.

p(y = c|x) =
ewc · x+bc

kX

j=1

ew j · x+b j

(5.34)

Like the sigmoid, the softmax has the property of squashing values toward 0 or
1. thus if one of the inputs is larger than the others, will tend to push its probability
toward 1, and suppress the probabilities of the smaller inputs.

5.6.1 Features in Multinomial Logistic Regression
For multiclass classification the input features need to be a function of both the
observation x and the candidate output class c. Thus instead of the notation xi, fi
or fi(x), when we’re discussing features we will use the notation fi(c,x), meaning
feature i for a particular class c for a given observation x.

In binary classification, a positive weight on a feature pointed toward y=1 and
a negative weight toward y=0... but in multiclass a feature could be evidence for or
against an individual class.

Let’s look at some sample features for a few NLP tasks to help understand this
perhaps unintuitive use of features that are functions of both the observation x and
the class c,

Suppose we are doing text classification, and instead of binary classification our
task is to assign one of the 3 classes +, �, or 0 (neutral) to a document. Now a
feature related to exclamation marks might have a negative weight for 0 documents,
and a positive weight for + or � documents:
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distributed according to a Gaussian distribution with mean µ = 0. In a Gaussian
or normal distribution, the further away a value is from the mean, the lower its
probability (scaled by the variance s ). By using a Gaussian prior on the weights, we
are saying that weights prefer to have the value 0. A Gaussian for a weight q j is
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If we multiply each weight by a Gaussian prior on the weight, we are thus maximiz-
ing the following constraint:

q̂ = argmax
q

MY
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P(y(i)|x(i))⇥
nY
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which in log space, with µ = 0, and assuming 2s2 = 1, corresponds to

q̂ = argmax
q

mX

i=1

logP(y(i)|x(i))�a
nX

j=1

q 2
j (5.29)

which is in the same form as Eq. 5.24.

5.6 Multinomial logistic regression

Sometimes we need more than two classes. Perhaps we might want to do 3-way
sentiment classification (positive, negative, or neutral). Or we could be assigning
some of the labels we will introduce in Chapter 8, like the part of speech of a word
(choosing from 10, 30, or even 50 different parts of speech), or the named entity
type of a phrase (choosing from tags like person, location, organization).

In such cases we use multinomial logistic regression, also called softmax re-
multinomial

logistic
regression gression (or, historically, the maxent classifier). In multinomial logistic regression

the target y is a variable that ranges over more than two classes; we want to know
the probability of y being in each potential class c 2C, p(y = c|x).

The multinomial logistic classifier uses a generalization of the sigmoid, called
the softmax function, to compute the probability p(y = c|x). The softmax functionsoftmax
takes a vector z = [z1,z2, ...,zk] of k arbitrary values and maps them to a probability
distribution, with each value in the range (0,1), and all the values summing to 1.
Like the sigmoid, it is an exponential function.

For a vector z of dimensionality k, the softmax is defined as:

softmax(zi) =
exp(zi)Pk
j=1 exp(z j)

1  i  k (5.30)

The softmax of an input vector z = [z1,z2, ...,zk] is thus a vector itself:

softmax(z) =

"
exp(z1)Pk
i=1 exp(zi)

,
exp(z2)Pk
i=1 exp(zi)

, ...,
exp(zk)Pk
i=1 exp(zi)

#
(5.31)
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For a vector z of dimensionality k, the softmax is defined as:

softmax(zi) =
ezi

Pk
j=1 ez j

1  i  k (5.32)

The softmax of an input vector z = [z1,z2, ...,zk] is thus a vector itself:

softmax(z) =

"
ez1

Pk
i=1 ezi

,
ez2

Pk
i=1 ezi

, ...,
ezk

Pk
i=1 ezi

#
(5.33)

The denominator
Pk

i=1 ezi is used to normalize all the values into probabilities.
Thus for example given a vector:

z = [0.6,1.1,�1.5,1.2,3.2,�1.1]

the result softmax(z) is

[0.055,0.090,0.0067,0.10,0.74,0.010]

Again like the sigmoid, the input to the softmax will be the dot product between
a weight vector w and an input vector x (plus a bias). But now we’ll need separate
weight vectors (and bias) for each of the K classes.

p(y = c|x) =
ewc · x+bc

kX

j=1

ew j · x+b j

(5.34)

Like the sigmoid, the softmax has the property of squashing values toward 0 or
1. thus if one of the inputs is larger than the others, will tend to push its probability
toward 1, and suppress the probabilities of the smaller inputs.

5.6.1 Features in Multinomial Logistic Regression
For multiclass classification the input features need to be a function of both the
observation x and the candidate output class c. Thus instead of the notation xi, fi
or fi(x), when we’re discussing features we will use the notation fi(c,x), meaning
feature i for a particular class c for a given observation x.

In binary classification, a positive weight on a feature pointed toward y=1 and
a negative weight toward y=0... but in multiclass a feature could be evidence for or
against an individual class.

Let’s look at some sample features for a few NLP tasks to help understand this
perhaps unintuitive use of features that are functions of both the observation x and
the class c,

Suppose we are doing text classification, and instead of binary classification our
task is to assign one of the 3 classes +, �, or 0 (neutral) to a document. Now a
feature related to exclamation marks might have a negative weight for 0 documents,
and a positive weight for + or � documents:

softmax(z)  =
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What if we have K > 2 classes?

63

=
exp(𝐰67𝐱)

∑8%&9 exp(𝐰87𝐱)

• Logit score zc is still the dot product between a weight 
vector and the input vector.

• But now we have a separate weight vector wc for each 
class c = 1, 2, …, k

𝑝 𝑦 = 𝑐 𝐱 =
exp(𝑧6)

∑8%&9 exp(𝑧8)



Multinomial Logistic Regression in sklearn
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scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html

For multiclass problems, if you want multinomial, choose ‘newton-cg’, ‘sag’, 
‘saga’ or ‘lbfgs’ for training.

scikit-learn.org/stable/modules/linear_model.html#logistic-regression

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/modules/linear_model.html


Temperature

• Softmax with a temperature parameter T ≥ 0:

• When T = 1, we get the original softmax distribution.
– What happens when T = 0?
– What happens when T > 1?
– What happens when T < 1?

• T = 0 and T > 1 widely used for generation with LLMs!
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𝑝 𝑦 = 𝑐 𝐱 =
exp( ⁄𝑧6 𝑇)

∑8%&9 exp( ⁄𝑧8 𝑇)



Softmax Regression = Logistic Regression
for Multiclass Classification

• Multiclass classification:
T = {C1, C2, ..., CK} = {1, 2, ..., K}.

• Training set is (x1,y1), (x2,y2), … (xN,yN).
x = [1, x1, x2, ..., xM]

 y1, y2, … yN Î {1, 2, ..., K}

• One weight vector per class [PRML 4.3.4]:

p(Ck | x) =
exp(wk

Tx))
exp(w j

Tx)
j∑

66

𝑝 𝐶' 𝐱" =
exp(𝐰'

&𝐱" + 𝑏')
∑(#$..* exp(𝐰(&𝐱" + 𝑏()

bias parameter inside each wj separate bias parameter bj 



Softmax Regression (K ³ 2)

• Inference:

• Training using:
– Maximum Likelihood (ML)
– Maximum A Posteriori (MAP) with a Gaussian prior on w.

!"#$%&%'() !!"
"#"

!

=

= argmax
Ck

exp(wk
Tx)

exp(w j
Tx)

j∑
Z(x) a normalization 
constant

= argmax
Ck
exp(wk

Tx)

= argmax
Ck
wk

Tx
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Softmax Regression

• The negative log-likelihood error function is:

• The Maximum Likelihood solution is:

• The gradient is (prove it):

 

ED (w) = −
1
N
ln p(tn | xn )

n=1

N

∏
convex in w

= −
1
N

ln
exp(wtn

T xn )
Z(xn )n=1

N

∑





≠
=

=
!"
!"

"! !
"

#$δwhere                                  is the Kronecker delta function.

!"#$%&'( !!
! !"# $=

∇wk
ED (w) = −

1
N

δk (tn )− p(Ck | xn )( )
n=1

N

∑ xn
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Regularized Softmax Regression

• The new cost function is:

• The new gradient is (prove it):

E(w) = ED (w)+Ew (w)

∇wk
E(w) = − 1

N
δk (tn )− p(Ck | xn )( )xnT

n=1

N

∑ +αwk
T

= −
1
𝑁
1
!"#

$

ln
exp 𝐰5!

& 𝐱!
𝑍 𝐱!

	+
𝛼
2
𝐖 %

gradk=

69



Softmax Regression

• ML solution is given by ÑED(w) = 0 .
– Cannot solve analytically.

– Solve numerically, by pluging [cost, gradient] = [E(w), ÑE(w)] 
values into general convex solvers:

• L-BFGS
• Newton methods
• conjugate gradient
• (stochastic / minibatch) gradient-based methods.

– gradient descent (with / without momentum).
– AdaGrad, AdaDelta
– RMSProp
– ADAM, ...
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Implementation 

• Need to compute [cost, grad]:

§ cost  

§ gradk 

=> need to compute, for k = 1, ..., K: 

§ output

= −
1
N

δk (tn )ln p(Ck | xn )
k=1

K

∑
n=1

N

∑ +
α
2

wk
T

k=1

K

∑ wk

= −
1
N

δk (tn )− p(Ck | xn )( )xnT
n=1

N

∑ +αwk
T

p(Ck | xn ) =
exp(wk

Txn ))
exp(w j

Txn )j∑ Overflow when wk
Txn 

are too large.
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Implementation: Preventing Overflows

• Subtract from each product wk
Txn the maximum product:

• When using separate bias bk, replace 𝐰97𝐱$ everywhere 
with 𝐰97𝐱$ + 𝑏9.

c =max
1≤k≤K

wk
Txn

p(Ck | xn ) =
exp(wk

Txn − c))
exp(w j

Txn − c)j∑

n

n

n
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Vectorization of Softmax with Separate Bias

• Separate the bias bk from the weight vector wk.
• Compute gradient separately with respect to wk and bk :

– Gradient with respect to wk is:

– Gradient with respect to bk is:

= −
1
N

δk (tn )− p(Ck | xn )( )xnT
n=1

N

∑ +αwk
Tgradk

Δ𝑏' = −
1
𝑁2
"#$

%

𝛿' 𝑡" − 𝑝(𝐶'|𝐱")

Gradient matrix is  [grad1 | grad2 | … | gradK]

Gradient vector is Δb =[Δ𝑏# | Δ𝑏%	 | … | Δ𝑏6]

𝑝 𝐶" 𝐱# =
exp(𝐰"$𝐱# + 𝑏")

∑%&'..) exp(𝐰%$𝐱# + 𝑏%)

𝛿" 𝑡# = 61	, 𝑖𝑓	𝑡# = 𝑘
0	, 𝑖𝑓	𝑡# ≠ 𝑘
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Vectorization of Softmax

• Need to compute [cost, grad, Δb]:

§ cost  

§ gradk 

=> compute ground truth matrix G such that G[k,n] = 𝛿k(tn)

from scipy.sparse import coo_matrix
groundTruth = coo_matrix((np.ones(N, dtype = np.uint8),

                                            (labels, np.arange(N)))).toarray()

= −
1
N

δk (tn )ln p(Ck | xn )
k=1

K

∑
n=1

N

∑ +
α
2

wk
T

k=1

K

∑ wk

= −
1
N

δk (tn )− p(Ck | xn )( )xnT
n=1

N

∑ +αwk
T

𝑝 𝐶" 𝐱# =
exp(𝐰"$𝐱# + 𝑏")

∑%&'..) exp(𝐰%$𝐱# + 𝑏%)
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Vectorization of Softmax

• Compute cost 

– Compute matrix of 𝐰7&𝐱! + 𝑏7.

– Compute matrix of 𝐰7&𝐱! + 𝑏7 − 𝑐!.

– Compute matrix of exp(𝐰7&𝐱! + 𝑏7 − 𝑐!).

– Compute matrix of ln 𝑝(𝐶7|𝐱!).

– Compute log-likelihood cost using all the above.

= −
1
N

δk (tn )ln p(Ck | xn )
k=1

K

∑
n=1

N

∑ +
α
2

wk
T

k=1

K

∑ wk

𝑝 𝐶" 𝐱# =
exp(𝐰"$𝐱# + 𝑏")

∑%&'..) exp(𝐰%$𝐱# + 𝑏%)
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𝛿" 𝑡# = 61	, 𝑖𝑓	𝑡# = 𝑘
0	, 𝑖𝑓	𝑡# ≠ 𝑘

c =max
1≤k≤K

wk
Txn+𝑏'n

ln 𝑝 𝐶' 𝐱" = 𝐰'
&𝐱" + 𝑏' 	− ln( 2

(#$..*

exp(𝐰(&𝐱" + 𝑏())



Vectorization of Softmax

• Compute gradk 

§ Gradient matrix = [grad1 | grad2 | … | gradK]

– Compute matrix of 𝑝(𝐶7|𝐱!).

– Compute matrix of gradient of data term.

– Compute matrix of gradient of regularization term.

– Compute ground truth matrix G such that G[k,n] = 𝛿k(tn)

= −
1
N

δk (tn )− p(Ck | xn )( )xnT
n=1

N

∑ +αwk
T

𝑝 𝐶" 𝐱# =
exp(𝐰"$𝐱# + 𝑏")

∑%&'..) exp(𝐰%$𝐱# + 𝑏%)
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Vectorization of Softmax

• Useful Numpy functions:
– np.dot()
– np.amax()
– np.argmax()
– np.exp()
– np.sum()
– np.log()
– np.mean()
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Implementation: Gradient Checking

• Want to minimize J(θ), where θ is a scalar.

• Mathematical definition of derivative:

• Numerical approximation of derivative:

d
dθ

J(θ ) ≈ J(θ +ε)− J(θ −ε)
2ε

where ε = 0.0001

𝑑
𝑑𝜃 𝐽 𝜃 = lim

?→A

𝐽 𝜃 + 𝜀 − 𝐽(𝜃 − 𝜀)
2𝜀
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Implementation: Gradient Checking

• If θ is a vector of parameters θi, 
– Compute numerical derivative with respect to each θi.

• Create a vector v that is ε in position i and 0 everywhere else:
– How do you do this without a for loop in NumPy?

• Compute Gnum(θi) = (J(θ +v) − J(θ − v)) / 2ε
– Aggregate all derivatives Gnum(θi) into numerical gradient Gnum(θ).

• Compare numerical gradient Gnum(θ) with implementation 
of gradient Gimp(θ):

Gnum (θ)−Gimp(θ)
Gnum (θ)+Gimp(θ)

≤10−6
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