ITCS 5356 Intro to Machine Learning

Feed-Forward Neural Networks
Backpropagation

Deep Learning

Razvan C. Bunescu
Computer Science @ CCI

razvan.bunescu@charlotte.edu

mailto:razvan.bunescu@charlotte.edu

Logistic Neuron = Logistic Regression

activation / output
function 1

A

R f -® 3 1+exp(-w'x)

2 1
A (2 g 1+ exp(—2)

* Algebraic interpretation:

— The output of the neuron is a linear combination of inputs from other neurons,
rescaled by the synaptic weights.

« weights w; correspond to the synaptic weights (activating or inhibiting).
* summation corresponds to combination of signals in the soma.

— It 1s often transformed through a monotonic activation function.

Activation Functions

A

: 1
A O8Sifiz<0 "%
unit ste 7) =
P /(@) { 1 ifz=0
Perceptron
logistic f(z) = : 0 ifz<O0
l+e°° RelU f(z2)= :
z 1fz=0
Logistic Neuron
Rectified Linear Unit
0 Az) =ramp(z) = max(0, z)

Perceptron vs. Logistic Neuron

=

* Logistic neuron = Logistic regression:

— At inference time, same decision function as perceptron, for
binary classification with equal misclassification costs (prove it):

0 otherwise

— Perceptron cannot represent the XOR function:

 Logistic neuron, ReL U, Tanh have the same limitation.

 How can we use (logistic) neurons to achieve better
representational power?

Universal Approximation Theorem
Hornik (1991), Cybenko (1989)

Let o be a nonconstant, bounded, and monotonically-increasing
continuous function;

Let I, denote the m-dimensional unit hypercube [0,1]";

Let C(I,,) denote the space of continuous functions on I,,;

Theorem: Given any function f € C(I,,) and € > 0, there exist an
integer N and real constants a,, b, € R, w; e R™, wherei=1, ..., N,
such that:

IF(x)- f(x)|<e, VxEI,
where

N
F(x)= Eaia(wiTX +b.)
i=1

http://deeplearning.cs.cmu.edu/pdfs/Cybenko.pdf

Universal Approximation Theorem
Hornik (1991), Cybenko (1989)

F(x)

N
F(x)= Eaia(wiTX +b,)
i=1

IF(x)- f(x)|<¢, VXEI,

m=3,N=3
€O [xla x29 X3]
W; = [W;1, Wi, Wis]

http://deeplearning.cs.cmu.edu/pdfs/Cybenko.pdf

Neural Network Model

\
e Put together many neurons in layers, such that the output of a neuron |
on layer / can be the input of another neuron on layer / + 1: |

hy(X) i

Layer L,

Layer L, Layer L,

input layer |

Feed-Forward Neural Networks

. For each neuron in hidden layer 1, we need 10 + 1 = 11 params. For the 10 neurons

. For the 5 neurons on hidden layer 2, we need 5 * 11 = 55 params.
. For the output neurons, we need 5 + 1 = 6 parames.

input layer

hidden layer 1 hidden layer 2
10 10 5 1

on hidden layer 1, we need in total 10 * 11 = 110 params.

8
T

The Importance of Representation

http://www.deeplearningbook.org

Cartesian coordinates Polar coordinates

From Cartesian to Polar Coordinates

 Manually engineered:

r= 2+

gF="tangk H (first quadrant)

e Learned from data: %
Ong IC neuron

U
/
U

@
(O] :Cj—» p(bluelx,y)
)

R
-
-
-

fixed to 1

Jl

Fully connected layers: linear transformation W + element-wise nonlinearity f => f(WX)

10

Representation Learning: Images

https://www.datarobot.com/blog/a-primer-on-deep-learning/

» | e -
- - - o - o -) . .l ".‘ .\\“"'
n "N\ \ A\ =
\ n i L e ~ > ..'r 4 '8
,Aa » —\h- v -» ’-- R -
- (™~ - al > M m» A'- o
ﬁ; |~ "b " =
14— 1‘0' e 7, - L "', -~ '
N - = BN, o - .

11

Representation Learning: Images

https://www.datarobot.com/blog/a-primer-on-deep-learning/

Elephants

ASN N7 ASN N7

L] LN NZR=L S
A FANN A FANN
=[1C11m =I1S1mE=

=
e

Chairs

150

~NTvy
éln
A v

{ : -
|l T
f=Anas

1) q-"‘ SN
MYNYRS 1=\
<" L=y
| l‘t:' W2l
hfhmnﬂéH

_.;IE
L

-
1

AN Y
NZR7N =
“HIWVALS

=IIS1mE

A Rapidly Evolving Field

Used to think that training deep networks requires greedy layer-wise
pretraining:

— Unsupervised learning of representations with auto-encoders (2012).

Better random weight initialization schemes now allow training deep
networks from scratch.

Batch normalization allows for training even deeper models (2014).

— Sometimes replaced by the simpler Layer Normalization (2016).
Residual learning allows training arbitrarily deep networks (2015).

Attention-based Transformers replace RNNs and CNNs in NLP (2018):

— BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
(2019).

Neural Network Model

(=

* Put together many neurons 1n layers, such that the output
of a neuron can be the input of another:

Layer L, Layer L,

input layer

input features x
A

bias units

Layer L, Layer L,

o n;=3 is the number of layers.
= L, is the input layer, L; is the output layer
o (W, b)= (WD, bh), W@ b?) are the parameters:

= W0, is the weight of the connection between unit j in layer / and
unit 7 in layer / + 1.

= b, is the bias associated unit unit i in layer [+ 1.
o a; is the activation of unit i in layer /, e.g. all); = x; and a®; = hy;(x).

5
e

Inference: Forward Propagation

The activations in the hidden layer are:
a? = f(WY 21 + Wz + Wiy + b1))
‘2) = f(WyPzy + Wiz + Wiy s + b))

a.&” = f(Wap ey + Wy oo + Wag)ws +)

The activations in the output layer are:
hwp(x) = a1 = (Wff)a?) + ‘fV(Q)agQ) + W'(nf)a(f) -+ bm‘

Compressed notation:

al) = f (zfl)) where 2 = i1 "‘/.ig'l)xj + oM

Forward Propagation

« Forward propagation (unrolled):
al? = fWP 2+ Wz + W2y + 61V
“’) = f(Warzy + Wiz + W,,‘Pa:,, + b5
(") — fWP 2 + W2y + W2y + b))
hvo(z) = a = FIVPa® 4 WDe® 1 W@a® 4 p?)

* Forward propagation (compressed):

2@ =Wz 4 pM) : g
* Element-wise application:
a® — f(2®)

3 _ W @a@ 4 @ Az) =[(2)), (2,), (z5)]

hwas(z) = a® = f (3(3))

4.7

Forward Propagation

» Forward propagation (compressed):
2D =Wz 4 pV
a? = f(2?)
L3 _ @40 4 p®@
hws(z) = a® = f(29)
* Composed of two forward propagation steps:

1) — 70 40 + pb)
a(H-l) _ f(z(H-l))

Forward Propagation for FCNs: Regression

1. Input activations are[al) = x]

g Horcachlage®l= 1,2, 1., n; =4 compute

7D — WD O £ pD masrix multiply and add

a(”l) = f(z (l"'l)) apply element-wise non-linear function f

3. For last layer n; + 1 compute regression output [a("l“)]

zutD) — () () 4)

autD) = Zutl) oumut (regression)

Backpropagation for FCNs for Regression:
1 example

» Feedforward to compute activations alV= f(z(l)) at layers [

1. For output layer, compute:
(10 1) R -+ 1)
o (At true label

2. B n; n=2 3, ".., 2«£0mpute:

NO ((W<z>)T5<z+1>) ¢ f'(20)

3. Compute the partial derivatives of the cost J(W,b,x,y)

T
Vyw) = 84D (a®) V,wf = 64+

Backpropagation for FCNs for Regression:
m examples

» Feedforward to compute activations a(V= f(z(l)) at layers /

1. For output layer, compute:
(n+1) — (q(n+1) _
0 (a ------- true label vector

2. B n; n=2 3, ".., 2«£0mpute:

NO ((W<z>)T5<z+1>) ¢ f'(20)

3. Compute the partial derivatives of the cost J(W,b,x,y)

i
Vol =90 (Hl)(a(l)) /m Voo =0 (l+1.2:01_avg()

Multinomial Softmax

Consider layer n; to be the input to the softmax layer 1.e.
softmax output layer 1s n;+1.

Softmax weights stored in matrix W),

K classes => W) =|_wI —

Multinomial Softmax

X

Softmax output is a™ = softmax(z(™+D)
a(nl)

Softmax logits
Softmax input / &

Softmax weights W (")

N
\ . Cross-entropy
\

Forward Propagation for FCNs: Classification

1. Input activations are[al) = x]

g Horcachlage®l= 1,2, 1., n; =4 compute

7D — WD O £ pD masrix multiply and add

a(”l) = f(z (l+1)) apply element-wise non-linear function f

3. For last layer n; + 1 compute probability output[a(”l“)]

zutD) — () () 4)

(G = softmax(z (nl+1)) softmax output (classification)

Backpropagation Algorithm: Softmax (1)

. Feedforward pass on x to compute activations al¥) for layers
I'=sl, 20..., 0

. Compute softmax outputs a™*+D and objective J (@D, y).

. Lety = [6:(¥), 65(y), ..., 6k (¥)]T be the one-hot vector
representation for label y.

. Compute gradient with respect to softmax weights:

d]
ow ()

= (a(nl'l'l) el © y)a(nl)T

Backpropagation Algorithm: Softmax (2)

=

5. Compute gradient with respect to softmax inputs:

(T A (Wmo)T(a(nm) —y) o f'(zW)

\

I
aJ
da(m)

6. For I'sn—lg—2, n=8" ..., 2 computes

5O = ((Wa))T 5<l+1>) . £1(z")

7. Compute the partial derivatives of the cost J(W, b, x, y)
T
Vel =08 ila) N VIl S

w®

26
R ———— e

Backpropagation Algorithm: Softmax for
1 Example

——

» Feedforward to compute activations alV= f(z(l)) at all layers

1. For softmax layer, compute:
RN (6| R

S one-hot label vector

2. Forl=n, n=1, %2, ..., 2 compute:
5O = ((W(l>)T 6(’”)) . £(z")
3. Compute the partial derivatives of the cost J(W,b,x,y)

i O R e T 5

w®

Backpropagation Algorithm: Softmax for
Dataset of m Examples

=

» Feedforward to compute activations alV= f(z(l)) at all layers

1. For softmax layer, compute:
QL) e R+ 1)
0 (A). ground-truth label matrix

2. Folt="n; n=l%g—2,...,'2 compuie:

59 = ((Wm)T 5(l+1>) e f'(z)

3. Compute the partial derivatives of the cost J(W,b, x,y)

w®

Vs =3 () fm

mef = 5(l+l).col_avg()

+a W0

if using L, regularization

28

Backpropagation Algorithm: Softmax for
Dataset of m Examples

* Feedforward to compute activations aD= f(z(l)) at all layers
1. For softmax layer, compute:

K X M, where K is the # of classes
2. Forlg=n;, n=1%4—2,:...,'2 comipuie:

S1 X M, where s, is the # neurons on layer /

3. Compute the partial derivatives of the cost J(W,b,x,y)

avg()

np.mean(axis=1)

V4W(”J = O (a(l))T/m Bb<z>] =30""col_

Si+1Xm S;xm
+ a WO

S1+1 X S}, where s, is the # neurons on layer /

Si+1 X 1, where s,,, is the # neurons on layer +1)9

Softmax Regression Cost:
From 1 to m examples

Ground truth vector y is a one-hot vector where:
=y, = 1 if the true class label y is &, otherwise y;, = 0.

The negative log-likelihood (NLL) part of the cost is:
g](W, b, X, y) =4 lnp(ylwr b: x) = ZII§=1 5k(y)lnp(ck|x)

Using our NN notation, y, = &, (y) and a,((nlﬂ) = p(€alx)

= Therefore, we can write the NLL part of the cost as a dot-product between
the one-hot ground truth vector y and the log of a(utl)

" J(W,b,x,y) =J(at*V,y) = —y" Ina™*V) = —sum(y o In a™* D)

When vectorized for m examples + regularization, when y is the ground-truth
matrix and a 1s the matrix of softmax probabilities of all m examples:

= J(W,b) = J(a®™*V,y) = ——sum(y o Ina®™*D) + Z||w||2

Multiple Hidden Units, Multiple Outputs

=

* Write down the forward propagation steps for:

RelLU and Generalizations

=

It has become more common to use piecewise linear
activation functions for hidden units:

— ReLU: the rectifier activation g(z) = max {0, z}.
— Absolute value ReLLU: g(z) = [z|.
— Maxout: g(ay, ..., a;) = max{ay, ..., d;}.
* needs k weight vectors instead of 1.
— Leaky ReLU: g(a) = max{0, a}+ o min(0, a).
—> the network computes a piecewise linear function (up to
the output activation function).

ReLU vs. Sigmoid and Tanh

Sigmoid and Tanh saturate for values not close to 0:

— “kill” gradients, bad behavior for gradient-based learning.

RelLU does not saturate for values > O:

— greatly accelerates learning, fast implementation.

— fragile during training and can “die”, due to 0 gradient:

« 1nitialize all »’s to a small, positive value, e.g. 0.1.

10 |

8¢

ReLU vs. Softplus

» Softplus g(z) = In(1+e?) 1s a smooth version of the rectifier.
— Saturates less than ReLU, yet ReLU still does better [Glorot, 2011].

Nonlinearities
| [1 1 1 1

— Softplus
4 - — Redtifier

RelLU and Generalizations

« Leaky ReLU attempts to fix the “dying” ReLU problem.

« Maxout subsumes (leaky) ReLU, but needs more params.

A
Region 1 y

Region 2

Region 1 Region 2

RelLU

LRelLU and PRelU Maxout (k=4)

Maxout Networks

[Goodfellow et al., ICML’13]

 Maxout units can learn the activation function.

Rectifier Absolute value Quadratic

Figure 1. Graphical depiction of how the maxout activa-
tion function can implement the rectified linear, absolute
value rectifier, and approximate the quadratic activation
function. This diagram is 2D and only shows how max-
out behaves with a 1D input, but in multiple dimensions a

maxout unit can approximate arbitrary convex functions.
36

Start Supplemental Material

Derivation of Backpropagation

Backpropagation for FCNs for Regression:
1 example

» Feedforward to compute activations alV= f(z(l)) at layers [

1. For softmax layer, compute:

(+1) 5 +1) &
o (At true label
2. Eowt= n; n=l 2., 2«ompute:

NO ((W<z>)T5<z+1>) ¢ f'(20)

3. Compute the partial derivatives of the cost J(W,b,x,y)

T
Vyw) = 84D (a®) V,wf = 64+

Learning: Regression vs. Classification

=

* Regression => [oss = squared error:

J(W.b,x,y)= %th,b(x)—ynz +%||W||2

e Classification => Joss = negative log-likelihood:
A
JW,b,x,y) = —Inp(y|W, b, x) +§||W||2

* Need to compute the gradient of the loss with respect to
parameters W, b:

oF TR oJ

i
oW, ab"

l

=7

39
e

Learning: Backpropagation for Regresion

=

* Regularized sum of squares error:
Squared Frobenius norm of W

J(W,b,x,y)= ||hW J(x) = y” 0

nl ~I; Si+1 5]
J(W, b)——EJ(W bx™,y*)+ = EEE(W”))
e (Gradient:
oJ(W,b) 1
)

avvij m-z
OJW,b) 1 <xxdJ(W,b,x" y")

ob;"” mE ab"

Backpropagation for Regression

e Need to compute the gradient of the squared error with
respect to a single training example (x, y):

IO,b5.3)= 2 s 03[= 3o -

o) W5 oJ

0 s
IW; ob"

Univariate Chain Rule for Differentiation

* Univariate Chain Rule:
J s fogoh= f(g(h(x)))

of df dg oh
0x dg dh 0x

 Example:

f(g(x))=2g(x)" —=3g(x)+1
g(x)= X0 +2x

Multivariate Chain Rule for Differentiation

=

e Multivariate Chain Rule:

f = f(gl(x),gz(x),...,gn(x))

E of 98
ax 70g;, 0x

 Example:

f(gl(x),gz (x)) = 281 (x)z = 3gl(x)gz (x)+1
g, (x)=3x
g, (x)=x"+2x

Backpropagation: W()

 Jdepends on W,-j(l) only through a*1, which depends on Wl-j(l)
only through z,/*D).

(l+l) f(Z(l+1))

Li oy P
J(W,b,x,y) = EHG —}’H (1+1) EW(Z)a(l) + b(l)

Backpropagation: bl.(l ,
& o
Q pO_ /‘<
0 NG Va\

* Jdepends on b; D only through a (*)
gh a!""), which d [0
through z.*D. ch depends on b; " only

g f(204)

18 ¢
J(W,b,x,y)=§Ha()—yH2 (1+1) EW(Z)au) +b(1)

Backpropagation: W,-;l)and o

o0J oJ O Zi(m)

= St AP = gP§HD
aWing) aai(m) azi(zn) GWZ.;” i 9
\ T)
! v
[+1 (1) z
S 7, How to compute 8
for all layers [?
(I+1) (I+1)
oJ . oJ g da, £ 0z, _ 5D
(1) (I+1) (1+1) O
ob;” da, 7] db

\ Ju |
! Y

5i(l+1) _|_1

Backpropagation: (5,-(1)

()
SO = 9J xaai % £'(z")
e D) B0 %
da;’ 0z
?

« Jdepends on a” only through a,¢*V, @,V ...

A
y

Backpropagation: 5(1)

()

« Jdepends on a; "’ only through a,*), a,(*D .

(9] 141 aJ aJ 3 aa§l+l) 3 aZ§l+1)
aai(l) ._1 aa(.l+1) - aa(.l+1) aZ(-l+1) aa.(l)
- il r (i LA -
Y Y
(1+1) (1)
W s

o " Thencfore 51.”) can be computed as:

G
61'

> (l) Xf(Z(l)) » E“/j(il)éj('lm Xf'(Zl-(l))

Backpropagation: 5,-(1)

(=

« Start computing o’s for the output layer:

5(”1) il oJ Gai(n’) 8] 1o (ny)
j _E)) xa () =(9 & X8 (2.55)
d; <i d;

1) J n
1= e —of > (=)

(Si(nl) e (ai(n,) § yl) 5 f’(Zi(nz))

Backpropagation Algorithm

Feedforward pass on x to compute activations a."’

i

For each output unit i compute:

6" = (™ -y,)x £z

Bor,/'= ni—1, n—=2, n/—3, ...; 2 compute:

Si41
(1) () (I+1) re ()
5 =(EW,-,- J)Xf(z,-)
j=1

Compute the partial derivatives of the cost J(W,b, x,y)

0J g0 an P
aVVU() abi()

50
M

Backpropagation Algorithm: Vectorization for
1 Example

1. Feedforward pass on x to compute activations a'"”

i

2. For last layer compute:

5(11;) fuy (a(nl) & }7) ° f’(Z(nl))

3. HOBI™= =l 2n=3, .. &2 Comppic:
50 = ((W(l))T 5(l+1)) .f’(Z(l))
4. Compute the partial derivatives of the cost J(W,b, x, y)

w®

N od =0 e SR, 756"

X0

Backpropagation Algorithm: Vectorization for
Dataset of m Examples

1. Feedforward pass on X to compute activations @

2. For last layer compute:

5(11;) fuy (a(nl) & }7) ° f’(Z(nl))

3. HOBI™= =l 2n=3, .. &2 Comppic:
50 = ((W(l))T 5(l+1)) .f’(Z(l))
4. Compute the partial derivatives of the cost J(W,b, x, y)

R 5(l+1)(a(l))T - mej P (5(l+1).col_avg()

w®

End Supplemental Material

Derivation of Backpropagation

Backpropagation: Logistic Regression

Bonus points

Shallow vs. Deep Networks

=

* A 1-hidden layer network 1s a fairly shallow network.
— Effective for MNIST, but limited by simplicity of features.

* A deep network 1s a k-layer network, k> 1.
— Computes more complex features of the input, as k gets larger.

— Each hidden layer computes a non-linear transformation of the
previous layer.

Conjecture

A deep network has significantly greater representational
power than a shallow one.

Number of Linear Regions of Shallow vs.
Deep NetWOI'kS [Montufar et a., NIPS’14]

Conjecture

A deep network has significantly greater representational
power than a shallow one.

Figure 1: Binary classification using a shallow model with 20 hidden units (solid line) and a deep model
with two layers of 10 units each (dashed line). The right panel shows a close-up of the left panel. Filled
markers indicate errors made by the shallow model.

Deep vs. Shallow Architectures

A function is highly varying when a piecewise (linear)
approximation would require a large number of pieces.

Depth of an architecture refers to the number of levels of
composition of non-linear operations in the function
computed by the architecture.

Conjecture: Deep architectures can compactly represent
highly-varying functions:
— The expression of a function is compact when it has few
computational elements.

— Same highly-varying functions would require very large shallow
networks.

Graphs of Computations

=

* A function can be expressed by the composition of
computational elements from a given set:
— logic operators.
— logistic operators.
— multiplication and additions.

e The function 1s defined by a graph of computations:
— A directed acyclic graph, with one node per computational element.

— Depth of architecture = depth of the graph = longest path from an
input node to an output node.

Functions as Graphs of Computations
[Bengio, FTML’09]

element
set

S1

(B L)

Polynomials as Graphs of Computations
[Bengio, FTML’09]

(z172)(X2X3) + (172)(z374) + (Xa.vl'i:;)2 + (XoX3)(T374)

(T1NF (X2X3) KoX3) + (T374)

+ -

/

Ty

Sum-Product Networks (SPNs)

[Poon & Domingos, UAI’11]

* Rooted, weighted DAG.

e Nodes:

Sum, Product, (Input) Indicators.

* Weights on edges from sums to children.

S
X:X;=1,X,=0 @ !

0.42

|
0
0
|

ML Models as Graphs of Computations

[Bengio, FTML’09]

If we include affine operations and their possible composition with sigmoids in the set of computa-
tional elements.|linear regression and logistic regression/have depth 1. 1.e.. have a single level.

When we put a fixed kernel computation K (u, v) in the set of allowed operations, along with affine
operations,|kernel machines|(Scholkopf, Burges, & Smola, 1999a) with a fixed kernel can be consid-
ered to have two levels. The first level has one element computing K (X, x;) for each prototype x; (a
selected representative training example) and matches the input vector x with the prototypes x;. The
second level performs an affine combination b+) . a; K (x, X;) to associate the matching prototypes
x; with the expected response.

When we put artificial neurons (affine transformation followed by a non-linearity) in our set of el-
ements, we obtain ordinary multi-layer neural networks |[(Rumelhart et al., 1986b). With the most
common choice of one hidden layer, they also have depth two (the hidden layer and the output layer).

Boosting |[(Freund & Schapire, 1996) usually adds one level to its base learners: that level computes a
vote or linear combination of the outputs of the base learners.

Stacking|(Wolpert, 1992) is another meta-learning algorithm that adds one level.

Based on current knowledge of brain anatomy (Serre et al., 2007), it appears that|the cortex|can be
seen as a deep architecture, with 5 to 10 levels just for the visual system.

62
T

Deep vs. Shallow Architectures
[Bengio, FTML’09]

 When a function can be compactly represented by a deep
architecture, 1t might need a very large architecture to be
represented by an insufficiently deep one.

A two-layer circuit of logic gates can represent any Boolean function (Mendelson, 1997). Any Boolean
function can be written as a sum of products (disjunctive normal form: AND gates on the first layer with
optional negation of inputs, and OR gate on the second layer) or a product of sums (conjunctive normal
form: OR gates on the first layer with optional negation of inputs, and AND gate on the second layer).
To understand the limitations of shallow architectures, the first result to consider is that with depth-two
logical circuits, most Boolean functions require an exponential (with respect to input size) number of logic
gates (Wegener, 1987) to be represented.

More interestingly. there are functions computable with a polynomial-size logic gates circuit of depth k
that require exponential size when restricted to depth k£ — 1 (Hastad, 1986). The proof of this theorem relies
on earlier results (Yao, 1985) showing that d-bir parity circuits of depth 2 have exponential size. The d-bit
parity function 1s defined as usual:

1if Ele b; is even
0 otherwise.

parity : (b1,...,bdq) € {0,1}d+—> {

Deep vs. Shallow Architectures
[Bengio, FTML’09]

e Many of the results for Boolean circuits can be generalized
to architectures whose computational elements are /inear
threshold units 1.e. Mc-Cullogh & Pitts neurons:

f(x)=1[w!x+b > 0]

* Monotone weighted threshold circuits = multi-layer neural
networks with linear threshold units and positive weights.

Theorem 2.1. A monotone weighted threshold circuit of depth k — 1 computing a function fi. € Fr N has
size at least 2°N for some constant ¢ > 0 and N > Ny (Héstad & Goldmann, 1991).

The class of functions Fj. n 1s defined as follows. It contains functions with N2k=2 inputs, defined by a
depth k circuit that is a tree. At the leaves of the tree there are unnegated input variables, and the function
value is at the root. The i-th level from the bottom consists of AND gates when i 1s even and OR gates when
i is odd. The fan-in at the top and bottom level is N and at all other levels it is N 2.

64 |
D —————

Deep vs. Shallow Architectures

Deep architectures were shown to be more compact for:
— Boolean circuits [Hastad, 1986].
— Monotone weighted threshold circuits [Hastad and Goldman, 1993].

Same holds for networks with continuous-valued activations
[Maass, 1992].

Many modern neural networks use rectified linear units:
1. ReLU networks are universal approximators [Leshno et al., 1993].

2. Are deep ReLU networks more compact than shallow ones?
 YES! [Montufar et al., NIPS’14]

RelLU and Generalizations

=

It has become more common to use piecewise linear
activation functions for hidden units:

— ReLU: the rectifier activation g(a) = max{0, a}.
— Absolute value ReLLU: g(a) = |a|.
— Maxout: g(ay, ..., a;) = max{ay, ..., d;}.
* needs k weight vectors instead of 1.
— Leaky ReLU: g(a) = max {0, a}+ o min(0, a).
—> the network computes a piecewise linear function (up to
the output activation function).

ReLU vs. Sigmoid and Tanh

Sigmoid and Tanh saturate for values not close to 0:

— “kill” gradients, bad behavior for gradient-based learning.

RelLU does not saturate for values > O:

— greatly accelerates learning, fast implementation.

— fragile during training and can “die”, due to 0 gradient:

« 1nitialize all »’s to a small, positive value, e.g. 0.1.

10 |

8¢

ReLU vs. Softplus

» Softplus g(a) = In(1+e%) 1s a smooth version of the rectifier.
— Saturates less than ReL U, yet ReLU still does better [Glorot, 2011].

Nonlinearities
| [1 1 1 1

— Softplus
4 - — Redtifier

RelLU and Generalizations

« Leaky ReLU attempts to fix the “dying” ReLU problem.

« Maxout subsumes (leaky) ReLU, but needs more params.

A
Region 1 y

Region 2

Region 1 Region 2

RelLU

LRelLU and PRelU Maxout (k=4)

Maxout Networks

[Goodfellow et al., ICML’13]

 Maxout units can learn the activation function.

Rectifier Absolute value Quadratic

Figure 1. Graphical depiction of how the maxout activa-
tion function can implement the rectified linear, absolute
value rectifier, and approximate the quadratic activation
function. This diagram is 2D and only shows how max-
out behaves with a 1D input, but in multiple dimensions a

maxout unit can approximate arbitrary convex functions.
70

Number of Linear Regions of Shallow vs.
Deep NetWOI'kS [Montufar et al., NIPS’14]

Theorem

A deep network has significantly greater representational
power than a shallow one.

Figure 1: Binary classification using a shallow model with 20 hidden units (solid line) and a deep model
with two layers of 10 units each (dashed line). The right panel shows a close-up of the left panel. Filled
markers indicate errors made by the shallow model.

Folding Example

Folding Example

Folding Example

Folding Example

Space Foldings

» Each hidden layer of a deep neural network can be
associated with a folding operator.

1. Fold along the 2. Fold along the

vertical axis horizontal axis

Folding Example

Folding Example

Space foldings

« Each hidden layer of a deep neural network can be
associated with a folding operator.

Input Space
1 First Layer Space
.-—"‘_—_—\
/s; S, /s:1
) !

N4

N

54151 s, s, /
S3]52 /\/

Second Layer
Space

N7

Folding Example

Folding Example

Folding Example

Space Foldings

[Montufar et al., NIPS’14]

Each hidden layer of a deep neural network can be
associated with a folding operator:

— Each hidden layer folds the space of activations of the previous
layer.

— In turn, a deep neural network effectively folds its input-space
recursively, starting with the first layer.
Any function computed on the final folded space will
apply to all the collapsed subsets 1dentified by the map
corresponding to the succession of foldings.

This means that in a deep model any partitioning of the last
layer’s 1mage-space 1s replicated 1n all input-space regions
which are identified by the succession of foldings.

83
D ————— e

Space Foldings

[Montufar et al., NIPS’14]

* Space foldings are not restricted to foldings along
coordinate axes and they do not have to preserve lengths:

— The space is folded depending on the orientations and shifts
encoded in:

« The input weights W and biases b.
* The nonlinear activation function used at each hidden layer.

— The sizes and orientations of identified input-space regions may
differ from each other.

— For activation functions which are not piece-wise linear, the
folding operations may be even more complex.

Space Foldings

[Montufar et al., NIPS’14]

Space Foldings

[Montufar et al., NIPS’14]

« Space folding of 2-D space in a non-trivial way:

— The folding can potentially identify symmetries in the boundary
that it needs to learn.

Deep vs. Shallow Rectifier Networks

[Montufar et al., NIPS’14]

=

* A linear region of a piecewise linear function F: R4 —> Rm™
is a maximal connected subset of the input-space RY, on
which F'is linear.

— The number of linear regions carved out by a deep rectifier
network with d inputs, depth /, and » units per hidden layer, i1s:

\ d(l-1)
O ((n,) nd)
d

— In the case of maxout networks with k filters per unit, the number
of linear regions is:

O (k(l—1)+d)

Start Supplemental Material

Why are Deep Architectures Good for AI?

Why are Deep Architectures Good for AI?

* There 1s no guarantee that the kinds of functions we want
to learn share this “folding” property.

e Choosing a deep model encodes a very general belief that:

— The function we want to learn should involve composition of
several simpler functions, OR

— The learning problem consists of discovering a set of underlying
factors of variation that can in turn be described in terms of other,
simpler underlying factors of variation, OR

— The function we want to learn is a computer program consisting of
multiple steps, where each step uses of the previous step’s output.

* Empirically, greater depth does seem to result in better
generalization for a wide variety of tasks.

Digit Recognition Accuracy vs. Depth

[DL book, 2016]
T

__‘

= .
0
=

o —
£

>} —
Q
&

el —
=
3
Q

d —
-~

3 -
=

92.0 | | | | | ! !
3 4 5 6 7 8 9 10 11

Figure 6.6: Empirical results showing that deeper networks generalize better when used
to transcribe multi-digit numbers from photographs of addresses. Data from Coodicllow
of al. (2014d). The test set accuracy consistently increases with increasing depth. See
figure 6.7 for a control experiment demonstrating that other increases to the model size
do not yield the same effect.

Accuracy vs. Depth vs. Capacity [

DL book, 2016]
97 | I | | |
e —e 3 convolutional
: . j- |t
- +—+ 3, fully connected
i & V¥ 11, convolutional [
>
94 |- =
:
Q o +-
g 93 - Tl' 41 -
—
S 92} :
91 | | |] |
0.0 0.2 0.4 0.6 0.8 1.0
Number of parameters x10%

Figure 6.7: Deeper models tend to perform better. This is not merely because the model is
larger. This experiment from Coodicllow «f ol (2011d) shows that increasing the number
of parameters in layers of convolutional networks without increasing their depth is not
nearly as effective at increasing test set performance. The legend indicates the depth of
network used to make each curve and whether the curve represents variation in the size of

Why do Cheap & Deep Architectures Work
fOI’ 1AI‘7 [Lin & Tegmark, 2016]

| —]

« Paradox: How can neural networks approximate functions
well 1n practice, when the set of possible functions 1s
exponentially larger than the set of practically possible
networks?

— Example: classify megapixel greyscale images into two categories,
e.g., cats or dogs.

— If each pixel can take one of 256 values, then there are 256000000
possible images, and for each one, we wish to compute the
probability that it depicts a cat.

— This means that an arbitrary function is defined by a list of 2561000000
probabilities, 1.e., way more numbers than there are atoms in our
universe (about 107%),

Why do Cheap & Deep Architectures Work
fOI’ 1AI‘7 [Lin & Tegmark, 2016]

| —]

« Paradox: How can neural networks approximate functions
well 1n practice, when the set of possible functions 1s
exponentially larger than the set of practically possible
networks?

* Conjecture: The data sets and functions we care about form
a minuscule minority, and it 1s plausible that they can also be
efficiently implemented by neural networks reflecting their
generative process.

Why do Cheap & Deep Architectures Work
fOI’ 1AI‘7 [Lin & Tegmark, 2016]1

Cheap: The exceptional simplicity of physics-based
functions hinges on properties such as symmetry, locality,
compositionality and polynomial log-probability.

— These properties translate into exceptionally simple neural networks

approximating both natural phenomena such as images and abstract
representations thereof such as drawings.

Deep: The statistical process generating the data 1s of a

certain hierarchical form prevalent in physics and machine

learning:

— Therefore, a deep neural network can be more efficient than a
shallow one.

Why do Cheap Architectures Work for AI?

[Lin & Tegmark, 2016]

Low polynomial order: For reasons that are still not fully
understood, our universe can be accurately described by
polynomial Hamiltonians of low order d.

— Standard model: At a fundamental level, the Hamiltonian of the
standard model of particle physics has d = 4.

— Central Limit Theorem: many probability distributions in
machine-learning and statistics can be accurately approximated by
multivariate Gaussians => Hamiltonian H = — In p has d = 2.

Translation and rotation invariance.
Locality.
Symmetry.

Why do Cheap Architectures Work for AI?

[Lin & Tegmark, 2016]

* Low polynomial order: For reasons that are still not fully
understood, our universe can be accurately described by
polynomial Hamiltonians of low order d.

* Neural networks can efficiently approximate multiplication!

Polynomials as Stmple NN
[Lin & Tegmark, 2016]
Continuous multiplication gate: Binary multiplication gate:
)\-2

=50

FIG. 2: Multiplication can be efficiently implemented by sim-
ple neural nets, becoming arbitrarily accurate as A — 0 (left)
and 8 — oo (right). Squares apply the function o, circles
perform summation, and lines multiply by the constants la-
beling them. The “1” input implements the bias term. The
left gate requires o”'(0) # 0, which can always be arranged by
biasing the input to o. The right gate requires the sigmoidal
behavior o(z) — 0 and o(z) —+ 1 as * — —oo and =z — 00, 97

Why do Deep Architectures Work for AI?

[Lin & Tegmark, 2016]

—]

e Hierarchical Structure: One of the most striking features
of the physical world 1s its hierarchical structure.

— Spatially, it 1s an object hierarchy: elementary particles form
atoms which in turn form molecules, cells, organisms, planets,
solar systems, galaxies, etc.

— Causally, complex structures are frequently created through a
distinct sequence of simpler steps.

COSMO- QIO AT h| CATEGORY 2
x,=x LOGICAL | o° b,Q Tjs | %=T.0)| cator dog? | em xo=x§'
PARAMTERS |2 1T & =
¢ 5 S
S 2
S8 |M, o M, &
08 <
=
POWER :::u; :::z: ’::l.l:l X
e x,=T(y) |2 ==z | SOLIDWORKS
SPECTRUM —T,0) I Iy
=, -
s -
§ g | M, " M, §
= %\ ~ (
X, CMBSKY jaadmdiict 0 @ RAY-TRACED X,
MAP Wy W O OBJECT "
' g
E ” S
X S
35 M Yl §
RS g
S S~
=Y o T .)
FREQUENCY Ms}’“. *=T,() il
X, MAPS . E 2
g [
o Q
S M| £
& TELESCOPE | e swwses —oot)
< e s Y=
¥, DATA | I e x4§

Why do Cheap & Deep Architectures Work
fOI’ 1AI‘7 [Lin & Tegmark, 2016]

* Cheap & Deep:

« Paradox: The number of parameters required to describe an arbitrary
function of the input data y is beyond astronomical.

* Solution: The generative process can be specified by a more modest
number of parameters, because each of its steps can.

— For a megapixel image of a galaxy, its entire prob. distribution is
defined by the standard model of particle physics with its 32
parameters, which together specify the process transforming
primordial hydrogen gas into galaxies.

— Giving the simple low-information content instruction “draw a cute
kitten" to a random sample of artists will produce a wide variety of
images y with a complicated probability distribution over colors,
postures, etc. But the pre-stored information about cat probabilities

1n these artists' brains 1s modest in size.
100
R

End Supplemental Material

Why are Deep Architectures Good for AI?

101

Readings

e (Chapter 7 on Neural Netwoks in the NLP textbook.

https://web.stanford.edu/~jurafsky/slp3/7.pdf

