
Razvan C. Bunescu

Computer Science @ CCI

razvan.bunescu@charlotte.edu

ITCS 5356 Intro to Machine Learning

1

Feed-Forward Neural Networks

Backpropagation

Deep Learning

mailto:razvan.bunescu@charlotte.edu

Logistic Neuron = Logistic Regression

2

Σ f

1x0

x1

x2

x3

activation / output
function

w0
w1

w2
w3

• Algebraic interpretation:
– The output of the neuron is a linear combination of inputs from other neurons,

rescaled by the synaptic weights.
• weights wi correspond to the synaptic weights (activating or inhibiting).
• summation corresponds to combination of signals in the soma.

– It is often transformed through a monotonic activation function.

=
1

1+ exp(−wTx)
!𝑦

z = 𝐰!𝐱
𝑓 z = 𝜎 𝑧 =

1
1 + exp(−𝑧)

Activation Functions

3

1

0

f (z) = 1
1+ e−z

logistic

f (z) = 0 if z < 0
1 if z ≥ 0

"
#
$

%$
unit step

Perceptron

Logistic Neuron
Rectified Linear Unit

ReLU f (z) = 0 if z < 0
z if z ≥ 0

⎧
⎨
⎪

⎩⎪

f(z) = ramp(z) = max(0, z)

Perceptron vs. Logistic Neuron

• Logistic neuron = Logistic regression:
– At inference time, same decision function as perceptron, for

binary classification with equal misclassification costs (prove it):

– Perceptron cannot represent the XOR function:
• Logistic neuron, ReLU, Tanh have the same limitation.

• How can we use (logistic) neurons to achieve better
representational power?

4

t̂ (x) = 1 if wTx > 0
0 otherwise

!
"
#

$#

Universal Approximation Theorem

− Let σ be a nonconstant, bounded, and monotonically-increasing
continuous function;

− Let Im denote the m-dimensional unit hypercube [0,1]m;
− Let C(Im) denote the space of continuous functions on Im;

5

Ø Theorem: Given any function f Î C(Im) and ε > 0, there exist an
integer N and real constants αi, bi Î R, wi Î Rm, where i = 1, ..., N,
such that:

where

F(x)− f (x) < ε, ∀x ∈ Im

F(x) = αiσ (wi
Tx+ bi)

i=1

N

∑

Hornik (1991), Cybenko (1989)

http://deeplearning.cs.cmu.edu/pdfs/Cybenko.pdf

6

x1

x2

x3

+1

αi

bi

wi3

wi2

wi1

σ

F(x) = αiσ (wi
Tx+ bi)

i=1

N

∑

+1

σ

σ

Σ

F(x)− f (x) < ε, ∀x ∈ Im

Universal Approximation Theorem
Hornik (1991), Cybenko (1989)

m = 3, N = 3
x = [x1, x2, x3]
wi = [wi1, wi2, wi3]

F(x)

http://deeplearning.cs.cmu.edu/pdfs/Cybenko.pdf

Neural Network Model

• Put together many neurons in layers, such that the output of a neuron
on layer l can be the input of another neuron on layer l + 1:

7

input layer output layerhidden layer

σ

σ

σ

Feed-Forward Neural Networks

8

10 10 5 1
1. For each neuron in hidden layer 1, we need 10 + 1 = 11 params. For the 10 neurons

on hidden layer 1, we need in total 10 * 11 = 110 params.
2. For the 5 neurons on hidden layer 2, we need 5 * 11 = 55 params.
3. For the output neurons, we need 5 + 1 = 6 params.

The Importance of Representation
http://www.deeplearningbook.org

9

r
θ

From Cartesian to Polar Coordinates

• Manually engineered:
𝑟 = 𝑥! + 𝑦!

𝜃 = tan"# $
%

 (first quadrant)

• Learned from data:

…
x
y

𝑟̂
!𝜃 p(blue|x,y)

Fully connected layers: linear transformation W + element-wise nonlinearity f => f(Wx)

fixed to 1

logistic neuron

10

Representation Learning: Images
https://www.datarobot.com/blog/a-primer-on-deep-learning/

11

Representation Learning: Images
https://www.datarobot.com/blog/a-primer-on-deep-learning/

12

A Rapidly Evolving Field

• Used to think that training deep networks requires greedy layer-wise
pretraining:
– Unsupervised learning of representations with auto-encoders (2012).

• Better random weight initialization schemes now allow training deep
networks from scratch.

• Batch normalization allows for training even deeper models (2014).
– Sometimes replaced by the simpler Layer Normalization (2016).

• Residual learning allows training arbitrarily deep networks (2015).

• Attention-based Transformers replace RNNs and CNNs in NLP (2018):
– BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

(2019).

13

Neural Network Model

• Put together many neurons in layers, such that the output
of a neuron can be the input of another:

14

input layer output layerhidden layer

σ

σ

σ

15

in
pu

t f
ea

tu
re

s x

bias units

o nl =3 is the number of layers.
§ L1 is the input layer, L3 is the output layer

o (W, b) = (W(1), b(1), W(2), b(2)) are the parameters:
§ W(l)

ij is the weight of the connection between unit j in layer l and
unit i in layer l + 1.

§ b(l)i is the bias associated unit unit i in layer l + 1.
o a(l)i is the activation of unit i in layer l, e.g. a(1)i = xi and a(3)1 = hW,b(x).

f

f

f
f

b3(1)

W32
(1)

Inference: Forward Propagation

• The activations in the hidden layer are:

• The activations in the output layer are:

• Compressed notation:

 where

16

Forward Propagation

• Forward propagation (unrolled):

• Forward propagation (compressed):

17

• Element-wise application:
 f(z) = [f(z1), f(z2), f(z3)]

Forward Propagation

• Forward propagation (compressed):

• Composed of two forward propagation steps:

18

Forward Propagation for FCNs: Regression

1. Input activations are 𝐚 4 = 𝐱

2. For each layer l = 1, 2, …, nl − 1 compute 𝐚 564 	

3. For last layer 𝑛5 + 1	compute regression output 𝐚(7!64)

19

𝐳 564 = 𝑊 5 	𝐚 5 + 𝐛 5

𝐚 564 = 𝑓(𝐳 564) apply element-wise non-linear function f

matrix multiply and add

𝐚(7!64)=	𝒛(7!64) output (regression)

𝐳 7!64 = 𝑊 7! 	𝐚 7! + 𝐛 7!

Backpropagation for FCNs for Regression:
1 example

1. For output layer, compute:

2. For l = nl, nl−2, nl−3, ..., 2 compute:

3. Compute the partial derivatives of the cost

20

J(W,b, x, y)

𝛿(7!64) =	 (a 7!64 − y)

3𝛿 5 = 𝑊 5 9
𝛿 564 • 𝑓:(𝑧 5

∇; ! 𝐽 = 𝛿 564 𝑎 5 9 ∇< ! 𝐽 = 𝛿 564

• Feedforward to compute activations a 5 = f(𝒛 5) at layers l

true label

Backpropagation for FCNs for Regression:
m examples

1. For output layer, compute:

2. For l = nl, nl−2, nl−3, ..., 2 compute:

3. Compute the partial derivatives of the cost

21

J(W,b, x, y)

𝛿(7!64) =	 (𝐚 7!64 − 𝐲) true label vector

3𝛿 5 = 𝑊 5 9
𝛿 564 • 𝑓:(𝑧 5

∇; ! 𝐽 = 𝛿 564 𝑎 5 9 ∇< ! 𝐽 = 𝛿 564

• Feedforward to compute activations 𝐚 5 = f(𝒛 5) at layers l

/m .col_avg()

Multinomial Softmax

• Consider layer nl to be the input to the softmax layer i.e.
softmax output layer is nl+1.

• Softmax weights stored in matrix 𝑊(7!).

• K classes =>

22

𝑊(7!) =
−𝐰49 −
−𝐰=9 −

⋮
−𝐰>9 −

Multinomial Softmax

• Softmax output is 𝐚('!(#)=	softmax(𝒛('!(#))

23

...

𝑎"
($!)

𝑎&
($!)

𝑎'
($!)

𝑧"
($!(")

𝑧&
($!(")

𝑧)
($!(")

𝐽(𝐚($!("), 𝐲)

Softmax input
Softmax logits

Cross-entropy

Softmax weights 𝑊($!)

⋮

x 𝐚('!)

Forward Propagation for FCNs: Classification

1. Input activations are 𝐚 4 = 𝐱

2. For each layer l = 1, 2, …, nl − 1 compute 𝐚 564 	

3. For last layer 𝑛5 + 1	compute probability output 𝐚(7!64)

24

𝐳 564 = 𝑊 5 	𝐚 5 + 𝐛 5

𝐚 564 = 𝑓(𝐳 564) apply element-wise non-linear function f

matrix multiply and add

𝐚(7!64)=	softmax(𝒛(7!64))

𝐳 7!64 = 𝑊 7! 	𝐚 7! + 𝐛 7!

softmax output (classification)

Backpropagation Algorithm: Softmax (1)

1. Feedforward pass on x to compute activations 𝐚(5) for layers
l = 1, 2, …, nl.

2. Compute softmax outputs 𝐚(7!64) and objective 𝐽(𝐚(7!64), 𝐲).

3. Let 𝐲 = 𝛿4 𝑦 , 𝛿= 𝑦 ,… , 𝛿> 𝑦 T be the one-hot vector
representation for label y.

4. Compute gradient with respect to softmax weights:

25

𝜕𝐽
𝜕𝑊(7!)

= (𝐚(7!64) − 𝐲)𝐚(7!)9

Backpropagation Algorithm: Softmax (2)

5. Compute gradient with respect to softmax inputs:

6. For l = nl−1, nl−2, nl−3, ..., 2 compute:

7. Compute the partial derivatives of the cost

26

δ (l) = W (l)()
T
δ (l+1)()• !f (z(l))

∇
W (l)J = δ (l+1) a(l)()

T

J(W,b, x, y)

∇
b(l)
J = δ (l+1)

𝛿(7!) = 𝑊 7! 9
(𝐚 7!64 − 𝐲) ∘ 𝑓′(𝐳 7!)

𝜕𝐽
𝜕𝐚('!)

Backpropagation Algorithm: Softmax for
1 Example

1. For softmax layer, compute:

2. For l = nl, nl−1, nl−2, ..., 2 compute:

3. Compute the partial derivatives of the cost

27

δ (l) = W (l)()
T
δ (l+1)()• !f (z(l))

∇
W (l)J = δ (l+1) a(l)()

T

J(W,b, x, y)

∇
b(l)
J = δ (l+1)

𝛿(7!64) =	 (𝐚 7!64 − 𝐲) one-hot label vector

• Feedforward to compute activations a 5 = f(𝒛 5) at all layers

Backpropagation Algorithm: Softmax for
Dataset of m Examples

1. For softmax layer, compute:

2. For l = nl, nl−1, nl−2, ..., 2 compute:

3. Compute the partial derivatives of the cost

28

δ (l) = W (l)()
T
δ (l+1)()• !f (z(l))

∇
W (l)J = δ (l+1) a(l)()

T

J(W,b, x, y)

∇
b(l)
J = δ (l+1)

𝛿(7!64) =	 (𝐚 7!64 − 𝐲)

/m .col_avg()

ground-truth label matrix

+ ⍺ W(l)

if using L2 regularization

• Feedforward to compute activations a 5 = f(𝒛 5) at all layers

Backpropagation Algorithm: Softmax for
Dataset of m Examples

1. For softmax layer, compute:

2. For l = nl, nl−1, nl−2, ..., 2 compute:

3. Compute the partial derivatives of the cost

29

δ (l) = W (l)()
T
δ (l+1)()• !f (z(l))

∇
W (l)J = δ (l+1) a(l)()

T

J(W,b, x, y)

∇
b(l)
J = δ (l+1)

𝛿(7!64) =	 (𝐚 7!64 − 𝐲)

/m .col_avg()

𝐾	x	𝑚, where K is the # of classes

+ ⍺ W(l)

𝑠*	x	𝑚, where sl is the # neurons on layer l

𝑠*(#	x	𝑠*, where sl is the # neurons on layer l 𝑠*(#	x	1, where sl+1 is the # neurons on layer l+1

np.mean(axis = 1)
𝑠"#$x	𝑚 𝑠"	x	𝑚

• Feedforward to compute activations a 5 = f(𝒛 5) at all layers

Softmax Regression Cost:
From 1 to m examples

• Ground truth vector 𝐲 is a one-hot vector where:
§ 𝑦* = 1 if the true class label y is k, otherwise 𝑦* = 0.

• The negative log-likelihood (NLL) part of the cost is:
§ 𝐽 W, 𝑏, 𝑥, 𝑦 = − ln 𝑝 𝑦 W, 𝑏, 𝑥 = −∑*+") 𝛿*(𝑦)ln 𝑝(𝐶*|𝑥)

• Using our NN notation, 𝑦* = 𝛿* 𝑦 and 𝑎*
($!(") = 𝑝(𝐶*|𝑥)

§ Therefore, we can write the NLL part of the cost as a dot-product between
the one-hot ground truth vector 𝐲 and the log of 𝐚($!(")
§ 𝐽 W, 𝑏, 𝑥, 𝑦 = 𝐽 𝐚($!("), 𝐲 = −	𝐲! 	ln	𝐚($!(") = −𝑠𝑢𝑚(𝐲 ∘ ln	𝐚($!("))

• When vectorized for m examples + regularization, when y is the ground-truth
matrix and a is the matrix of softmax probabilities of all m examples:

§ 𝐽 W, 𝑏 = 𝐽 𝐚($!("), 𝐲 = − "
,
𝑠𝑢𝑚(𝐲 ∘ ln	𝐚($!(")) + -

&
𝑊 &

30

Multiple Hidden Units, Multiple Outputs

• Write down the forward propagation steps for:

31

f

f

f

f

f

f

f

ReLU and Generalizations

• It has become more common to use piecewise linear
activation functions for hidden units:
– ReLU: the rectifier activation g(z) = max{0, z}.
– Absolute value ReLU: g(z) = |z|.
– Maxout: g(a1, ..., ak) = max{a1, ..., ak}.

• needs k weight vectors instead of 1.
– Leaky ReLU: g(a) = max{0, a}+ α min(0, a).

Þ the network computes a piecewise linear function (up to
the output activation function).

32

ReLU vs. Sigmoid and Tanh

• Sigmoid and Tanh saturate for values not close to 0:
– “kill” gradients, bad behavior for gradient-based learning.

• ReLU does not saturate for values > 0:
– greatly accelerates learning, fast implementation.
– fragile during training and can “die”, due to 0 gradient:

• initialize all b’s to a small, positive value, e.g. 0.1.

33

ReLU vs. Softplus

• Softplus g(z) = ln(1+ez) is a smooth version of the rectifier.
– Saturates less than ReLU, yet ReLU still does better [Glorot, 2011].

34

ReLU and Generalizations

• Leaky ReLU attempts to fix the “dying” ReLU problem.

• Maxout subsumes (leaky) ReLU, but needs more params.

35

Maxout Networks

• Maxout units can learn the activation function.

36

[Goodfellow et al., ICML’13]

Start Supplemental Material

Derivation of Backpropagation

37

Backpropagation for FCNs for Regression:
1 example

1. For softmax layer, compute:

2. For l = nl, nl−1, nl−2, ..., 2 compute:

3. Compute the partial derivatives of the cost

38

J(W,b, x, y)

𝛿(7!64) =	 (a 7!64 − y)

3𝛿 5 = 𝑊 5 9
𝛿 564 • 𝑓:(𝑧 5

∇; ! 𝐽 = 𝛿 564 𝑎 5 9 ∇< ! 𝐽 = 𝛿 564

• Feedforward to compute activations a 5 = f(𝒛 5) at layers l

true label

Learning: Regression vs. Classification

• Regression => loss = squared error:

• Classification => loss = negative log-likelihood:

• Need to compute the gradient of the loss with respect to
parameters W, b:

39

J(W,b, x, y) = 1
2
hW ,b(x)− y

2

𝐽 W, 𝑏, 𝑥, 𝑦 = − ln 𝑝 𝑦 W, 𝑏, 𝑥

∂J
∂Wij

(l) = ?
∂J
∂bi

(l) = ?

+
𝜆
2
𝑊 !

+
𝜆
2
𝑊 !

Learning: Backpropagation for Regresion

• Regularized sum of squares error:

• Gradient:

40

J(W,b, x, y) = 1
2
hW ,b(x)− y

2

J(W,b) = 1
m

J(W,b, x(k), y(k))
k=1

m

∑ +
λ
2

Wij
(l)()

2

j=1

sl+1

∑
i=1

sl

∑
l=1

nl−1

∑

∂J(W,b)
∂Wij

(l) =
1
m

∂J(W,b, x(k), y(k))
∂Wij

(l)
k=1

m

∑ +λWij
(l)

∂J(W,b)
∂bi

(l) =
1
m

∂J(W,b, x(k), y(k))
∂bi

(l)
k=1

m

∑

?

+1

Squared Frobenius norm of 𝑊(.)

Backpropagation for Regression

• Need to compute the gradient of the squared error with
respect to a single training example (x, y):

41

J(W,b, x, y) = 1
2
hW ,b(x)− y

2
=
1
2
a(nl) − y

2

∂J
∂Wij

(l) = ?
∂J
∂bi

(l) = ?

Univariate Chain Rule for Differentiation

• Univariate Chain Rule:

• Example:

42

f = f ! g !h = f (g(h(x)))
∂f
∂x

=
∂f
∂g

∂g
∂h

∂h
∂x

f (g(x)) = 2g(x)2 −3g(x)+1
g(x) = x3 + 2x

Multivariate Chain Rule for Differentiation

• Multivariate Chain Rule:

• Example:

43

f = f (g1(x),g2 (x),…,gn (x))

∂f
∂x

=
∂f
∂gi

∂gi
∂xi=1

n

∑

f (g1(x),g2 (x)) = 2g1(x)
2 −3g1(x)g2 (x)+1

g1(x) = 3x
g2 (x) = x

2 + 2x

Backpropagation:

• J depends on Wij
(l)

 only through ai(l+1), which depends on Wij
(l)

only through zi(l+1).

44

Wij
(l)

...aj
(l) ai

(l+1) a1
(nl)

J(W,b, x, y) = 1
2
a(nl) − y

2
ai
(l+1) = f (zi

(l+1))

zi
(l+1) = Wij

(l)aj
(l) + bi

(l)

j=1

sl

∑

Wij
(l)

Backpropagation:

• J depends on bi
(l)

 only through ai(l+1), which depends on bi
(l)

 only
through zi(l+1).

45

bi
(l)

...ai
(l+1) a1

(nl)

J(W,b, x, y) = 1
2
a(nl) − y

2
ai
(l+1) = f (zi

(l+1))

zi
(l+1) = Wij

(l)aj
(l) + bi

(l)

j=1

sl

∑

bi
(l)

+1

J

Backpropagation: and

46

Wij
(l) bi

(l)

∂J
∂Wij

(l) =
∂J

∂ai
(l+1) ×

∂ai
(l+1)

∂zi
(l+1) ×

∂zi
(l+1)

∂Wij
(l)

δi
(l+1)

= aj
(l)δi

(l+1)

aj
(l)

∂J
∂bi

(l) =
∂J

∂ai
(l+1) ×

∂ai
(l+1)

∂zi
(l+1) ×

∂zi
(l+1)

∂bi
(l)

δi
(l+1)

= δi
(l+1)

+1

How to compute
for all layers l ?

δi
(l)

Backpropagation:

• J depends on ai
(l)

 only through a1
(l+1), a2

(l+1), ...

47

δi
(l)

δi
(l) =

∂J
∂ai

(l) ×
∂ai

(l)

∂zi
(l) =

∂J
∂ai

(l) × #f (zi
(l))

?

...a2
(l+1) a1

(nl)ai
(l)

a1
(l+1)

a3
(l+1)

J

Backpropagation:

• J depends on ai
(l)

 only through a1
(l+1), a2

(l+1), ...

48

δi
(l)

∂J
∂ai

(l) =
∂J

∂aj
(l+1) ×

∂aj
(l+1)

∂ai
(l)

j=1

sl+1

∑ =
∂J

∂aj
(l+1) ×

∂aj
(l+1)

∂zj
(l+1)

j=1

sl+1

∑ ×
∂zj

(l+1)

∂ai
(l)

δ j
(l+1) Wji

(l)

δi
(l) =

∂J
∂ai

(l) × #f (zi
(l))

δi
(l)• Therefore, can be computed as:

= Wji
(l)δ j

(l+1)

j=1

sl+1

∑
"

#
$$

%

&
''×)f (zi

(l))

Backpropagation:

• Start computing δ’s for the output layer:

49

δi
(l)

δi
(nl) =

∂J
∂ai

(nl)
×
∂ai

(nl)

∂zi
(nl)

=
∂J
∂ai

(nl)
× #f (zi

(nl))

J = 1
2
a(nl) − y

2
=>

∂J
∂ai

(nl)
= ai

(nl) − yi()

δi
(nl) = ai

(nl) − yi()× #f (zi
(nl))

Backpropagation Algorithm

1. Feedforward pass on x to compute activations

2. For each output unit i compute:

3. For l = nl−1, nl−2, nl−3, ..., 2 compute:

4. Compute the partial derivatives of the cost

50

δi
(nl) = ai

(nl) − yi()× #f (zi
(nl))

δi
(l) = Wji

(l)δ j
(l+1)

j=1

sl+1

∑
"

#
$$

%

&
''×)f (zi

(l))

∂J
∂Wij

(l) = aj
(l)δi

(l+1) ∂J
∂bi

(l) = δi
(l+1)

ai
(l)

J(W,b, x, y)

Backpropagation Algorithm: Vectorization for
1 Example

1. Feedforward pass on x to compute activations

2. For last layer compute:

3. For l = nl−1, nl−2, nl−3, ..., 2 compute:

4. Compute the partial derivatives of the cost

51

δ (nl) = a(nl) − y()• "f (z(nl))

δ (l) = W (l)()
T
δ (l+1)()• !f (z(l))

∇
W (l)J = δ (l+1) a(l)()

T

ai
(l)

J(W,b, x, y)

∇
b(l)
J = δ (l+1)

Backpropagation Algorithm: Vectorization for
Dataset of m Examples

1. Feedforward pass on X to compute activations

2. For last layer compute:

3. For l = nl−1, nl−2, nl−3, ..., 2 compute:

4. Compute the partial derivatives of the cost

52

δ (nl) = a(nl) − y()• "f (z(nl))

δ (l) = W (l)()
T
δ (l+1)()• !f (z(l))

∇
W (l)J = δ (l+1) a(l)()

T

ai
(l)

J(W,b, x, y)

∇
b(l)
J = δ (l+1)/m .col_avg()

End Supplemental Material

Derivation of Backpropagation

53

Backpropagation: Logistic Regression

Bonus points

54

Shallow vs. Deep Networks

• A 1-hidden layer network is a fairly shallow network.
– Effective for MNIST, but limited by simplicity of features.

• A deep network is a k-layer network, k > 1.
– Computes more complex features of the input, as k gets larger.
– Each hidden layer computes a non-linear transformation of the

previous layer.

55

A deep network has significantly greater representational
power than a shallow one.

Conjecture

Number of Linear Regions of Shallow vs.
Deep Networks

56

A deep network has significantly greater representational
power than a shallow one.

Conjecture

[Montufar et a., NIPS’14]

Deep vs. Shallow Architectures

• A function is highly varying when a piecewise (linear)
approximation would require a large number of pieces.

• Depth of an architecture refers to the number of levels of
composition of non-linear operations in the function
computed by the architecture.

• Conjecture: Deep architectures can compactly represent
highly-varying functions:
– The expression of a function is compact when it has few

computational elements.
– Same highly-varying functions would require very large shallow

networks.
57

Graphs of Computations

• A function can be expressed by the composition of
computational elements from a given set:
– logic operators.
– logistic operators.
– multiplication and additions.

• The function is defined by a graph of computations:
– A directed acyclic graph, with one node per computational element.
– Depth of architecture = depth of the graph = longest path from an

input node to an output node.

58

Functions as Graphs of Computations

59

[Bengio, FTML’09]

Polynomials as Graphs of Computations

60

[Bengio, FTML’09]

Sum-Product Networks (SPNs)

• Rooted, weighted DAG.
• Nodes: Sum, Product, (Input) Indicators.
• Weights on edges from sums to children.

61

[Poon & Domingos, UAI’11]

ML Models as Graphs of Computations

62

[Bengio, FTML’09]

Deep vs. Shallow Architectures

• When a function can be compactly represented by a deep
architecture, it might need a very large architecture to be
represented by an insufficiently deep one.

63

[Bengio, FTML’09]

Deep vs. Shallow Architectures

• Many of the results for Boolean circuits can be generalized
to architectures whose computational elements are linear
threshold units i.e. Mc-Cullogh & Pitts neurons:
 f(x)=1[wTx+b ≥ 0]

• Monotone weighted threshold circuits = multi-layer neural
networks with linear threshold units and positive weights.

64

[Bengio, FTML’09]

Deep vs. Shallow Architectures

• Deep architectures were shown to be more compact for:
– Boolean circuits [Hastad, 1986].
– Monotone weighted threshold circuits [Hastad and Goldman, 1993].

• Same holds for networks with continuous-valued activations
[Maass, 1992].

• Many modern neural networks use rectified linear units:
1. ReLU networks are universal approximators [Leshno et al., 1993].
2. Are deep ReLU networks more compact than shallow ones?

• YES! [Montufar et al., NIPS’14]

65

ReLU and Generalizations

• It has become more common to use piecewise linear
activation functions for hidden units:
– ReLU: the rectifier activation g(a) = max{0, a}.
– Absolute value ReLU: g(a) = |a|.
– Maxout: g(a1, ..., ak) = max{a1, ..., ak}.

• needs k weight vectors instead of 1.
– Leaky ReLU: g(a) = max{0, a}+ α min(0, a).

Þ the network computes a piecewise linear function (up to
the output activation function).

66

ReLU vs. Sigmoid and Tanh

• Sigmoid and Tanh saturate for values not close to 0:
– “kill” gradients, bad behavior for gradient-based learning.

• ReLU does not saturate for values > 0:
– greatly accelerates learning, fast implementation.
– fragile during training and can “die”, due to 0 gradient:

• initialize all b’s to a small, positive value, e.g. 0.1.

67

ReLU vs. Softplus

• Softplus g(a) = ln(1+ea) is a smooth version of the rectifier.
– Saturates less than ReLU, yet ReLU still does better [Glorot, 2011].

68

ReLU and Generalizations

• Leaky ReLU attempts to fix the “dying” ReLU problem.

• Maxout subsumes (leaky) ReLU, but needs more params.

69

Maxout Networks

• Maxout units can learn the activation function.

70

[Goodfellow et al., ICML’13]

Number of Linear Regions of Shallow vs.
Deep Networks

71

A deep network has significantly greater representational
power than a shallow one.

Theorem

[Montufar et al., NIPS’14]

Folding Example

72

−1 −1 +1

0 1

1

x1 x2

?

Folding Example

73

−1 −1 +1

0

1

x1 x2

1

Folding Example

74

−1 −1 +1

0 2

2

x1 x2

+1 +1
−1 −1

?

0

1

1

Folding Example

75

−1 −1 +1

0 2

2

x1 x2

+1 +1
−1 −1

0

1

1

Space Foldings

• Each hidden layer of a deep neural network can be
associated with a folding operator.

76

Folding Example

77

−1 −1 +1

0 2

2

+1 +1
−1 −1

0 4

4

x1 x2

+1 +1
−2 −2 ?

1

0 1

Folding Example

78

−1 −1 +1

0 2

2

+1 +1
−1 −1

0 4

4

x1 x2

+1 +1
−2 −2

1

0 1

Space foldings

• Each hidden layer of a deep neural network can be
associated with a folding operator.

79

−1 −1

Folding Example

80

+1

0 2

2

+1 +1
−1 −1

0 4

4

x1 x2

+1 +1
−2 −2

1

0 1

−2 −2

Folding Example

81

+1

0 2

2

+1 +1
−1 −1

0 4

4

x1 x2

+1 +1
−2 −2 ?

?

1

0 1
?

−2 −2

Folding Example

82

+1

0 2

2

+1 +1
−1 −1

0 4

4

x1 x2

+1 +1
−2 −2

1

0 1

Space Foldings

• Each hidden layer of a deep neural network can be
associated with a folding operator:
– Each hidden layer folds the space of activations of the previous

layer.
– In turn, a deep neural network effectively folds its input-space

recursively, starting with the first layer.

• Any function computed on the final folded space will
apply to all the collapsed subsets identified by the map
corresponding to the succession of foldings.

• This means that in a deep model any partitioning of the last
layer’s image-space is replicated in all input-space regions
which are identified by the succession of foldings.

83

[Montufar et al., NIPS’14]

Space Foldings

• Space foldings are not restricted to foldings along
coordinate axes and they do not have to preserve lengths:
– The space is folded depending on the orientations and shifts

encoded in:
• The input weights W and biases b.
• The nonlinear activation function used at each hidden layer.

– The sizes and orientations of identified input-space regions may
differ from each other.

– For activation functions which are not piece-wise linear, the
folding operations may be even more complex.

84

[Montufar et al., NIPS’14]

Space Foldings

85

[Montufar et al., NIPS’14]

Space Foldings

• Space folding of 2-D space in a non-trivial way:
– The folding can potentially identify symmetries in the boundary

that it needs to learn.

86

[Montufar et al., NIPS’14]

Deep vs. Shallow Rectifier Networks

• A linear region of a piecewise linear function F: Rd −> Rm
is a maximal connected subset of the input-space Rd, on
which F is linear.
– The number of linear regions carved out by a deep rectifier

network with d inputs, depth l, and n units per hidden layer, is:

– In the case of maxout networks with k filters per unit, the number
of linear regions is:

87

[Montufar et al., NIPS’14]

Start Supplemental Material

Why are Deep Architectures Good for AI?

88

Why are Deep Architectures Good for AI?

• There is no guarantee that the kinds of functions we want
to learn share this “folding” property.

• Choosing a deep model encodes a very general belief that:
– The function we want to learn should involve composition of

several simpler functions, OR
– The learning problem consists of discovering a set of underlying

factors of variation that can in turn be described in terms of other,
simpler underlying factors of variation, OR

– The function we want to learn is a computer program consisting of
multiple steps, where each step uses of the previous step’s output.

• Empirically, greater depth does seem to result in better
generalization for a wide variety of tasks.

89

Digit Recognition Accuracy vs. Depth

90

[DL book, 2016]

Accuracy vs. Depth vs. Capacity

91

[DL book, 2016]

Why do Cheap & Deep Architectures Work
for AI?

• Paradox: How can neural networks approximate functions
well in practice, when the set of possible functions is
exponentially larger than the set of practically possible
networks?
– Example: classify megapixel greyscale images into two categories,

e.g., cats or dogs.
– If each pixel can take one of 256 values, then there are 2561000000

possible images, and for each one, we wish to compute the
probability that it depicts a cat.

– This means that an arbitrary function is defined by a list of 2561000000
probabilities, i.e., way more numbers than there are atoms in our
universe (about 1078).

92

[Lin & Tegmark, 2016]

Why do Cheap & Deep Architectures Work
for AI?

• Paradox: How can neural networks approximate functions
well in practice, when the set of possible functions is
exponentially larger than the set of practically possible
networks?

• Conjecture: The data sets and functions we care about form
a minuscule minority, and it is plausible that they can also be
efficiently implemented by neural networks reflecting their
generative process.

93

[Lin & Tegmark, 2016]

Why do Cheap & Deep Architectures Work
for AI?

1. Cheap: The exceptional simplicity of physics-based
functions hinges on properties such as symmetry, locality,
compositionality and polynomial log-probability.
– These properties translate into exceptionally simple neural networks

approximating both natural phenomena such as images and abstract
representations thereof such as drawings.

2. Deep: The statistical process generating the data is of a
certain hierarchical form prevalent in physics and machine
learning:
– Therefore, a deep neural network can be more efficient than a

shallow one.

94

[Lin & Tegmark, 2016]

Why do Cheap Architectures Work for AI?

• Low polynomial order: For reasons that are still not fully
understood, our universe can be accurately described by
polynomial Hamiltonians of low order d.
– Standard model: At a fundamental level, the Hamiltonian of the

standard model of particle physics has d = 4.
– Central Limit Theorem: many probability distributions in

machine-learning and statistics can be accurately approximated by
multivariate Gaussians => Hamiltonian H = − ln p has d = 2.

• Translation and rotation invariance.
• Locality.
• Symmetry.

95

[Lin & Tegmark, 2016]

Why do Cheap Architectures Work for AI?

• Low polynomial order: For reasons that are still not fully
understood, our universe can be accurately described by
polynomial Hamiltonians of low order d.

• Neural networks can efficiently approximate multiplication!

96

[Lin & Tegmark, 2016]

Polynomials as Simple NNs

97

[Lin & Tegmark, 2016]

Why do Deep Architectures Work for AI?

• Hierarchical Structure: One of the most striking features
of the physical world is its hierarchical structure.
– Spatially, it is an object hierarchy: elementary particles form

atoms which in turn form molecules, cells, organisms, planets,
solar systems, galaxies, etc.

– Causally, complex structures are frequently created through a
distinct sequence of simpler steps.

98

[Lin & Tegmark, 2016]

99

Why do Cheap & Deep Architectures Work
for AI?

• Cheap & Deep:
• Paradox: The number of parameters required to describe an arbitrary

function of the input data y is beyond astronomical.
• Solution: The generative process can be specified by a more modest

number of parameters, because each of its steps can.
– For a megapixel image of a galaxy, its entire prob. distribution is

defined by the standard model of particle physics with its 32
parameters, which together specify the process transforming
primordial hydrogen gas into galaxies.

– Giving the simple low-information content instruction “draw a cute
kitten" to a random sample of artists will produce a wide variety of
images y with a complicated probability distribution over colors,
postures, etc. But the pre-stored information about cat probabilities
in these artists' brains is modest in size.

100

[Lin & Tegmark, 2016]

End Supplemental Material

Why are Deep Architectures Good for AI?

101

Readings

• Chapter 7 on Neural Netwoks in the NLP textbook.

102

https://web.stanford.edu/~jurafsky/slp3/7.pdf

