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Feature Selection

• Datasets with thousands of features are common:

– text documents

– gene expression data

• Processing thousands of features during training & testing 

can be computationally infeasible.

• Many irrelevant features can lead to overfitting.

=> select most relevant features in order to obtain faster, 

better and easier to understand learning models.
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Feature Selection: Methods

• Wrapper method: 

– uses a classifier to assess features or feature subsets.

• Filter method: 
– ranks features or feature subsets independently of the classifier.

• Univariate method: 

– considers one feature at a time.

• Multivariate method: 
– considers subsets of features together.
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The Wrapper Method

Greedy Forward Selection:

• F is the set of all features.

• S  F is the subset of selected features.

1. Start with no features in S = {}

2. For each feature f in F− S, train model with S +{f}

3. Add to S the best performing feature(s).

4. Repeat from 2 until: 

(a) performance does not improve, or 

(b) performance good enough.
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The Wrapper Method

Greedy Backward Elimination:

• F is the set of all features.

• S  F is the subset of selected features.

1. Start with all features in S = F

2. For each feature in S, train model without that feature.

3. Remove from S feature corresponding to best model.

4. Repeat from 2 until: 

(a) performance does not improve, or 

(b) performance good enough.
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The Wrapper Method

• Forward: Greedily add features one (more) at a time.

Efficiently Inducing Features of Conditional Random Fields” 

[McCallum, UAI’03]

• Backward: Greedily remove features one (more) at a time.

Multiclass cancer diagnosis using tumor gene expression signatures” 

[Ramaswamy et al., PNAS’01]

• Combined: Two steps forward, one step back.

• Train multiple times  can be very time consuming!

– Alternative: use external criteria to decide feature relevance  the 

Filter Method.
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http://www.cs.umass.edu/~mccallum/papers/ifcrf-uai2003.pdf
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC64998


Recursive Feature Elimination with SVM 

• An instance of Greedy Backward Elimination.

1. Let F = {1, 2, ..., K} be the set of features.

2. Let S = [] be the ranked set of features.

3. Repeat until F – S is empty:

I. Train weight vector w using a linear SVM and F – S.

II. Find feature f  in F – S with minimum |wf|.

III. Append f to S.

4. Return S.
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[Guyon et al., ML’03]



The Filter Method

1. Rank all features using a measure of correlation with the 

label.

2. Select top k features to use in the model.

• Measures of correlation between feature X and label Y:

– Mutual Information

– Chi-square Statistic

– Pearson Correlation Coefficient

– Signal-to-Noise Ratio

– T-test
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Mutual Information

• Independence:

• Measure of dependence:

– It is 0 when X and Y are independent.

– It is maximum when X=Y.
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Mutual Information

• Problems:

– Works only with nominal features & labels  discretization.

– Biased toward high arity features  normalization.

– May choose redundant features.

– Features may become relevant in the context of other  use 

conditional MI [Fleuret, JMLR ‘04].

• Other measures:

– Chi square (2).

– Log-likelihood Ratio (LLR).

• Comparison between MI, 2, and LLR in [Dunning, CL’98]

“Accurate methods for the statistics of surprise and coincidence”
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Chi Square (2) Test of Independence

• N training examples (observations).

• X is a discrete feature with k possible values.

• Y is a label with l possible values.

• Create k-by-l contingency table with cells for every feature-label 

combination. 
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Chi Square (2) Test of Independence

• Oij is the observed count for X= i & Y= j.

• Eij is the expected value for X= i & Y= j, assuming X,Y are independent.
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Chi Square (2) Test of Independence
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Use X2 test value to rank features X with respect to label Y.



Pearson Correlation Coefficient

• Feature X and label Y are two random variables.

• Population correlation coefficient (linear dependence):

• Sample correlation coefficient:

• Values always between [−1,+1]

– when linearly dependent +1, −1, when independent 0.
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Pearson Correlation Coefficient
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Signal-to-Noise Ratio (S2N)

• Feature X and label Y are two random variables:

– Y is binary, Y{y+, y−}

• Let +, + be the sample ,  of X for which Y= y+.

• Let −, − be the sample ,  of X for which Y= y−.
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Ranking Features with the T-test

• Let m+ be the number of samples in class y+.

• Let m− be the number of sample in class y− .
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