CS 5356: Introduction to Machine Learning

Feature Selection

Razvan C. Bunescu

Department of Computer Science @ CCI

rbunescu@uncc.edu

Feature Selection

- Datasets with thousands of features are common:
 - text documents
 - gene expression data
- Processing thousands of features during training & testing can be computationally infeasible.
- Many irrelevant features can lead to overfitting.

=> select most relevant features in order to obtain *faster*, *better* and *easier* to understand learning models.

Feature Selection: Methods

• Wrapper method:

- uses a classifier to assess features or feature subsets.

• Filter method:

- ranks features or feature subsets independently of the classifier.

• Univariate method:

considers one feature at a time.

Multivariate method:

- considers subsets of features together.

The Wrapper Method

Greedy Forward Selection:

- *F* is the set of all features.
- $S \subseteq F$ is the subset of selected features.
- 1. Start with no features in $S = \{\}$
- 2. For each feature f in F S, train model with $S + \{f\}$
- 3. Add to S the best performing feature(s).
- 4. Repeat from 2 until:
 - (a) performance does not improve, or
 - (b) performance good enough.

The Wrapper Method

Greedy Backward Elimination:

- *F* is the set of all features.
- $S \subseteq F$ is the subset of selected features.
- 1. Start with all features in S = F
- 2. For each feature in *S*, train model without that feature.
- 3. Remove from S feature corresponding to best model.
- 4. Repeat from 2 until:
 - (a) performance does not improve, or
 - (b) performance good enough.

The Wrapper Method

- Forward: Greedily add features one (more) at a time.
 <u>Efficiently Inducing Features of Conditional Random Fields</u>" [McCallum, UAI'03]
- Backward: Greedily remove features one (more) at a time. <u>Multiclass cancer diagnosis using tumor gene expression signatures</u>" [Ramaswamy et al., PNAS'01]
- Combined: Two steps forward, one step back.
- Train multiple times \Rightarrow can be very time consuming!
 - Alternative: use external criteria to decide feature relevance ⇒ the Filter Method.

Recursive Feature Elimination with SVM [Guyon et al., ML'03]

- An instance of Greedy Backward Elimination.
- 1. Let $F = \{1, 2, ..., K\}$ be the set of features.
- 2. Let S = [] be the ranked set of features.
- 3. Repeat until F S is empty:
 - I. Train weight vector w using a linear SVM and F S.
 - II. Find feature f in F S with minimum $|\mathbf{w}_f|$.
 - III. Append f to S.
- 4. Return S.

The Filter Method

- 1. Rank all features using a measure of correlation with the label.
- 2. Select top k features to use in the model.
- Measures of correlation between feature X and label Y:
 - Mutual Information
 - nominal features & label
 - Chi-square Statistic
 - Pearson Correlation Coefficient
 - Signal-to-Noise Ratio
 - T-test

Mutual Information

• Independence:

P(X,Y) = P(X)P(Y)

• Measure of dependence:

$$MI(X,Y) = \sum_{X \in \mathcal{X}Y \in \mathcal{Y}} \sum_{Y \in \mathcal{Y}} p(X,Y) \log \frac{p(X,Y)}{p(X)p(Y)}$$
$$= KL(p(X,Y) \parallel p(X)p(Y))$$

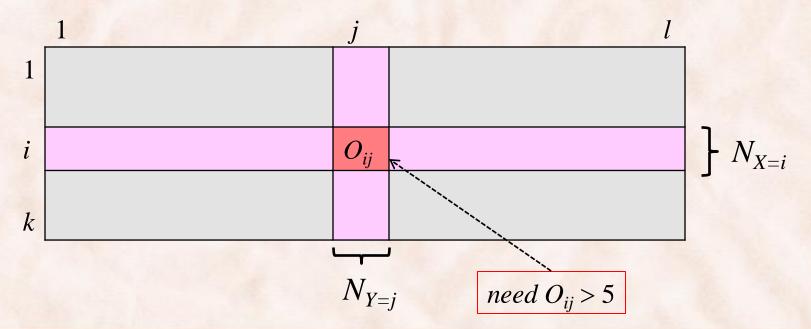
- It is 0 when X and Y are independent.
- It is maximum when X=Y.

Mutual Information

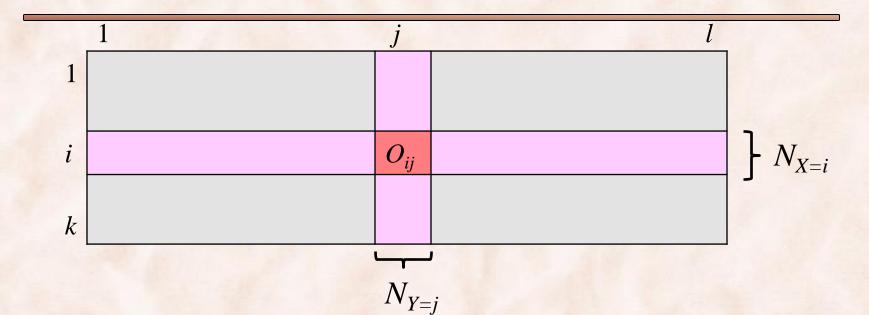
- Problems:
 - Works only with nominal features & labels \Rightarrow discretization.
 - Biased toward high arity features \Rightarrow normalization.
 - May choose redundant features.
 - Features may become relevant in the context of other ⇒ use conditional MI [Fleuret, JMLR '04].
- Other measures:
 - Chi square (χ^2) .
 - Log-likelihood Ratio (LLR).
- Comparison between MI, χ², and LLR in [Dunning, CL'98]
 "Accurate methods for the statistics of surprise and coincidence"

Chi Square (χ^2) Test of Independence

- *N* training examples (observations).
- X is a discrete feature with k possible values.
- *Y* is a label with *l* possible values.
- Create *k*-by-*l* contingency table with cells for every feature-label combination.



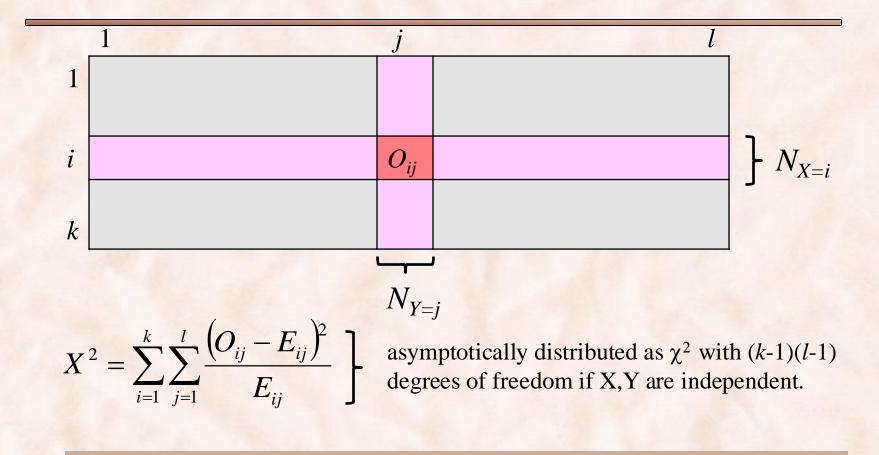
Chi Square (χ^2) Test of Independence



- O_{ij} is the observed count for X=i & Y=j.
- E_{ij} is the expected value for X=i & Y=j, assuming X, Y are independent.

$$E_{ij} = \frac{N_{X=i} \cdot N_{Y=j}}{N} = \frac{\left(\mathring{a}_{c=1}^{l} O_{ic}\right) \cdot \left(\mathring{a}_{r=1}^{k} O_{rj}\right)}{N}$$

Chi Square (χ^2) Test of Independence



Use X^2 test value to rank features X with respect to label Y.

Pearson Correlation Coefficient

- Feature X and label Y are two random variables.
- Population correlation coefficient (*linear dependence*):

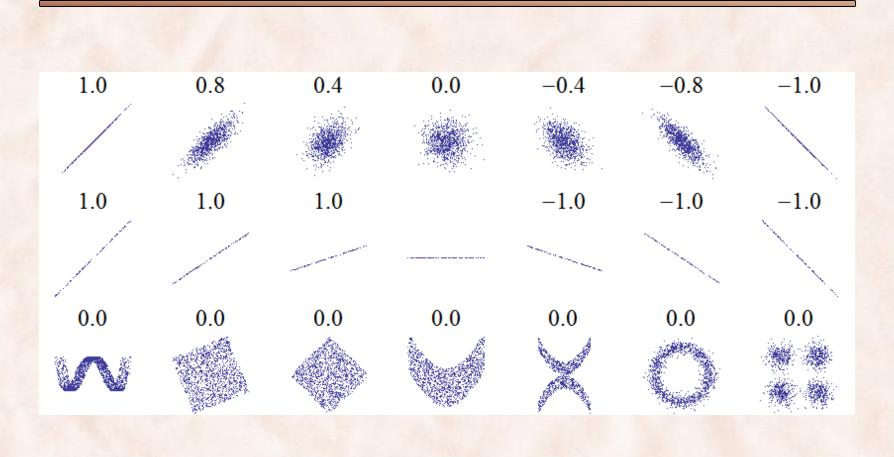
$$\rho(X,Y) = \frac{E[(X - \mu_X)(Y - \mu_Y)]}{\sigma_X \sigma_Y}$$

• Sample correlation coefficient:

$$\rho(X,Y) = \frac{\sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y})}{\sqrt{\sum_{i=1}^{n} (X_i - \overline{X})^2} \sqrt{\sum_{i=1}^{n} (Y_i - \overline{Y})^2}}$$

- Values always between [-1,+1]
 - when linearly dependent +1, -1, when independent 0.

Pearson Correlation Coefficient

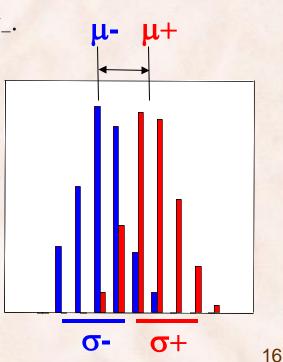


Signal-to-Noise Ratio (S2N)

- Feature X and label Y are two random variables:
 - Y is binary, $Y \in \{y_+, y_-\}$
- Let μ_+ , σ_+ be the sample μ , σ of X for which $Y = y_+$.
- Let μ_{-} , σ_{-} be the sample μ , σ of X for which $Y = y_{-}$.

$$\mu(X,Y) = \frac{|\mu_{+} - \mu_{-}|}{\sigma_{+} + \sigma_{-}}$$

$$\int$$
related to Fisher's criterion



Ranking Features with the T-test

- Let m₊ be the number of samples in class y₊.
- Let m_ be the number of sample in class y_.

