ITCS 6101/8101 Homework 2: Implementation (60 points)

February 3, 2026

In this assignment, you are given a code base that implements Mikolov’s Skip-gram model for learning
word embeddings, in two versions: C++ with STL (Section |If) and Python with NumPy (Section . You
are asked to choose one of them and complete the following tasks:

1. Implement the gradient update logic for training embeddings, using the gradient formulas and
parameter update equations shown in |[Section 5.5.2 Learning skip-gram embeddings from the
textbookl

2. Implement functions that use the trained embeddings to answer word similarity and word analogy
questions.

3. Run the complete code to train word embeddings on text that contains a lower-cased, tokenized
version of the first 1 Billion characters in Wikipedia.

4. Use the trained word embeddings to answer similarity and analogy questions.
5. Write a report summarizing experimental results and insights.

The skeleton code and data are linked from [the course webpagel Organize your code in folders as shown in
Table [I, where:

e The data/ folder contains two text files: wiki-1B.txt to use in the experimental evaluation, and the
much smaller wiki-1B.txt for debugging.

e The vocab. txt file contains the vocabulary learned from the text corpus, mapping token types to their
frequencies, restricted to those that appear at least 5 times in the corpus.

e The vec.txt.1 and vec.txt.2 will contain the learned target and context embeddings, respectively.

e The traces.txt will contain the exact output that your code produces when running the training and
testing commands. Ensure that the trace file shows the time it takes your code to train embeddings
by enclosing the training command with calls to date, as shown in Section [I] Document the training
time in your report.

At a minimum, you should report results from training word embeddings with the configurations below,
although it is highly recommended to try and compare multiple configurations:

e First, train and save embeddings of size 200, with 5 negative samples for each positive context word,
with a maximum skip length between words of 5 (context size), for at least 3 iterations.

— Note that the NumPy implementation, even when vectorized, is much slower than the C++
implementation. For examples, using the parameters above on an Apple M4 Pro, training the
C++ code took less than 5 minutes, whereas the NumPy code needed over 5 hours to complete
training.

e Second, train and save an additional set of embeddings where you increase the context size from 5 to
15.

Once the embeddings are trained, use the target embeddings to evaluate the quality of top-K outputs for
the following:

1. Similarity: Print and evaluate the most similar words for each of the following words: book, trip,
paris, stop, write, language, beautiful, bad, quickly, amazing.

e Context size Compare the embedding performance between the small (5) and large (15) context
sizes, in terms of the top-K words identified obtained for these similarity questions.

2. Analogy: Print and evaluate the highest scoring words for the following triplets: paris is to france
what tokyo is to X, balloon is to air what bucket is to X, novel is to writer what music is to X, white
is to snow what red is to X, liquid is to water what solid is to X, water is to liquid what ice is to X.

https://web.stanford.edu/~jurafsky/slp3/5.pdf
https://web.stanford.edu/~jurafsky/slp3/5.pdf
https://webpages.charlotte.edu/rbunescu/courses/itcs6101

hw02/
report.pdf
ct++/
src/
LMEmbedMain.cc
LMEmbedModel. [h]cc]
TestEmbeddings.cc
Vocabulary. [hlcc]
VocabularyWord. [h|cc]
Utils. [h|cc]
Makefile
vocab.txt, vec.txt.l, vec.txt.2
traces.txt
numpy/
1m_embed main.py
1m_embed_model.py
test_embeddings.py
vocabulary.py
vocab.txt, vec.txt.l, vec.txt.2
traces.txt
data/
wiki-1B.txt
wiki-1M.txt

Table 1: Folder structure.

When you evaluate the top outputs, try to explain any unexpected results or mistakes, by referring to
properties of the algorithm or the data. Whenever you formulate a hypothesis, it is important that it is
supported empirically. As such, feel free to evaluate the trained embeddings on words and analogy examples
that go beyond the ones above. All the required results and analyses should be included in an appropriately
edited homework report, using proper indentation, section titles, and formatting. If you include formulas,
make sure that you use appropriate formatting of equations. The PDF of the report report.pdf should be
submitted on Canvas, together with the code in the folder above. The assignment will be graded based on
both the code and the quality of the report.

1 C+H+4 implementation details

The target and context embeddings are stored in the arrays VocabularyWord: : embedl_and VocabularyWord: : embed2_,

respectively. The LMEmbedMain. cc contains the main function for launching the training. After completing
the code, you will compile the entire package by running the make command with the provided Makefile,
which will create two executables, wvembed for training and testembed for testing.

For example, you can train with the parameter minimal settings above by running the command below:

c++> date; ./wvembed -train ../data/wiki-1B.txt -savevocab vocab.txt -output

vec.txt-size 200 -context 5 -subsample le-4 -negative 5 -iter 3
>! trace.txt; date
Similarly, you can test the embeddings by running the command below:
ct+> ./testembed vocab.txt vec.txt.l

You will need to write code in the sections marked with YOUR CODE HERE as detailed below, but feel free
to implement auxiliary functions if you think that makes the code more readable or more efficient:

e Utils.cc: complete the getSimilarity() and dotProduct() function.
e VocabularyWord.cc: complete the similarity() function.

e Vocabulary.cc: complete the two getTopWords() functions.

e LMEmbedModel.cc: complete the train() function.

2 NumPy implementation details

The target and context embeddings are stored in the NumPy arrays Vocabulary.etarget and Vocabulary.econtext,
respectively. The file / class naming and the command line is similar to the C4++ version.

You will need to write code in the sections marked with YOUR CODE HERE as detailed below, but feel free
to implement auxiliary functions if you think that makes the code more readable or more efficient:

e vocabulary.py: complete the code in functions similarity(), getSimilarWords (), and getAnalogyWords ().

e 1m embed model.py: complete the train() function.

3 Bonus exercises

Any non-trivial and insightful extra work can be worth bonus points. For example:

1. Determine if adding the target and context embeddings improves the answers to similarity or analogy
questions. Determine if answering analogy questions works well without normalizing the embeddings
first.

2. Train only one embedding matrix for both target and context words, compare embedding performance
with current approach.

3. Implement both the C+4 and NumPy versions and compare their efficiency in terms of running time.

4. Improve the running time, e.g., through parallel / multi-threaded execution, by reading tokens form
files asynchronously with the gradient updates, etc.

5. Explore how the performance of word embeddings changes as a function of using more iterations, more
data, more negative examples, multiple context sizes, etc.

6. Implement sparse word embeddings using tf.idf or ppmi encodings, and compare them against dense
skip-gram embeddings.

7. Identify instances of gender bias using the methods introduced on slides 90 and 91 in the [lecture on
word embeddings.

4 Submission
Electronically submit on Canvas a hw02.zip file that contains the hw02 folder in which your code is in the
required files, as well as the report.pdf and traces.txt files.

On a Linux system, creating the archive can be done using the command:

> zip -r hw02.zip hwO02.

Please observe the following when handing in homework:

1. Structure, indent, and format your code well.
2. Use adequate comments, both block and in-line to document your code.

3. Verify your code runs correctly when used in the directory structure shown above. We will not debug
your code.

4. For your report, it is recommended to use an editor such as Overleaf for Latex, Word, or Jupyter-
Notebook that allows editing and proper formatting of equations, plots, and tables with results.

5. Verify that your Canvas submission contains the correct files by downloading and unzipping it after
posting on Canvas.

https://webpages.charlotte.edu/rbunescu/courses/itcs4101-fall25/embeddings.pdf
https://webpages.charlotte.edu/rbunescu/courses/itcs4101-fall25/embeddings.pdf

	C++ implementation details
	NumPy implementation details
	Bonus exercises
	Submission

